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That’s how it started...



4

Collaborators



5

Diluted magnetic 
Semiconductors
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Ferromagnetic (Ga,Mn) As

Ga 
As

(Ga, Mn) 
As

(Ga,Mn)As becomes 
ferromagnetic below Curie 

temperature Tc.

Zincblende structure of GaAs
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Curie Temperature

The trend of Curie temperature 
can be fitted rather well by the 
empirical power law versus the 
carrier density,

Magnetization is measured 
through anomalous Hall effect.

Hso = αR (k × n̂) · S

= Ωk · S

Tc ∼ n
1/3
h
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Transport and Field Effect

Resistivity shows pronounced peak 
around the Curie temperature. Is it 
the Fisher-Langer anomaly?

Ohno’s Group
Nature 408, 944 (2000)

By varying the gate voltage, 
one can manipulate 
the concentration of itinerant 

carriers.

Resistivity minima and Kondo effect in ferromagnetic GaMnAs films
H. T. He, C. L. Yang, W. K. Ge, and J. N. Wanga!

Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong, China

X. Dai
Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Y. Q. Wang
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

!Received 4 April 2005; accepted 26 August 2005; published online 11 October 2005"

The temperature dependence of the resistivity of ferromagnetic GaMnAs, as-grown or low-
temperature-annealed samples is measured from 2 to 290 K. A resistivity minimum is observed
with a corresponding temperature TM around 10 K for each sample. Below TM, the resistivity
exhibits logarithmic temperature dependence, as ! ln!T", and ! is independent of the external
magnetic field up to 9 T. Such behavior is explained in terms of the Kondo effect arising from the
presence of Mn interstitials in the GaMnAs samples. In addition, a well-defined T-squared
dependence of resistivity is found in the temperature range between TM and the Curie temperature
!TC", which is attributed to single magnon scattering. © 2005 American Institute of Physics.
#DOI: 10.1063/1.2108131$

The ferromagnetic GaMnAs system has been studied ex-
tensively in the past decades due to its potential applications
in spintronics.1,2 As Mn atoms are doped into a GaAs lattice,
most of the Mn atoms occupy Ga sites !MnGa". These MnGa
act as single acceptors and contribute local spins due to the
half-filled 3d shells. Below the Curie temperature !TC", a
hole-mediated ferromagnetic coupling among these local
spins is established.3,4 But besides MnGa, there is also a cer-
tain amount of Mn interstitials !MnI" present in the lattice.5,6

They are double donors and tend to form antiferromagneti-
cally coupled MnGa–MnI pairs, which strongly suppress the
established ferromagnetism.5,7,8 It has been shown that low-
temperature annealing can reduce the MnI concentration and
improve TC significantly.5,9,10 In the present work, for the
first time, we show that these MnI play key roles in the
low-temperature transport behavior of a GaMnAs system,
manifested by a Kondo-related resistivity minimum !"M" ob-
served at a low temperature TM. A logarithmic temperature
dependence of the resistivity is observed below TM for both
the as-grown and low-temperature-annealed ferromagnetic
GaMnAs films. Such temperature dependence is found to be
independent of the applied magnetic field. These phenomena
can be well understood based on an analysis of the effective-
field distribution present at each Mn-ion site, which takes
into account the antiferromagnetic interaction of MnGa–MnI
pairs as well as the hole-mediated ferromagnetism. In addi-
tion, a well-defined T2 dependence of the resistivity is also
observed between TC and TM, which is ascribed to single
magnon scattering.

A 30 nm GaMnAs film with 5.2% Mn composition was
grown by low-temperature molecular-beam epitaxy !MBE"
in a Riber 32 MBE system on !100" semi-insulating GaAs
substrate. Hall-bar structures were fabricated using standard
photolithography techniques. Low-temperature annealing
was carried out in N2 gas. The resistivity at different tem-

peratures and under various magnetic fields was measured
using a standard four-probe technique. Four samples were
investigated, and they are labeled A, B, C, and D, corre-
sponding to the as-grown sample and the samples annealed
at 160, 200, and 260 °C for 2 h, respectively.

Figure 1 shows the temperature dependence of the resis-
tivity #"!T"$ from 2 to 290 K for samples A, B, C, and D,
respectively. The Curie temperature estimated from the tem-
perature at the peak resistivity9,10 is indicated for each
sample. In comparison with the as-grown sample A, the three
annealed samples exhibit lower resistivity and higher TC
with increasing annealing temperatures, which is consistent
with the previous results.9,10 The four samples are all metal-
lic, evidenced by the sharp decrease of resistivity below TC.
However, the most interesting feature is that a resistivity
minimum "M at a low temperature TM is observed around
10 K for each sample. Detailed analysis reveals that the re-

a"Author to whom correspondence should be addressed; electronic mail:
phjwang@ust.hk

FIG. 1. !Color online" The temperature dependence of the resistivity "!T"
for samples A, B, C, and D, with the corresponding TC indicated.

APPLIED PHYSICS LETTERS 87, 162506 !2005"

0003-6951/2005/87"16!/162506/3/$22.50 © 2005 American Institute of Physics87, 162506-1
Downloaded 30 Oct 2005 to 140.114.80.161. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

He, Yang, Ge, Wang, Dai, Wang
Appl. Phys. Lett.  87, 162506 (2005)
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Spin Injection

By measuring the intensity of the polarized light emission, 
we can estimate the efficiency of spin injection in the all-
semiconductor setup.

Ohno’s Group,
Nature 402, 790 (1999)

Polarized holes recombined 
with electrons, creating 
circularly polarized light by 
angular momentum transfer.
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Two-Component 
Ferromagnetism
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Carrier-Mediated Ferromagnetism

(b) The itinerant carriers like to 
align the impurity spins so that 
the kinetic energy is lowered.

(a) At finite temperature, impurity 
spins prefer random orientations to 
maximize thermal entropy.

(c) Delocalization of itinerant 
carriers leads to ferromagnetism.

MacDonald et al.
Nature Materials 4, 195 (2005)
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We start with the simplest model containing both itinerant and
localized spins,

H =
∫

d3r

{

ψ†(r)

(

−
∇2

2m∗ − µ

)

ψ(r) + J S(r) · σ(r)

}

,

where J is the exchange coupling between impurity and itinerant
spin densities, denoted by S(r), σ(r) respectively,

S(r) =
∑

I

δ3(r −RI)SI,

σ(r) =
1

2
ψ†

α(r)ταβψβ(r).

Of course, the realistic diluted magnetic semiconductors are be-
yond the simple Hamiltonian, which ignores several important
pieces of physics: (1) realistic electronic band structure, (2)
electron-electron interactions, (3) direct exchange between im-
purity spins.



Mean-Field Decomposition

13

Split the spin operators into mean-field and fluctuating parts,

S = 〈Sz〉+ δS, σ = 〈σz〉+ δσ,

and dropping higher-order fluctuations δS ·δσ, the exchange cou-
pling is approximated by

S · σ ≈ 〈Sz〉〈σz〉+ 〈Sz〉δσ + 〈σz〉δS
= −〈Sz〉〈σz〉+ 〈Sz〉σz + 〈σz〉Sz,

Dropping the constant in the first term, the mean-field Hamil-
tonian HMF = Hh + HI is

Hh =
∫

d3r ψ†
σ(εσ − µ)ψσ,

HI =
∫

d3r J〈σz〉Sz,

where the spectrums for the itinerant carriers are split by the
exchange coupling, εσ = p2/2m∗ + (σ/2)J〈Sz〉.



Self-Consistency (I)
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For notational convenience, introduce the polarization for both
components of spins,

αI =
1

nIS
〈Sz〉, αh = −

2

nh
〈σz〉.

It is clear that the polarizations are always between zero and
one, 0 ≤ αI, αh ≤ 1. The minus sign is introduced in the second
equation because the exchange coupling is antiferromagnetic.

With given polarization of the impurity spin αI, one can proceed
to compute the polarization of the itinerant carriers αh. Note
that the densities of itinerant carriers are

nν =
∫ d3k

(2π)3
1

eβ(εν−µ) + 1
,

and the chemical potential µ is determined by keeping the total
density of the itinerant carriers n↑ + n↓ = nh constant.

For notational convenience, introduce the polarization for both
components of spins,

αI =
1

nIS
〈Sz〉, αh = −

2

nh
〈σz〉.

It is clear that the polarizations are always between zero and
one, 0 ≤ αI, αh ≤ 1. The minus sign is introduced in the second
equation because the exchange coupling is antiferromagnetic.

With given polarization of the impurity spin αI, one can proceed
to compute the polarization of the itinerant carriers αh. Note
that the densities of itinerant carriers are

nν =
∫ d3k

(2π)3
1

eβ(εν−µ) + 1
,

and the chemical potential µ is determined by keeping the total
density of the itinerant carriers n↑ + n↓ = nh constant.



Self-Consistency (II)
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Once the chemical potential is solved, the polarization of the
itinerant carriers is

αh(αI, T ) =
n↓(αI, T )− n↑(αI, T )

nh
.

In general, αh(αI, T ) do not have a simple analytical form in terms
of the impurity spin polarization αI and the temperature T . To
complete the self-consitency, we now compute the polarization
of the impurity αI with a given polarization αh. The calculation
leads to the Brillouin function,

αI(αh, T ) = BS

[(
JnhS

2kT

)
αh

]
,

where the Brillouin function is BS(x) ≡ 2S+1
2S coth

(
2S+1
2S x

)
−

1
2S coth

(
1
2Sx

)
. The above equations complete the self-consistency

loop in Weiss mean-field theory.
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Mean-Field Prediction

The spin polarizations of Mn ions 
and itinerant holes under external 
magnetic field are described by 
Curie and Pauli susceptibilities.  

Self-consistent equations at T=Tc

The polarization can be evaluated in 
mean-field limit by replacing all 
other spins with an effective 
magnetic field.

〈Sz〉 = χC H = nI
S(S + 1)

3kT
gµBH

〈sz〉 = χP h =

[
χP

(g∗µB)2

]

g∗µBh

〈Sz〉 = nI
S(S + 1)

3kTc
J 〈sz〉

〈sz〉 =

[
χP

(g∗µB)2

]

J 〈Sz〉

kTc =
S(S + 1)

3
J2 nI

[
χP

(g∗µB)2

]

〈Sz〉 = χC H = nI
S(S + 1)

3kT
gµBH

〈sz〉 = χP h =

[
χP

(g∗µB)2

]

g∗µBh

〈Sz〉 = nI
S(S + 1)

3kTc
J 〈sz〉

〈sz〉 =

[
χP

(g∗µB)2

]

J 〈Sz〉

kTc =
S(S + 1)

3
J2 nI

[
χP

(g∗µB)2

]

〈Sz〉 = χC H = nI
S(S + 1)

3kT
gµBH

〈sz〉 = χP h =

[
χP

(g∗µB)2

]

g∗µBh

〈Sz〉 = nI
S(S + 1)

3kTc
J 〈sz〉

〈sz〉 =

[
χP

(g∗µB)2

]

J 〈Sz〉

kTc =
S(S + 1)

3
J2 nI

[
χP

(g∗µB)2

]
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Building Spin-wave 
theory
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Why Spin-Wave Theory?

Spin-wave theory -> the spatial 
fluctuations are inevitable once 
the SU(2) continuous symmetry 
is spontaneously broken.

VOLUME 84, NUMBER 24 P HY S I CA L R EV I EW LE T T ER S 12 JUNE 2000

Since the Hamiltonian is bilinear in fermionic fields,

we can integrate out the itinerant carriers and arrive at an

effective description in terms of the localized spin density

only, Z !
R

D !z̄z" exp#2Seff!z̄z"$ with the action

Seff!z̄z" !
Z b

0
dt

Z

d3r!z̄≠tz 2 gmBB#cS 2 z̄z$"

2 ln det!#GMF$21 1 dG21#z̄z$" . (7)

Here, we have already split the total kernel G21 into a

mean-field part #GMF$21 and a fluctuating part dG21,

#GMF$21 !
µ

≠t 2
h̄2 "=2

2m!
2 m!

∂

1 1
D

2
tz , (8)

dG21 !
Jpd

2
!#zt2 1 z̄t1$

p
2cS 2 z̄z 2 z̄ztz" , (9)

whereD ! cJpdS 2 g!mBB is the zero-temperature spin-
splitting gap for the itinerant carriers. The physics of the

itinerant carriers is embedded in the effective action of

the magnetic ions. It is responsible for the retarded and

nonlocal character of the interactions between magnetic

ions, which is described here for the first time.

Independent spin-wave theory.—The independent spin-

wave theory, which is a good approximation at low tem-

peratures, is obtained by expanding Eq. (7) up to quadratic

order in z. We find (in Fourier representation)

Seff!z̄z" !
1

bV

X

j "pj,pc ,m

z̄# "p, nm$D21# "p, nm$z# "p, nm$ ,

(10)

in addition to the temperature-dependent mean-field con-

tribution. A Debye cutoff (p3
c ! 6p2c) ensures that we

include the correct number of magnetic ion degrees of free-

dom. The kernel of the quadratic action is the inverse of

the spin-wave propagator,

D21# "p, nm$ ! 2 inm 1 gmBB 1 Jpdn! 1
cJ2

pdS

2bV

3
X

n,"k

GMF
" # "k, vn$GMF

# # "k 1 "p, vn 1 nm$ ,

(11)

with the mean-field itinerant carrier Green’s function

GMF
s # "k, vn$ ! 2!ivn 2 #e "k 1 sD%2 2 m!$"21. The

mean-field spin density is denoted by n! ! #n# 2 n"$%2,
and e "k ! h̄2k2%#2m!$.
Excitations.—We obtain the spectral density of the spin-

fluctuation propagator by analytical continuation, inm !
V 1 i01 and A# "p, V$ ! ImD# "p, V$%p . We find three
different types of spin excitations. In all figures we take

B ! 0 and use as typical parameters [3] m! ! 0.5me,

Jpd ! 0.15 eV nm3, and c ! 1 nm23, where me is the

free-electron mass. For these parameters the mean-field

itinerant-carrier system is fully polarized at T ! 0.
(i) Our model has a gapless Goldstone-mode branch (see

Fig. 1) reflecting the spontaneous breaking of rotational

symmetry [21]. Expansion of the T ! 0 propagator at
D . eF , where eF is the Fermi energy of the majority-spin

band, yields for small and large momenta the dispersion of

the collective modes,

V#1$
p !

x
1 2 x

ep

µ

1 2
4eF

5D

∂

1 O #p4$ , (12)

and V
#1$
p ! xD#1 2 D%ep$ 1 O #1%p4$. At short wave-

lengths we obtain the mean-field result xD, the spin split-
ting of amagnetic ion in the effective field produced by fully

spin-polarized itinerant carriers. Note that the itinerant-

carrier and magnetic-ion mean-field spin splittings dif-

fer by a factor of x ! c!%#2cS$ ø 1. At long wave-

lengths the magnon dispersion in an isotropic ferromagnet

is proportional the spin stiffness r divided by the mag-

netization M. In the adiabatic limit [17,22], eF ø D,
our long-wavelength result reflects a spin stiffness due en-

tirely to the increase in kinetic energy of a fully spin-polar-

ized band when the orientation has a spatial dependence,

r ! c!h̄2%#4m!$, and a magnetization M which has op-

posing contributions from magnetic ions and itinerant car-

riers, M ! cS 2 c!%2 ! cS#1 2 x$. In this limit, the

mean-field critical temperature and the spin stiffness have

opposite dependences on the itinerant-carrier mass.

The low-energy mode describes spin waves in the local-

impurity system. This contrasts with the case of ferro-

magnetism induced by local moments [19] where the

low-energy mode is primarily in the free-carrier part.

(ii) We find a continuum of Stoner spin-flip particle-hole

excitations. They correspond to flipping a single spin in

the itinerant-carrier system and, therefore, occur at much

larger energies &D (see Fig. 2). For D . eF and zero

temperature, all these excitations carry spin Sz ! 11, i.e.,
increase the spin polarization, and therefore turn up at

negative frequencies in the boson propagator we study.

(When D , eF , excitations with both Sz ! 11 and Sz !
21 contribute to the spectral function.) This continuum

0.0 0.2 0.4 0.6 0.8 1.0

p/p
c

0.00

0.01

0.02

0.03

!
(1
) /
"

x"

RKKY

spinwave

FIG. 1. Spin-wave dispersion for c! ! 0.1 nm23. The short
wavelength limit is the mean-field result xD. For comparison,
we show also the result obtained from an RKKY picture.

5629

To include the spatial fluctuations, one 
needs to compute the spin-wave 
propagator D and the dispersion can be 
extracted from its pole.

D−1(!p,Ω) = −iΩ + gµBB + J〈sz〉

+
nIJ

2S

2βV

∑

!k,ν

GMF
↑ (!k, ν)GMF

↓ (!k + !p, ν + Ω)



Holstein-Primakov Boson
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The spin-flip interactions (S+σ−+ S−σ+) were totally ignored
in Weiss mean-field theory and the predicted gapless spin-wave
excitations by Goldstone theorem are killed.

Making use of the path integral formalism, we can develop a spin-
wave theory for the impurity spins by integrating out the itinerant
ones. However, the spin operator inside the path integral has the
annoying Berry phase. Therefore, some tweaking is in order...

S+(r) =
√

2nIS − b†(r)b(r) b(r),

S−(r) = b†(r)
√

2nIS − b†(r)b(r),

Sz(x) = nIS − b†(r)b(r).

In above, we introduce the Holsteiin-Primakov boson b†(r), b(r)
to represent the coarse-grained impurity spin density S(r).

The spin-flip interactions (S+σ−+ S−σ+) were totally ignored
in Weiss mean-field theory and the predicted gapless spin-wave
excitations by Goldstone theorem are killed.

Making use of the path integral formalism, we can develop a spin-
wave theory for the impurity spins by integrating out the itinerant
ones. However, the spin operator inside the path integral has the
annoying Berry phase. Therefore, some tweaking is in order...

S+(r) =
√

2nIS − b†(r)b(r) b(r),

S−(r) = b†(r)
√

2nIS − b†(r)b(r),

Sz(x) = nIS − b†(r)b(r).

In above, we introduce the Holsteiin-Primakov boson b†(r), b(r)
to represent the coarse-grained impurity spin density S(r).



Path Integral Formalism
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Writing down the path integral for the HP bosons and the itin-
erant carriers,

Z =
∫

D[zz]
∫

D[ψψ]e−S[ψψ,zz],

=
∫

D[zz]
∫

D[ψψ]e−
∫ β
0 dτ

∫
d3r L[ψψ,zz]

where L =
∑

σ [ψσ(r, τ)∂τψσ(r, τ) + z(r, τ)∂τz(r, τ)] + H[ψψ, zz] is
the Lagarangian density in the imaginary-time formalism.

Separating the action into two parts S = Sz + Sψ,

Sz =
∫

dτ
∫

d3r z(r, τ)∂τz(r, τ),

Sψ =
∫

dτ
∫

d3r
∫

dτ ′
∫

d3r′ ψ(r, τ)G−1(r, τ ; r′, τ ′)ψ(r′, τ ′),

with

G−1 =

(

∂τ −
∇2

2m∗ − µ +
J

2
S(zz) · τ

)

1,

where the short-hand notation is used, 1 = δ(τ − τ ′)δ3(r − r′).



Integrating Out Itinerant Carriers
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Since the action is quadratic in ψψ, we can integrate out the
itinerant carriers,

Z =
∫

D[zz]e−Sz[zz]
∫

D[ψψ]e−Sψ[ψψzz]

=
∫

D[zz]e−Sz detG−1(zz) =
∫

D[zz]e−Seff[zz],

where Seff[zz] =
[∫

dτ
∫
d3r z(r, τ)∂τz(r, τ)

]
− ln detG−1(zz) is the

effective action for the HP bosons.

Split G−1 into G−1
0 (z-independent) and δG−1(z-dependent) parts,

G−1
0 =

(

∂τ −
∇2

2m∗ − µ +
∆

2
τz

)

1,

δG−1 =
J

2

√
2nIS(zτ− + zτ+)−

J

2
zzτz,

where ∆ = JnIS is the Zeeman splitting at zero temperature.



Making use of the following identity to expand the determinant,

ln detG−1 = tr lnG−1 = tr ln(G−1
0 + δG−1)

= tr lnG−1
0 + tr ln(1 + G0δG−1)

= tr lnG−1
0 − tr

∞∑

n=1

(
−G0δG−1

)n
.

Since δG−1 is at least linear in z, if we are interested in the
quadratic terms of z, z (that is relevant to spin-wave propaga-
tion), we can truncate the series after the second term,

Seff[zz] =
∫

dτ
∫

d3r z(r, τ)∂τz(r, τ)− ln detG−1
0

−tr(G0δG−1) +
1

2
tr(G0δG−1G0δG−1)

leaving out the spin-wave interactions from higher-order terms.

Expanding the Series...

22
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1
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1

2
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ln detG−1 = tr lnG−1 = tr ln(G−1
0 + δG−1)

= tr lnG−1
0 + tr ln(1 + G0δG−1)

= tr lnG−1
0 − tr

∞∑

n=1

(
−G0δG−1

)n
.

Since δG−1 is at least linear in z, if we are interested in the
quadratic terms of z, z (that is relevant to spin-wave propaga-
tion), we can truncate the series after the second term,

Seff[zz] =
∫
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∫

d3r z(r, τ)∂τz(r, τ)− ln detG−1
0

−tr(G0δG−1) +
1

2
tr(G0δG−1G0δG−1)

leaving out the spin-wave interactions from higher-order terms.

Contribute only to specific heat

Crucial for spin-wave propagation

Weiss mean-field theory



Spin-Wave Propagator (I)
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The first term gives the same result as in Weiss MFT,

−tr(G0δG−1) =
J

2

∫
dτ

∫
d3r

∑

σ
σGσ

0(r, τ ; r, τ+)z(r, τ)z(r, τ)

=
J

2
(n↓ − n↑)

∫
dτ

∫
d3r z(r, τ)z(r, τ).

To go from the first to the second line, we recall the definition
that Gσ

0(r, τ ; r, τ+) = 〈Tψσ(r, τ)ψ
†
σ(r, τ+)〉 = −〈ψ†

σ(r, τ)ψσ(r, τ)〉 =
−nσ. The second term is slightly more complicated,

1

2
tr(G0δG−1G0δG−1) =

nIJ
2S

2

∫
dτ

∫
d3r

∫
dτ ′

∫
d3r′

G↑
0(r, τ ; r′τ ′)z(r′, τ ′)G↓

0(r
′, τ ′; r, τ)z(r, τ).

Collecting both contributions, the spin-wave propagator is

D−1(r′, τ ′; r, τ) = (∂τ +
Jnhαh

2
)1 +

nIJ
2S

2
G↑

0(r, τ ; r′τ ′)G↓
0(r

′, τ ′; r, τ).



Spin-Wave Propagator (II)
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Or, the propagator would look more familiar in momentum space,

D(p, νn) =
−1

iνn −ΣW −Σsw(p, νn)
,

where the self energy corrections from integrating out the itin-
erant carriers are,

ΣW =
1

2
J nh αh = J〈σz〉,

Σsw(p, νm) =
nIJ

2S

2β

∑

m

∫ d3k

(2π)3
G↑

0(k, ωn)G
↓
0(k + p, ωm + νn).

Note that, the constant part of the self energy ΣW is the same as
the Weiss mean-field theory at low temperatures, while Σsw(p, νn)
carries frequency dependency, implying that there are more than
one collective excitations.

Or, the propagator would look more familiar in momentum space,

D(p, νn) =
−1

iνn −ΣW −Σsw(p, νn)
,

where the self energy corrections from integrating out the itin-
erant carriers are,

ΣW =
1

2
J nh αh = J〈σz〉,

Σsw(p, νm) =
nIJ

2S

2β

∑

m

∫ d3k

(2π)3
G↑

0(k, ωn)G
↓
0(k + p, ωm + νn).

Note that, the constant part of the self energy ΣW is the same as
the Weiss mean-field theory at low temperatures, while Σsw(p, νn)
carries frequency dependency, implying that there are more than
one collective excitations.



The dispersions of the collective excitations can be obtained by
looking for the poles of the spin-wave propagator D(p, νn). After
lengthy algebra, one will find two modes: the first mode is the
usual spin wave of the localized spins,

E1(k) =
γ

1− γ
ε(k)

[
1−

4

5

εF
∆

]
+O(k4),

with γ = nh/2nIS denotes the ratio between itinerant and local-
ized spin densities. The second mode is gapped with peculiar
“banana”-shape dispersion,

E2(k) = ∆(1− γ)−
1

γ(1− γ)
ε(k)

[4
5

εF
∆
− γ

]
+O(k4).

This mode comes from the Stoner continuum of (electronic)
magnons that couple with the localized spins.

Collective Excitations
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Spin Wave 
Relaxation
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Transport Property

What is the origin of the resistivity 
peak around the Curie temperature?

The conventional mean-
field theory neglects the 
scattering between 
electronic magnons and 
spin waves. In order to 
address the transport 
issues, Green’s function 
approach is necessary!! 
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of ferromagnetic semiconductors. In particular, 
it suggests that one can almost always tweak 
transition temperatures upwards in other 
ferromagnetic semiconductors by altering key 
defects. Recent experiments have probed numerous 
other aspects of the fundamental physics of 
Ga1–xMnxAs such as the magnetic anisotropy40,41, d.c. 
and a.c. conductivity42–44, the band structure45,46 and 
the spin polarization47, leading to a rather thorough 
experimental understanding48. Several possible 
strategies are currently being explored to push TC still 
higher in Ga1–xMnxAs or In1–xMnxAs. These include 
co-doping with other materials to increase the free 
carrier density, and wavefunction engineering in 
heterojunction systems27 to increase the effectiveness 
of the exchange interactions. It seems far from certain, 
however, that these efforts will yield ferromagnetism 
at high enough temperature for applications, 
motivating the study of other related materials 
discussed below.

THEORETICAL PICTURES

Experiments have established that ferromagnetism 
in Ga1–xMnxAs is mediated by a low density of 
valence-band holes, the key property that allows 
magnetic properties to be altered electrically. 
This occurrence of carrier-mediated ferromagnetism 
at reasonably high temperatures in a magnetically 
and electrically dilute system is unusual. 
Crucially, in Ga1–xMnxAs and In1–xMnxAs the 
Mn d-electrons have weak valence fl uctuations and 
are not strongly incorporated into the bonding 
orbitals of the semiconductor. Electrons in the 
half-fi lled d-shell of Mn2+ form a quantum state 
with spin S = 5/2. According to the third law 
of thermodynamics, the macroscopic entropy 
associated with arbitrary local moment spin 
orientations must vanish at low temperatures; spins 
must become fi xed or participate in a correlated-
fl uctuating-moment quantum state. In many 
(II,Mn)VI semiconductors, the Mn moments 
interact very weakly with each other unless they 
happen to lie on neighbouring cation sites, and 
they fl uctuate randomly in orientation down to very 
low temperatures (as illustrated in Fig. 3a). 
The introduction of these low-energy degrees of 
freedom creates the opportunity for a ferromagnetic 
state if an energetic preference for moment 
alignment can be engineered.

In transition-metal-based (III,V) ferromagnetic 
semiconductors, the occurrence of robust 
ferromagnetism as described in the previous 
section makes it evident that this coupling is present. 
It seems clear that the ultimate origin of Mn moment 
alignment is the hybridization that occurs between 
d-orbitals on cation sites and orbitals in the partially 
fi lled valence band that are centred on neighbouring 
anion sites. Manganese substitution introduces both 
local moments and valence-band holes that hybridize 
with Mn d-orbitals of the same spin. The energy of 
the system is lowered when the unoccupied levels near 
the top of the valence band (holes) have the same 
spin orientation as the Mn d-orbitals, that is when 
the total valence-band spin is opposite to that of the 

Mn ion. The valence-band hole will then tend to align 
any Mn moments with which it overlaps as suggested 
by Fig. 3b. These interactions follow essentially from 
quantum mechanical level repulsion, and strengthen 
when the energetic separation between the occupied 
Mn d-levels and the hole states at the top of the 
valence band gets smaller.

A key issue49 for the theory of the III–V DMS 
ferromagnets is whether the carriers end up residing 
in a tightly bound anti-bonding state that has 
primarily d-character, or in a more spatially extended 
structure that has primarily the p-character of the host 
valence band. Because the moments in DMS systems 
are dilute, large values for the inter-moment couplings 
responsible for carrier-mediated ferromagnetism 
require acceptor level states that extend over at least a 
few lattice constants. Strong hybridization strengthens 
the coupling between Mn and band-spin orientations, 
but also shortens the range of its impact by localizing 
the acceptor level. The optimal hybridization strength 
is likely to lie somewhere in the middle ground 
between shallow and deep acceptor levels; this is the 
space that Ga1–xMnxAs seems to occupy.

One of the candidate materials for room-
temperature DMS ferromagnetism14,50, Ga1–xMnxN, 
appears to have strongly localized holes51,52, suggesting 
that the microscopic physics of the high-temperature 
ferromagnetism reported in this material has a 
different character. We do not have a rigorous 
argument that would exclude the possibility of such 
a strongly localized impurity band system attaining 
ferromagnetic order; but it would cost relatively 
little energy to rotate the spin of an impurity-band 
electron centred on one magnetic site relative to that 
of an impurity-band electron centred on a nearby 
magnetic site. Because this energy cost is the stiffness 
that supports magnetization, TC in a diluted moment 

T 3/2 dependence expected for 
a homogeneous ferromagnet
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Figure 2 The temperature 
dependence of the 
magnetization and resistivity 
of Ga0.083Mn0.917As (ref. 36). 
The two curves in each are for 
non-annealed (as grown) and 
annealed samples, and they 
reveal the striking physical 
changes wrought by annealing 
(increased TC and conductivity, 
and conventional behaviour of 
the temperature-dependent 
magnetization).
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Green’s Function Approach
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(1) We start with the Zener model but keep both the 
itinerant and impurity spins.

(2) To describe the correlations between itinerant and 
impurity spins, we introduce the Green’s functions:

D(r1, r2; t) ≡ 〈〈S+(r1, t);S−(r2,0)〉〉

F (r1, r′1, r2; t) ≡ 〈〈ψ†
↑(r1, t)ψ↓(r

′
1, t);S−(r2,0)〉〉.

(3) Writing down the dynamical equations for the Green’s 
function self-consistently.

(4) Solve the coupled differential equations and compute 
interested physical quantities, such as magnetization, 
spin-wave relaxation rate and so on.



Definition of Green’s Function

29

The Green’s function approach respects the spin kinematics and
does not approximate spins as bosons. The thermal Green’s
function for the impurity spins is defined by

D(r1, r2; t) ≡ 〈〈S+(r1, t);S−(r2,0)〉〉
= −iθ(t)〈S+(r1, t)S−(r2,0)〉+ iθ(−t)〈S−(r2,0)S+(r1, t)〉.

As will become clear later, to complete the self-consistency, it is
necessary to introduce another Green’s function which describes
the correlation between impurity and itinerant spins,

F (r1, r′1, r2; t) ≡ 〈〈ψ†
↑(r1, t)ψ↓(r

′
1, t);S−(r2,0)〉〉.

It describes the correlation of creating 
a spin wave at r=r2 and t=0, then 
annihilating it at r=r1 in later time t.

It describes the correlation of creating a 
spin wave at r=r2 and t=0, then 
annihilate an electronic magnon (particle-
hole pair) at r=r1, r=r1’ in later time t. 



Time Evolution
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Taking time derivative of the Green’s function D(r1, r2; t),

i
∂D

∂t
= δ(t)〈S+(r1,0)S−(r2,0)〉+ Θ(t)〈

dS+(r1, t)

dt
S−(r2,0)〉

−δ(t)〈S−(r2,0)S−(r1,0)〉+ Θ(t)〈S−(r2,0)
dS+(r1, t)

dt
〉

= δ(t)
〈[

S+(r1,0), S−(r2,0)
]〉

+ i

〈〈
dS+(r1, t)

dt
;S−(r2,0)

〉〉

.

The first term consists of the equal-time commutator and can
be easily calculated,

δ(t)〈[S+(r1,0), S−(r2,0)]〉 = δ(t)δ3(r1 − r2)〈Sz(r1)〉.

As for the second term, we need to derive the Heisenberg equa-
tion of the spin operator S+(r1, t).

Taking time derivative of the Green’s function D(r1, r2; t),

i
∂D

∂t
= δ(t)〈S+(r1,0)S−(r2,0)〉+ Θ(t)〈
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dt
S−(r2,0)〉

−δ(t)〈S−(r2,0)S−(r1,0)〉+ Θ(t)〈S−(r2,0)
dS+(r1, t)

dt
〉

= δ(t)
〈[

S+(r1,0), S−(r2,0)
]〉

+ i

〈〈
dS+(r1, t)

dt
;S−(r2,0)

〉〉

.

The first term consists of the equal-time commutator and can
be easily calculated,

δ(t)〈[S+(r1,0), S−(r2,0)]〉 = δ(t)δ3(r1 − r2)〈Sz(r1)〉.

As for the second term, we need to derive the Heisenberg equa-
tion of the spin operator S+(r1, t).



The time evolution of the spin operator S+(r1, t) is,

i
dS+(r1, t)

dt
= [S+(r1, t), H] = [S+(r1, t), Hex],

since the kinetic energy of the itinerant carriers is independent
of the impurity spin and thus does not contribute.

The exchange interaction can be decomposed into three terms,
(J/2)S+σ− + (J/2)S−σ+ + JSzσz. The first term gives trivial
zero and the dynamics is described by the remaining two terms,

i
dS+(r1, t)

dt
= [S+(r1, t), Hex]

=
∫

d3r JSz(r1, t)σ+(r1, t)−JS+(r1, t)σz(r1, t).

Now we are ready to put the operator back into the correlator.

The time evolution of the spin operator S+(r1, t) is,

i
dS+(r1, t)

dt
= [S+(r1, t), H] = [S+(r1, t), Hex],

since the kinetic energy of the itinerant carriers is independent
of the impurity spin and thus does not contribute.

The exchange interaction can be decomposed into three terms,
(J/2)S+σ− + (J/2)S−σ+ + JSzσz. The first term gives trivial
zero and the dynamics is described by the remaining two terms,

i
dS+(r1, t)

dt
= [S+(r1, t), Hex]

=
∫

d3r JSz(r1, t)σ+(r1, t)−JS+(r1, t)σz(r1, t).

Now we are ready to put the operator back into the correlator.

Heisenberg Equations

31

The time evolution of the spin operator S+(r1, t) is,
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(J/2)S+σ− + (J/2)S−σ+ + JSzσz. The first term gives trivial
zero and the dynamics is described by the remaining two terms,
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=
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d3r JSz(r1, t)σ+(r1, t)−JS+(r1, t)σz(r1, t).

Now we are ready to put the operator back into the correlator.

The time evolution of the spin operator S+(r1, t) is,

i
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dt
= [S+(r1, t), H] = [S+(r1, t), Hex],
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since the kinetic energy of the itinerant carriers is independent
of the impurity spin and thus does not contribute.

The exchange interaction can be decomposed into three terms,
(J/2)S+σ− + (J/2)S−σ+ + JSzσz. The first term gives trivial
zero and the dynamics is described by the remaining two terms,

i
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dt
= [S+(r1, t), Hex]

=
∫

d3r JSz(r1, t)σ+(r1, t)−JS+(r1, t)σz(r1, t).

Now we are ready to put the operator back into the correlator.

The time evolution of the spin operator S+(r1, t) is,

i
dS+(r1, t)

dt
= [S+(r1, t), H] = [S+(r1, t), Hex],

since the kinetic energy of the itinerant carriers is independent
of the impurity spin and thus does not contribute.

The exchange interaction can be decomposed into three terms,
(J/2)S+σ− + (J/2)S−σ+ + JSzσz. The first term gives trivial
zero and the dynamics is described by the remaining two terms,

i
dS+(r1, t)

dt
= [S+(r1, t), Hex]

=
∫

d3r JSz(r1, t)σ+(r1, t)−JS+(r1, t)σz(r1, t).

Now we are ready to put the operator back into the correlator.



Mean-Field Decomposition
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Finally, we get the last piece of the puzzle,

i

〈〈
dS+(r1, t)

dt
;S−(r2,0)

〉〉

= J
〈〈

Sz(r1, t)σ+(r1, t);S−(r2,0)
〉〉

− J
〈〈

σz(r1, t)S+(r1, t);S−(r2,0)
〉〉

,

≈ J 〈Sz(r1)〉
〈〈

σ+(r1, t);S−(r2,0)
〉〉

− J 〈σz(r1)〉
〈〈

S+(r1, t);S−(r2,0)
〉〉

,

= J 〈Sz(r1)〉F (r1, r1, r2; t)− J 〈σz(r1)〉D(r1, r2; t).

Since the mean-field approximation is carried out at the level of
equations of motion (not at the Hamiltonian level, as in Weiss
mean-field theory), it captures the correct spin kinematics and
also includes the spatial fluctuations!!



Self-Consistent EOM’s
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i∂tD(r1, r2; t) = 2〈Sz(r1)〉δ(t)δ3(r1 − r2)

− J〈σz(r1)〉D(r1, r2; t)

+ J〈Sz(r1)〉F (r1, r1, r2; t),

i∂tF (r1, r′1, r2; t) =



∇2
r1

2m∗ −
J

2
〈Sz(r1)〉



 F (r1, r′1, r2; t)

−




∇2

r′1
2m∗ +

J

2
〈Sz(r′1)〉



 F (r1, r′1, r2; t)

−
J

2
〈ψ†

↓(r1)ψ↓(r
′
1)〉D(r1, r2; t)

+
J

2
〈ψ†

↑(r1)ψ↑(r
′
1)〉D(r′1, r2; t),

A5er some algebra, the self-consistent differential equations 
for the Green’s functions are:



Callen Formula
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Comment on “ Theory of Diluted Mag-
netic Semiconductor Ferromagnetism ”

In a recent Letter [1], a theory of carrier-induced fer-
romagnetism in diluted magnetic semiconductors (DMS)
is proposed. By using their self-consistent spin-
wave (SCSW) approximation, the authors show a non-
monotonic dependence of critical temperatures Tc on the
itinerant-carrier density in agreement with experiment.
Here we emphasize that their SCSW theory is a priori
unjustified and will lead to incorrect results at low tem-
peratures and near Tc. Thus we suggest another SCSW
approximation to remedy these flaws.

By taking the Ising limit for the exchange coupling
between magnetic ions and itinerant carriers, such that
the spin-wave spectrum Ωp is independent of momentum
!p, one can obtain an expression for the thermal average
of the impurity-spin density [1]

〈Sz〉 =
1
V

∑

|!p|<pc

{S − n(Ωp) + (2S + 1)n[ (2S + 1)Ωp ]} ,

(1)

where n(ω) is the Bose function, and pc is a Debye cut-
off. (p3

c = 6π2c, c is the magnetic ion density.) The
SCSW approximation used in Ref. [1] consists of extend-
ing the above formula (which is derived under the Ising
limit) to the isotropic case simply by substituting the
Ωp in the isotropic case (now Ωp is !p−dependent) into
Eq. (1). Thus their theory can be considered phenomeno-
logical, and its validity is not guaranteed. For example,
as mentioned by themselves, when T → 0, the third term
in Eq. (1) is not negligible as compared with the sec-
ond term, consequently the prefactor of the characteris-
tic T 3/2 law for the localized-ions magnetization differs
from the correct value of the linearized spin-wave theory
(LSWT) [2]. Moreover, near Tc, where both 〈Sz 〉 and the
itinerant-carrier spin density n∗ = (n↓ − n↑)/2 approach
zero, one can show that Eq. (1) leads to the following
expression for Tc,

kBTc =
S(S + 1)

3
lim

〈Sz〉,n∗→0

1
V

∑

|!p|<pc

Ωp

〈Sz〉
. (2)

Notice that, although the low-energy spin-wave excita-
tions do exist in the present system, this expression al-
ways predicts a nonzero Tc, even for the one-dimensional
(1D) and two-dimensional (2D) cases! This is inconsis-
tent with the Mermin-Wangner theorem [2], and implies
that Eq. (1) does not properly capture the whole effect
of the spin fluctuations.

To find another SCSW theory without these flaws, we
notice that, after coarse graining as being done in Ref. [1],
the Hamiltonian of DMS and the Kondo lattice model
(KLM) are approximately equivalent. Therefore, by us-
ing the equation-of-motion approach under the Tyablikov
decoupling scheme [3] and calculating the Green finction

〈〈S+
i ; (S−

j )n(S+
j )n−1〉〉 for the KLM, we obtain another

expression for 〈Sz 〉 [4],

〈Sz〉 = cS − cΦ +
(2S + 1)c

[(1 + Φ) /Φ]2S+1 − 1
, (3)

where the value of 〈Sz〉 in the KLM is reduced
by a factor of c due to coarse graining and Φ =
(1/cV )

∑
|!p|<pc

n(Ωp). As simple justification of Eq. (3),
one can check two limiting cases: (i) when T ≈ 0 such
that n(Ωp) and therefore Φ are vanishingly small, the
last term in Eq. (3) can be dropped, and then Eq. (3) re-
duces to the prediction of the LSWT; (ii) by taking the
Ising limit where Ωp is !p−independent, Eq. (1) is recov-
ered as it should be. Moreover, our theory gives another
expression for Tc,

kBTc =
S(S + 1)/3

lim〈Sz〉,n∗→0(1/V )
∑

|!p|<pc
〈Sz〉/Ωpc2

. (4)

The above formula gives Tc = 0 both for the 1D and
2D cases due to the fact that Ωp ∝ p2 as p → 0 and
therefore the integration over !p diverges. Based on these
discussions, we argue that a reasonable SCSW theory
should use Eq. (3) for 〈Sz〉, rather than Eq. (1). It should
be noted that, because the long-wavelength part of the
spin waves plays a more important role in our method as
compared to theirs (cf. Eqs. (2) and (4)), the physics near
Tc implied by using Eqs. (1) and (3) differ qualitatively
[5].
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Comment on “ Theory of Diluted Mag-
netic Semiconductor Ferromagnetism ”

In a recent Letter [1], a theory of carrier-induced fer-
romagnetism in diluted magnetic semiconductors (DMS)
is proposed. By using their self-consistent spin-
wave (SCSW) approximation, the authors show a non-
monotonic dependence of critical temperatures Tc on the
itinerant-carrier density in agreement with experiment.
Here we emphasize that their SCSW theory is a priori
unjustified and will lead to incorrect results at low tem-
peratures and near Tc. Thus we suggest another SCSW
approximation to remedy these flaws.

By taking the Ising limit for the exchange coupling
between magnetic ions and itinerant carriers, such that
the spin-wave spectrum Ωp is independent of momentum
!p, one can obtain an expression for the thermal average
of the impurity-spin density [1]

〈Sz〉 =
1
V

∑

|!p|<pc

{S − n(Ωp) + (2S + 1)n[ (2S + 1)Ωp ]} ,

(1)

where n(ω) is the Bose function, and pc is a Debye cut-
off. (p3

c = 6π2c, c is the magnetic ion density.) The
SCSW approximation used in Ref. [1] consists of extend-
ing the above formula (which is derived under the Ising
limit) to the isotropic case simply by substituting the
Ωp in the isotropic case (now Ωp is !p−dependent) into
Eq. (1). Thus their theory can be considered phenomeno-
logical, and its validity is not guaranteed. For example,
as mentioned by themselves, when T → 0, the third term
in Eq. (1) is not negligible as compared with the sec-
ond term, consequently the prefactor of the characteris-
tic T 3/2 law for the localized-ions magnetization differs
from the correct value of the linearized spin-wave theory
(LSWT) [2]. Moreover, near Tc, where both 〈Sz 〉 and the
itinerant-carrier spin density n∗ = (n↓ − n↑)/2 approach
zero, one can show that Eq. (1) leads to the following
expression for Tc,

kBTc =
S(S + 1)

3
lim

〈Sz〉,n∗→0

1
V

∑

|!p|<pc

Ωp

〈Sz〉
. (2)

Notice that, although the low-energy spin-wave excita-
tions do exist in the present system, this expression al-
ways predicts a nonzero Tc, even for the one-dimensional
(1D) and two-dimensional (2D) cases! This is inconsis-
tent with the Mermin-Wangner theorem [2], and implies
that Eq. (1) does not properly capture the whole effect
of the spin fluctuations.

To find another SCSW theory without these flaws, we
notice that, after coarse graining as being done in Ref. [1],
the Hamiltonian of DMS and the Kondo lattice model
(KLM) are approximately equivalent. Therefore, by us-
ing the equation-of-motion approach under the Tyablikov
decoupling scheme [3] and calculating the Green finction

〈〈S+
i ; (S−

j )n(S+
j )n−1〉〉 for the KLM, we obtain another

expression for 〈Sz 〉 [4],

〈Sz〉 = cS − cΦ +
(2S + 1)c

[(1 + Φ) /Φ]2S+1 − 1
, (3)

where the value of 〈Sz〉 in the KLM is reduced
by a factor of c due to coarse graining and Φ =
(1/cV )

∑
|!p|<pc

n(Ωp). As simple justification of Eq. (3),
one can check two limiting cases: (i) when T ≈ 0 such
that n(Ωp) and therefore Φ are vanishingly small, the
last term in Eq. (3) can be dropped, and then Eq. (3) re-
duces to the prediction of the LSWT; (ii) by taking the
Ising limit where Ωp is !p−independent, Eq. (1) is recov-
ered as it should be. Moreover, our theory gives another
expression for Tc,

kBTc =
S(S + 1)/3

lim〈Sz〉,n∗→0(1/V )
∑

|!p|<pc
〈Sz〉/Ωpc2

. (4)

The above formula gives Tc = 0 both for the 1D and
2D cases due to the fact that Ωp ∝ p2 as p → 0 and
therefore the integration over !p diverges. Based on these
discussions, we argue that a reasonable SCSW theory
should use Eq. (3) for 〈Sz〉, rather than Eq. (1). It should
be noted that, because the long-wavelength part of the
spin waves plays a more important role in our method as
compared to theirs (cf. Eqs. (2) and (4)), the physics near
Tc implied by using Eqs. (1) and (3) differ qualitatively
[5].
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König, Lin, and MacDonald Reply: In a recent Letter
[1] we developed a theory of carrier-induced ferromag-
netism in diluted magnetic semiconductors. We analyzed
the elementary spin excitations at low temperatures, where
spin waves can be approximated as noninteracting Bose
particles (“independent spin-wave theory”). In addition,
we proposed a simple ad hoc “self-consistent spin-wave
approximation” for higher temperatures to demonstrate the
increasing inadequacy of mean-field theory critical tem-
perature estimates at high carrier densities.

Yang et al. [2] adopt a result [3] derived for the
Heisenberg model by an equation-of-motion approach un-
der the Tyablikov decoupling scheme to get an alternative
“self-consistent spin-wave theory,” which is equally ad hoc
in the regime addressed in Ref. [1]. Furthermore, as we
show now, it is straightforward to rederive their scheme
within our formulation and thereby provide a clearer
physical picture of the nature of their approximation.

At low temperatures, the small amplitude collective fluc-
tuations of the magnetization with dispersion Vp are de-
scribed by the independent spin-wave theory. It yields

!Sz" !
1
V

X

j "pj,pc

#S 2 n$Vp%& . (1)

The Bose function n$x% reflects the fact that the spin waves
are approximately independent Bose particles. It is known
[4] that this equation yields the correct prefactor of the
characteristic T3'2 law.

A self-consistent spin-wave theory provides an approxi-
mate theory of large amplitude magnetization fluctuations
at higher temperatures. Mean-field theory, which is ex-
pected to be accurate for a model with static long-range
interactions, neglects correlations and, hence, spin-wave
dispersion, but treats the problem self-consistently. The
constraint on the number of spin waves per impurity spin
(#2S) leads to !Sz" ! cSBS$bSV% or, equivalently,

!Sz" ! c#S 2 n$V% 1 $2S 1 1%n($2S 1 1%V)& , (2)

where BS$x% is the Brillouin function, and the energy V
of an uncorrelated spin flip is independent of momentum
"p. By specifying the dependence of V ! Jpdn! on !Sz",
where n! is the free-carrier spin density, the magnetiza-
tion can be obtained self-consistently. The second Bose
function in Eq. (2) is the correction term from spin kine-
matics and rules out unphysical states. Because of the
neglect of correlation, mean-field theory can strongly over-
estimate the critical temperature [5] and fails to describe
the low-temperature magnetization, even qualitatively.

A self-consistent spin-wave theory should ideally (i) re-
duce to the independent spin-wave theory at low tempera-
tures, (ii) simplify to Eq. (2) in the Ising limit, Vp ! V,
and (iii) yield a second-order phase transition by allowing
for the trivial solution !Sz" ! 0.

At low temperatures the correction term in Eq. (2) is
negligible and Eq. (1) is recovered if V is replaced by an
effective energy such that

n$V% *
1

cV

X

j "pj,pc

n$Vp% (3)

(! F in Ref. [2]). Equation (2) with V given by Eq. (3)
is identical to Eq. (3) of Ref. [2] [and to Eq. (52) of
Ref. [3] ]. All the requirements (i), (ii), and (iii) are
satisfied. The scheme proposed by Yang et al. is, thus,
equivalent to mean-field theory with an effective spin-flip
energy V.

In Ref. [1] we discussed a simple self-consistent spin-
wave scheme in which V ! Vp in Eq. (2) and momenta
are averaged over, $1'cV %

P
j "pj,pc

. . . . This is equivalent
to restricting the number of spin waves at each wave vector
"p. As we pointed out [1], this approximation is too restric-
tive at low temperatures. Our intention in introducing this
scheme was to demonstrate the failure of mean-field the-
ory for the critical temperature at high carrier densities,
not to address low-temperature properties. At low tem-
peratures magnetic anisotropy effects [6], not included in
these models, have a dominating importance. Similarly,
in lower space dimension ferromagnetic semiconductors,
magnetic anisotropy is dominant [7], limiting the impor-
tance of long-wavelength spin waves. In particular, com-
patibility with Mermin-Wagner theorem is not an issue in
describing these materials.

Finally, we note that in both self-consistent schemes
the polarizations of both the impurity spins and the free
carriers go to zero at the critical temperature. This is not
generally the correct physical picture. For example, in the
limit of low carrier densities, the local polarization of the
free carriers remains finite even above Tc [5], and neither
scheme gives reliable Tc estimates.
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Φ =
1

cV

∑

p
n(Ωp)

n(Ω) ≡
1

cV

∑

p
n(Ωp)

Φ =
1

cV

∑

p
n(Ωp)

n(Ω) ≡
1

cV

∑

p
n(Ωp)
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Yang, Chang and Sun pointed out 
that the spin-wave theory can be 
extended to finite temperature and 
the magnetization can be computed 
by the well-known Callen formula,

We further notice that the 
connection to the conventional 
Weiss MFT is rather simple,
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classical impurity spins. These calculations also take into account the effect on the effective
exchange of disorder of the carriers, within a Coherent Potential Approximation (CPA). Simi-
lar calculations based on supercells [11,12] lead to comparable results at low concentration. It
has become apparent that the difficulty is not in deriving the effective magnetic Hamiltonian
correctly but in treating its thermodynamics accurately. As we will demonstrate explicitly
here, treating the magnetic correlations by oversimplified mean-field theories [13,14] has led to
overstatement, by a wide margin, of the critical temperature Tc. The disorder in the effective
magnetic model also plays an important role that cannot be simply treated by an effective
medium theory of the style of the Virtual Crystal Approximation (VCA) [15]. This suggests
that the discrepancy with experiment is largely due to approximations made to the effective
Hamiltonian, not the values of the couplings themselves. Thus by improving the treatment of
the effective Hamiltonian we can hope to find good agreement with experiments.

In this paper we shall argue that the effective random Heisenberg model may be treated by
an accurate semi-analytic method separating the treatment of disorder, which will be treated
without approximation, and an analytic approach, a form of the Random Phase Approxi-
mation (RPA) for spin fluctuations. Thus, the calculation starting from first principles is in
three stages: first, the ab initio calculation of the Heisenberg couplings with pairs of magnetic
dopants at different relative displacements. In the second stage, we generate a sequence of
different configurations on the fcc lattice by sampling techniques. For each configuration the
random Heisenberg model is treated analytically within RPA. This approximation is an ex-
tension of standard RPA of the Heisenberg model to a disordered system. It is equivalent to
that used in ref. [15], except that in that case the disorder was treated in a CPA-type manner.
As the lattice configuration is random, the equations must be solved numerically. The full
derivation of the equations will be given elsewhere [16]: here we shall simply summarize the
determination of the critical temperature: The Green’s functions Gij(E) for spins on impurity
sites i and j, satisfy

EGij(E) = 2λiδij +

(

∑

l

Jljλl

)

Gij(E) − ε

[

λi

∑

l

JilGlj(E)

]

, (1)

where the variables λi = mi
m are the average magnetization mi on individual sites, normalized

with respect to the magnetization m averaged over all impurities. For an RPA treatment of
Heisenberg spins, ε = 1. In order to compare to approximations that we shall term “Ising-like”,
this term can be taken to be zero, i.e. ε = 0. For a given temperature the Green’s functions
for impurity spins are determined following a self-consistent procedure for the Gij(E) and
λi(T ) similar to that of Callen [15, 17, 18]. In the limit of T → Tc and a total of N0 classical
spins, we can write

Fi = − 1
2πλi

∫ ∞

−∞

ImGii(E)
E

dE , (2)

kBTc =
2

3N0

∑

i

1
Fi

. (3)

Tc is now determined by the self-consistency of these equations, which are solved exactly for
a given configuration. The critical temperatures are averaged over different samples (typically
105 host sites averaged over 50 configurations). We remark that the results are close to recent
results obtained by Monte Carlo simulations [19,20], which also take into account fluctuations
in the positions of the magnetic impurities. Semi-analytical calculations are intrinsically
much faster and essentially no finite-size extrapolation is needed. For a given configuration,
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FIG. 1. Tc as a function of doping for MnxGa1−xAs: theory for uncompensated samples and

experiment.

In Figure 1 we show the calculation of Tc as a function of x for MnxGa1−xAs. We show

also the experimental results of Edmonds et al [7,8], Matsukura [9], and Chiba et al. [10]

for different concentrations of of Mn in MnxGa1−xAs. We note that the agreement with the

results of Edmonds et al. is for the case of fully annealed samples. This is consistent with the

fact that we use the couplings calculated for uncompensated samples. The annealing changes

the compensation via the density of Mn interstitials and As antisites. This also increases

the density of carriers, as shown by transport studies. The agreement with experiment is

excellent, except for the single highest concentration (9%): our theory suggests that at this

concentration annealing is not complete. Note also that the theory correctly predicts a

threshold ( about 1.5%) below which there is no ferromagnetism.

5

To estimate the Curie temperature, it is crucially important to 
include the thermal fluctuations correctly. That is to say, one 
needs to respect the spin-wave kinematics:
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FIG. 2. Tc for MnxGa1−xAs: comparison of different theories, as defined in the text.

In Figure 2 we show the calculations of Tc as a function of x for MnxGa1−xAs within

different theoretical approaches: “Ising” like Mean Field theory (ε = 0 in equation 1, but

fully including disorder), , Mean Field-Virtual Crystal Approximation (MF-VCA) in which

the disorder is treated as a simple effective medium: TMF−V CA
c = 2

3
x

∑

i J0i, RPA-disorder (ε

=1, full disorder and transverse fluctuations, the present approach). One can see the large

over-estimate of the critical temperatures for the “Ising-like” mean field approximations

(essentially the same as in ref [15] ) which includes the disorder correctly but does not

treat transverse fluctuations. In such simple mean field theories the critical temperature is

overly influenced by sites in large local effective fields due to strong short-range ferromagnetic

interactions. For low dilution long-range order cannot propagate simply by nearest neighbour

interactions. The RPA form, in contrast, gives more weight to the low frequency excitations

and this is the reason for its success. The MF-VCA results reproduce essentially results

of Sato et al. [14], showing that the difference with our final theory is in the treatment

of the effective Hamiltonian, not in the couplings estimated ab initio. The current theory

and Monte-Carlo simulations [19] show the threshold effect for ferromagnetism: this is an

example of the failure of the simplest RKKY-like theories.

The flexibility and accuracy of our calculation allows us to make more precise the ques-

6
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A(p, ω) = −
(1

π

)
ImD(p,Ω),

= 2〈Sz〉
(

Z

π

) Γ(p)

(Ω− ωp)2 + Γ(p)2
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(1) The spin spectral function takes the Lorentzian shape with 
temperature-dependent halfwidth.

(2) The spectral function actually sharpens up when T increases!!

We can solve the spin-wave propagator 
first and compute its imaginary part to 
obtain the spin spectral function:
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For the density ratio nh/nI=0.1, the 
magnetization curve shows rather 
unusual shape compared with the 
conventional Brillouin function.

It is rather surprising that the 
spin-wave relaxation rate shows 
a significant peak around the 
Curie temperature!!



Anomalous T dependence (II)

38

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

M
a
g
n
e
ti
z
a
ti
o
n
 S

z
, 
!

z
 (

n
m

-3
)

T/Tc

nh/nI=0.3

 0

 4e-005

 8e-005

 0.00012

 0.00016

 0.0002

 0  5  10  15  20  25  30  35

W
id

th
 (

e
V

),
 n

h
/n

I=
0
.3

Temperature (K)

p=0.39 nm
-1

p=1.67 nm
-1

p=1.95 nm
-1

p=2.73 nm
-1

p=3.51 nm
-1

For the density ratio nh/nI=0.3, 
the magnetization curve becomes 
normal.

The peak near the Curie 
temperature disappears 
as well!!
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NOn-Collinear 
Exchange Coupling
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r

x

z
y

φx(r)

2DEG with Rashba interaction

Hard magnet

So5 magnet

we model the intermediate layer by the Rashba Hamiltonian,

H =
∫

d2r Ψ†
[

k2

2m∗1 + γR(kyσx − kxσy)

]

Ψ,

where γR is the strength of the Rashba interaction.
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φx(d)

0

π/2

-π/2

d

we model the intermediate layer by the Rashba Hamiltonian,

H =
∫

d2r Ψ†
[

k2

2m∗1 + γR(kyσx − kxσy)

]

Ψ,

where γR is the strength of the Rashba interaction.

Following Datta-Das’ argument,
the orientation of the spin will ro-
tate along the effective B field
with a spiral angle θ(d), where d

is the width of the junction.

Therefore, we expect an effective 
non-collinear exchange coupling!

The spin of the itinerant carriers 
will align the so5 magnet with 
the same spiral angle.
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φx(d)

0

π/2
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BUT! Our conventional wisdom tells us that the mediated 
effective coupling is collinear RKKY interaction...

5 10 15 20

J(d)

d

RKKY interaction: 

It can be viewed as the quantum interferences due to patches of 
the Fermi surface related by the time-reversal symmetry.
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RKKY? Spiral?
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kx

ky

The Rashba Hamiltonian can be brought into its eigenbasis in
momentum space,

ϕkλ(#r) = ei#k·#ruλ(φ) =
ei#k·#r
√

2

(
−iλe−iθk

1

)

where θk = tan−1(ky/kx) with dispersion εkλ = k2/2m∗ − λγRk.

Due to the spin-orbital interaction, spin is no longer the good
quantum number but replaced by the chirality instead,

λ = (k̂ × ŝ) · ẑ = ±1.

It is important to remind the readers that, under the time reversal
transformation, both momentum and spin reverse their directions
and make the chirality invariant.

Due to the spin-orbital interac-
tion, spin is no longer the good
quantum number but replaced by
the chirality instead,

λ = (k̂ × ŝ) · ẑ = ±1.

It is important to remind the read-
ers that, under the time reversal
transformation, both momentum
and spin reverse their directions
and make the chirality invariant.
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When Rashba coupling is small 
(compared with the Fermi energy), 
the Fermi surfaces consist of two 
particle-like circles with opposite 
chiralities. Utilizing the rotational SO(2), parity Py (or equivalently Px),

and time reversal symmetries, one can work out the remaining
components of the susceptibility tensor,

χij(r, θ) =




g0 + g2 cos 2θ g2 sin 2θ g1 cos θ

g2 sin 2θ g0 − g2 cos 2θ g1 sin θ
−g1 cos θ −g1 sin θ h0



 .

It is rather remarkable that the symmetry arguments reduce the
numerical task down to evaluation of FOUR real scalar functions,
g0(r), g1(r), g2(r), h0(r).

The Rashba Hamiltonian we study here further constrains h0(r) =
g0(r) + g2(r), which reduces the number down to THREE.

Weak Rashba regime with ∆R/εF < 1
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E

k
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ky

When the Fermi energy is small, 
the Fermi surfaces consist of one 
particle-like and one hole-like 
circles with the same chiralities. 

Utilizing the rotational SO(2), parity Py (or equivalently Px),
and time reversal symmetries, one can work out the remaining
components of the susceptibility tensor,

χij(r, θ) =




g0 + g2 cos 2θ g2 sin 2θ g1 cos θ

g2 sin 2θ g0 − g2 cos 2θ g1 sin θ
−g1 cos θ −g1 sin θ h0



 .

It is rather remarkable that the symmetry arguments reduce the
numerical task down to evaluation of FOUR real scalar functions,
g0(r), g1(r), g2(r), h0(r).

The Rashba Hamiltonian we study here further constrains h0(r) =
g0(r) + g2(r), which reduces the number down to THREE.

Dilute density regime with ∆R/εF > 1
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Utilizing the rotational SO(2), parity Py (or equivalently Px),
and time reversal symmetries, one can work out the remaining
components of the susceptibility tensor,

χij(r, θ) =




g0 + g2 cos 2θ g2 sin 2θ g1 cos θ

g2 sin 2θ g0 − g2 cos 2θ g1 sin θ
−g1 cos θ −g1 sin θ h0



 .

It is rather remarkable that the symmetry arguments reduce the
numerical task down to evaluation of FOUR real scalar functions,
g0(r), g1(r), g2(r), h0(r).

The Rashba Hamiltonian we study here further constrains h0(r) =
g0(r) + g2(r), which reduces the number down to THREE.

Weak Rashba regime with ∆R/εF < 1
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Utilizing the rotational SO(2), parity Py (or equivalently Px),
and time reversal symmetries, one can work out the remaining
components of the susceptibility tensor,

χij(r, θ) =




g0 + g2 cos 2θ g2 sin 2θ g1 cos θ

g2 sin 2θ g0 − g2 cos 2θ g1 sin θ
−g1 cos θ −g1 sin θ h0



 .

It is rather remarkable that the symmetry arguments reduce the
numerical task down to evaluation of FOUR real scalar functions,
g0(r), g1(r), g2(r), h0(r).

The Rashba Hamiltonian we study here further constrains h0(r) =
g0(r) + g2(r), which reduces the number down to THREE.

Dilute density regime with ∆R/εF > 1

Robust spiral backbone with minor 
oscillatory residues resembling the 
RKKY oscillations.

Modified RKKY oscillation with a 
gradual upwinding trend due to 
Rashba interaction.



Fermi Surface Topology
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Liftshitz Transition

By changing the carrier density, we can change the 
topology of the Fermi surfaces from two disks (with 
opposite chiralities) to one ring (with one chirality).



Summary I

✦ Carrier-mediated ferromagnetism in 
diluted magnetic semiconductor.

✦ Self-consistent Green’s function 
approach for spin-wave dynamics.

✦ Strong correlation between 
magnetization curve and spin 
relaxation rate.

✦ More needs to be done ... 



Summary II

✦ Non-collinear exchange coupling 
mediated by Rashba interaction.

✦ RKKY or Spiral? Depending on the 
Fermi surface topology.

✦ Li5shitz transition by changing the 
carrier density in the 2DEG.

✦ Potential applications? Ballistic vs 
diffusive? & Lots of open questions...
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Thank   YOU!!


