Adsorption of Ammonia Molecules on

Si(111)-7x7 Surface: an STM Observation

Rong-Li Lo (羅榮立)

Physics Department, NTHU

26, Dec. 2006

Outline:

(1) Introduction

(2) Experimental STM and Si(111)-7x7 surface
(3) Review

(4) Results and Discussion

(5) Conclusion and future work

Introduction

Interfaces of silicon for thin film growth

Si₃N₄: good thermal stability and dielectric property

Epitaxial Si_3N_4 thin films on Si(111): lattice mismatch is ~ 1.1% between $Si_3N_4(0001)/Si(111)$

Thermal nitridation:

Expose Si wafers to NH₃, NO, N₂, N plasma, ...

Experimental: STM

Tunneling current $I \propto F(Vs) e^{-kz}$

Experimental

Si(111)-7x7 surface: DAS model

STM image:

empty state (left) and filled (right) state images

Adsorbed sites on 7x7 surface

Review

Dissociative adsorption: $NH_3 + Si \text{ surface} \rightarrow NH_2 - Si_{(1)} + H - Si_{(2)}$ $Si_{(1)}$ and $Si_{(2)}$ are a pair of adjacent A-R dangling bond.

(i) R is more reactive than A.(ii) Reacted ratio: Ae/Ao > 4, originating from electronic structure.

STM results [PR B 39(89)5091]

Question remained:

The *x* of NH*x* ($x = 0 \sim 2$) and NH*x* adsorption sites

Theoretical: (i) No site selectivity (ii) NH_x prefers on A site

Experimental:
(i) NH₂ is adsorbed at R site, 8 ± 7% of the NH_x is adsorbed at A site
(ii) NH_x is adsorbed at A site

Results and Discussion

An NH_3 is dissociated and adsorbed on an A-R pair.

A reacted R site:

H-adsorbed R site at 340° C

Distribution of reacted adatom sites

in-situ cumulative exposure

In-situ + (empty and filled state images) exclude defect sites.

10

Determination of adsorption sites of H and NH_2 \Rightarrow activation of tunneling electrons

Scanning direction: up to down and left to right.

Transformation by tunneling electrons: $D \rightarrow B1 \rightarrow B2$

Model of D, B1, and B2 adsorption states

Probability of NH_2 on A = X %; on R = (1 - X)%.

13

Potential energy levels of NH_x on A and R

Distribution of adsorbed fragments

17

Mechanism behind the transformation \Rightarrow Adsorbate-induced state resonance

Conclusion:

- (a) NH₃ is dissociatively adsorbed at a pair of A-R dangling bonds.
- (b) NH_2 is adsorbed at rest atom (R) with probability (1 X) %, while X % at center adatom site (Ae).
- (c) NH_2 -ad-Ae is stimulated to transform into NH_2 -ins-Ae which is a metastable state of NH-in-Ae.
- (d) The STM-induced transformation is fulfilled by a positive ion resonance

Work in the future

Determination of n-electron process

Acknowledgement:

東華大學物理系 張俊明 教授

中興大學 物理系 何孟書 教授