Advanced functional bio-materials synthesis and applications.

Chia-Ching Chang

1. Department of Biological Science and Technology, National Chiao Tung University

2. Institute of Physics, Academia Sinica

2008/03/25

Diluted Magnetic Semiconductor (DMS) 1. Magnetic semiconductors 4. There d-electrons of Mn may align by a double

- are materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties.
- Silicon substrate are doping with II-Mn-VI A materials, such as Cd_(1-x)Mn_xO, Cd_(1x)Mn_xS, Cd_(1-x)Mn_xSe or Cd (1-x)Mn_xTe. Where x<0.1.
- 3. II-Mn-VI A materials are in Zinc blende structure.

Motivation

Protein is not a magnetic material in nature. However, if we replace the metal species, (such as Zn, Ca) of metal binding protein with magnetic ions (such as Mn, Ni, Co), we may obtain a novel magnetic material, "magnetic protein".

Objectives

- Creating a room temperature molecular magnet from metal binding protein, MT-2.
- By combining biomaterial and semiconductor techniques we have created novel biomaterial based molecular devices.

Summary

- Mn,Cd-MT is a room temperature molecular magnet.
 MT can be patterned on nanostructured semiconductor
- 2. M1 can be patterned on nanostructured semiconductor surfaces.
- 3. The shapes of self-assembled MT are depending on the nanostructures patterned on the silicon templates.
- Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chin.
- This magnetic protein may be used in spintronic nanodevices, ultra-high density data storage devices or biomedical image system.
- 6. This work can be extended to other type of molecules and proteins.

Acknowledgment
Collaborators:
Dr. S. F. Lee, Institute of Physics, Academia Sinica
Dr. W. P. Chien, Department of Electrophysics, NCTU.
Dr. C. S. Chang, Institute of Physics, Academia Sinica
Dr. K. W. Sun, Institute of Molecular Science, NCTU.
Dr. LS. Kan, Institute of Chemistry, Academia Sinica
Dr. C. H. Chang, Institute of Physics, NCTU.
Dr. J. J. Lin, Institute of Physics, NCTU.
Dr. Y. C. Chou, Department of Physics, NTHU.
Dr. Y. L. Soo, Department of Physics, NTHU.
Dr. C. H. Kuan, Dept. of Electrical Engineering, NTU.
Dr. J. C. Wu, Department of Physics, NCUE.
Dr. W. X. Ni, NDL; Department of Physics, Chemistry and Biology, Linkopin University, Sweden.
Dr. M. N. Chang, NDL
Funding: N.S.C., Taiwan, ROC