Optical Spectroscopy of Nanostructures

Y. Ron Shen Physics Department University of California at Berkeley

Nanophotonics

- Optical characterization of nanostructures: nanoparticles, nanorods, nanotubes, etc. Carbon nanotubes, graphenes, metamaterials
- Applications of Nanostructures to optics: nano-lasers, nano-lithography, metamaterials, etc.

Optical Characterization of Individual Carbon Nanotubes

Feng Wang

Single-Wall Nanotube (SWNT): A Quasi-1D System

Hundreds of species depend on how it is folded.

Characteristics of Carbon Nanotubes

- Nearly ideal 1D systems
- High mechanical strength
- High thermal conductivity
- High current-carrying capacity
- Existence of both metals and semiconductors

A Family of Structures

Graphene:

$$\vec{R} = n \cdot \vec{a}_1 + m \cdot \vec{a}_2$$
$$|R| = a \sqrt{n^2 + m^2 + nm}$$
$$a^2 = a_1^2 = a_2^2 = 2\vec{a}_1 \cdot \vec{a}_2$$

(n,m): Chiral indices $d = R/\pi$ (tube diameter) θ (chiral angle)

Over hundred species with diameters less than 2 nanometer

Optical Characterization of Single SWNTs

Avoiding complications from a bundle of nanotubes

Determination of Tube Diameter

Raman spectrum of radial breathing mode (RBM) (A. Jorio et al, New J. Physics 5, 139 (2003))

Determination of Chiral Indices

Tube can have same diameter but different chiral indices

Optical Transitions \iff **Chiral Indices** (S.M. Bachilo et al., Science 298, 2361 (2002)

Graphene Electronic Structure

Metallic and Semiconducting Nanotubes

Brillouin zone

For SWNT, cyclic or periodic boundary condition in the rolling direction $\Rightarrow \Rightarrow$ only states on the red lines in the 2D BZ can exist. ($k=2N\pi/R$)

If K points are on the lines, mod(n-m)≡n-m-3(interger)=0, no energy gap ⇒⇒ metallic nanotubes

 \vec{R} If \vec{R} \vec{R} \vec{R} \vec{R}

If K points are not on the lines, mod(n-m)=1 or 2 energy gap appears ⇒⇒ semiconducting nanotubes

SWNT Electronic Structure

Brillouin zone

Categorization of SWNTs

Bandgap: d

Metallic or semiconducting: n-m (chiral angle θ)

Metallic	Semiconducting	Semiconducting
mod(n-m,3)=0	mod(n-m,3)=1	<i>mod(n-m,3)=2</i>
e.g. (15,15), (18, 15)	(16,15)	(17,15)

SWNT Electronic Structure

Brillouin zone

Semiconducting:

- Lower-energy transitions can appear in the visible if the tube diameter is sufficiently small.
- Transitions would be characterized by 1D van Hove singularities unless exciton formation dominates.

Optical Spectroscopy of Single Nanotubes

Resonance Raman spectroscopy: Intrinsically weak. Fluorescence: Only possible for semiconducting tubes.

> Elastic (Rayleigh) light scattering Absorption spectroscopy

Elastic Scattering Spectroscopy

Experiment Arrangement

dark field imaging

Suspended Carbon Nanotubes

Rayleigh Spectrum

M. Sfeir*, F. Wang* et al. Science, 306, 1540 (2004)

Correlation with Electron Diffraction

(16, 11) tube

M. Sfeir, T. Beetz, F. Wang et al. Science, 312, 554 (2006)

SWNT Electronic Structure

Brillouin zone

Family Trend

A set of qualitative rules:

- 1. Diameter dependence: Smaller diamter, larger E_{ii}.
- 2. n-m (chiral angle) dependence:

Semiconducting:

$$\begin{split} & E_{ii}^{\mod(n-m,3)=1} < E_{ii}^{\mod(n-m,3)=2}, i = odd \ integer. \\ & E_{ii}^{\mod(n-m,3)=1} > E_{ii}^{\mod(n-m,3)=2}, i = even \ integer. \\ & Differences \ increase \ with \ n-m \ value. \end{split}$$

Metallic: Degeneracy with n-m=0. Peak splitting increases with n-m.

(Derived from tight binding calculation. Dresselhaus, Kataura, Weisman and others)

n-m Dependence: Semiconducting Nanotubes

(13,12): d = 1.70 nm mod(n-m,3)=1

(15,10): d = 1.71 nm mod(n-m,3)=2

n-m Dependence: Metallic Nanotubes

Degenerate transitionsfor (n-m)=0,Degeneracy liftedfor $(n-m)\neq 0$

Nature of Optical Transitions

Prevailing experimental interpretation

Strong e-h interaction $\Rightarrow\Rightarrow$ **Excitons**?

Theoretical prediction

(Avouris, Louie and others)

Confirmation of Existence of Excitons in Semiconducting Nanotubes

F. Wang et al. Science, 308, 838 (2005)

Allowed two-photon excitation to 2p exciton state relaxes to 1s and results in fluorescence from 1s.

> Energy difference between 2p and 1s $\Rightarrow \Rightarrow$ exciton binding energy

Two-photon Excitation Spectrum

Strong e-h Interaction in 1D ⇒⇒ large exciton binding energy

electron and hole confined in 1D with ineffective screening

electric fields lying outside of the tube

Exciton may even exist in metallic nanotoubes

Measure absorption spectrum of individual nanotubes.

Absorption Spectroscopy vs. Elastic Scattering Spectroscopy

Example: A Lorentzian line with non-resonant background.

Experimental Setup

suspended nanotube across slit

(16,15) Semiconducting SWNTs

Absorption into_continuum Appears at much higher energy and weak

Optical Characterization of a Metallic SWNT

Absorption Spectrum of (21,21) Metallic SWNT

Lineshape Analysis

 $E_{binding} \sim 50 \text{ meV}$

Exciton Spectra of Semiconducting and Metallic SWNT

Reasons for Exciton Formation (even in metallic nanotubes): Strong e-h Interaction in 1D

Electron and hole are confined in 1D

Ineffective dielectric screening

electric fields lying outside of the tube

Theoretical Model

Coulomb potential: $V(z) = \frac{1}{\varepsilon} \cdot \frac{e^2}{(|z|+0.3 d)}$

Free Electron Screening in 1D

Thomas-Fermi Method: (q wavevector)

1D metal: free electron screening is far from perfect !

Theoretical Absorption Spectrum of Excitonic Transition in Metallic SWNT

Multi-Phonon Raman Scattering in Single SWNTs

F. Wang et al. PRL 98, 047402 (2006)

Experiment Arrangement

dark field imaging

Raman Spectrum of SWNT

Brar et al. Phys. Rev. B 66, 155418 (2002)

Multi-Phonon Raman Spectra of Single SWNTs

Excitation at 473 nm on two nanotubes with d ~ 2 nm

Raman Spectra with Different Excitation Wavelengths

Individual Nanotube Characteristics

Comparison of Raman Strengths between SWNT and Graphite

Characteristics of Multi-Phonon Raman Spectra of SWNTs

- Combinations of zone-center and even number of zone-edge modes observed (result of momentum conservation)
- Narrow combination modes up to 6 phonons observed; mode strength decreasing slowly with increasing order (near intermediate resonances in multi-phonon scattering likely to be important)
- Mode strengths much stronger than those from graphite (stronger electron-phonon scattering in 1D systems)
- Relative mode strengths depend on tubes and excitation wavelength (resonant enhancement dominant)

Resonant Enhancement in Multi-phonon Raman Scattering

Initial and final transitions: near K points

Intermediate resonances: near K or K' $(\hbar \omega_{in} - m\hbar \omega_G - n\hbar \omega_D) \sim E_{ii}(K)$ or $E_{ii}(K')$

Summary

- Optical spectroscopy can be used to characterize single SWNTs.
- Electronic properties of SWNT vary significantly depending on chiral indices.
- Excitons exists with high binding energy even in metallic tubes.
- Resonant enhancement leads to observation of multi-phonon Raman scattering.