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What is the ultrashort pulse?

~10-6 s

~10-9 s

~10-12 s
~10-15 s

Introduction of fs laser pulses
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Introduction of fs laser pulses



Which one is true?

1 / 1 min

1 / 0.5 min

1 / 1 sec

Idea from 石訓全

Introduction of fs laser pulses



Ultrafast camera!!

Introduction of fs laser pulses



The possibility for nuclear fusion!

Introduction of fs laser pulses

Short pulse = intense peak power
100 mJ, 100 fs = 1 TW
1018 W/cm2 @ φ = 10 μm (1010 V/cm)

Institute of Laser Engineering
Osaka University
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The shorter pulse duration, the more papers!
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Multiferroic

Ultrafast dynamics in HoMnO3

Ferromagnets (ferroelectrics) form a subset of magnetically (electrically) polarizable
materials such as paramagnets and antiferromagnets (paraelectrics and antiferroelectrics)

W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). 



Multiferroic ReMnO3

Ultrafast dynamics in HoMnO3

Hexagonal structure      v.s.      Orthorhombic structure

Seongsu Lee, et al Nature 451,805 (2008) S. Satpathy, et al PRL 76 ,960 (1996)

W. Prellier, et al, JPCM 17, 803 (2005) 



Hexagonal HoMnO3

Ultrafast dynamics in HoMnO3

TC= 875 K Pz= 5.6 μC cm‐2

TN= 76 K TSR= 33 K THo= 5 K

Coexistence between FE and AFM 

MnO5 bipyramids form a 
layered structure on a‐b plane. 

B. Lorenz, et al PRB 71 ,014438 (2005)



Magnetoelectric coupling effect on hexagonal HoMnO3

Ultrafast dynamics in HoMnO3

Dielectric constant Heat capacity Lattice constant

B. Lorenz, et al PRL 92 ,087204 (2004)

B. Lorenz, et al PRB 71 ,014438 (2005)

C. Dela Cruz, et al PRB 71 ,060407R (2005)



Optical properties of hexagonal HoMnO3

Ultrafast dynamics in HoMnO3

Transmittance and reflectance 
measurements were performed 
using a Fourier transform 
spectrometer in a frequency range 
from 10 to 45000 cm-1 (1.2 meV to 
5.6 eV)

1.7 eV absorption peak comes from 
d→d transitions.

~0.15 eV blueshift as decreasing 
temperature.

Associate with the magnetic phase 
transition.

A. B. Souchkov, et al PRL 91 ,027203 (2003)

e1g

e2g

a1g



Optical properties of hexagonal HoMnO3

Ultrafast dynamics in HoMnO3

Woo Seok Choi, et al PRB 78 ,054440 (2008)

TN

Rare‐earth : Gd、Tb、Dy、Ho



Crystal structure and magnetic property

Ultrafast dynamics in HoMnO3

Out of plane : c‐axis
In plane : ab‐axis
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Pump-probe and optical spectroscopy

Ultrafast dynamics in HoMnO3
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Tunable photon energy from 1.52 to 1.69 eV



Temperature-dependent transient reflectivity change (ΔR/R)

Ultrafast dynamics in HoMnO3
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Oscillation component

Ultrafast dynamics in HoMnO3
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Ultrafast dynamics in HoMnO3

Charge transfer from e2g to a1g by pump pulses
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Ultrafast dynamics in HoMnO3

Charge transfer from e2g to a1g by pump pulses

Observed the blueshift of energy gap !
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Ultrafast dynamics in HoMnO3

Charge transfer from e2g to a1g by pump pulses

Observed the blueshift of energy gap !
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Ultrafast dynamics in HoMnO3

Charge transfer from e2g to a1g by pump pulses
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Ultrafast dynamics in HoMnO3

Charge transfer from e2g to a1g by pump pulses
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Ultrafast dynamics in HoMnO3

Demagnetization dynamics
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Summary

The oscillation due to the strain pulse was 
clearly observed in ΔR/R by fs spectroscopy.

A distinct blueshift of the Mn3+ d-d optical 
transition comes from the appearance of 
AFM long-range ordering.

The demagnetization time (τm) in a few ps
scale and its recovering time (τc) in a few 
100 ps scale were shown in the ΔR/R.
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YBCO nanodots
Sample reparation:

Vacuum Pumps
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YBCO nanodots
Experimental setup: (spot size~110 μm)

fs Laser

光路徑光路徑

LaAlO3

YBCO19.6 cm



YBCO nanodots
Results – surface morphology

Fluence = 0 J/cm2

Fluence = 0.21 J/cm2

Fluence = 0.26 J/cm2 Fluence = 0.53 J/cm2

Fluence = 0.32 J/cm2

C. W. Luo, C. C. Lee, et al., Optics Express 16, 20610 (2008)



YBCO nanodots
Results – structure

Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

Fluence = 0.53 J/cm2

XRD signals of YBCO thin films at various 
laser fluences.



YBCO nanodots
Results – superconductivity

Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

Fluence = 0.53 J/cm2



YBCO nanodots
Results – composition

Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

Fluence = 0.53 J/cm2

3000 K > 1897 K (Ba)

3700 K > 3345 K (Y)

EDS spectra show the composition of 
area 1 and area 2.

314-
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Summary

The surface microstructure of YBCO thin films 
can be manipulated by properly controlling the 
fluence of the irradiating femtosecond laser.

A ripple pattern was clearly observed on the 
surface of one YBCO thin film.

The (001)-YBCO film turns into nanodot array
with the superconductivity remains almost 
intact.

Serve as a new way of engineering the 
material surfaces into nanometer scale 
structures.
B. K. Nayak, et al., Appl. Phys. A 90, 399 (2008)
Formation of nano-textured conical microstructures in titanium metal surface
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