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Introduction of fs laser pulses

Nat Is the ultrashort pulse?
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Introduction of fs laser pulses
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Introduction of fs laser pulses

Ultrafast camera!!
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Introduction of fs laser pulses

The possibility for nuclear fusion!
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Introduction of fs laser pulses

The evolution of pulse width
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Ultrafast dynamics in HOMnOj

Crystal structure and magnetic property
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Ultrafast dynamics in HOMnOj

Pump-probe and optical spectroscopy
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AR/R (arb. units)

Ultrafast dynamics in HOMnOj

Temperature-dependent transient reflectivity change (A R/R)

Wavelength : 800 nm Wavelength : 770 nm Wavelength : 740 nm
L T=290K N T=290K | T=290K
T=250K . T=220K
‘\ T=250K [ |
T=210K T=180K
T=210K =
= T=190K 2 T=140K
1 T=170K S j\ . = J\
. S
o T=170K : T=100K
T=150K 8 -(%
== ]\ T=130K 5
T=140K X & [ L
~ < o
X3 T=120K JL LSS N k
o - = T=71K
v i T=95K
. 23 e S 100K J\\ T=67K
S 1285k T=60K
_ T=60K o~ —
1 1 " 1 " 1 N 1 I 1 I 1 I 1 I 1 " 1 " 1 " 1 "
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Delay Time (ps) Delay Time (ps) Delay Time (ps)



400 pump (x10)

0 20 40 60 80 100 .
DELAY [ps]

400 600 800
probe wavelength(nm)




Ultrafast dynamics in HOMnOj

Charge transfer from e,  to a,, by pump pulses
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Ultrafast dynamics in HOMnOj

Charge transfer from e,  to a,, by pump pulses

Mn3+ 3d levels Pump energy :1.55 eV
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Ultrafast dynamics in HOMnOj

Charge transfer from e,  to a,, by pump pulses

Mn3+ 3d levels Pump energy :1.55 eV
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Ultrafast dynamics in HOMnOj

Charge transfer from e,  to a,, by pump pulses

Energy gap Egyq (eV)
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Ultrafast dynamics in HOMnOj

Charge transfer from e,  to a,, by pump pulses

Energy gap Egyq (eV)
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YBCO nanodots

Experimental setup: (spot size~110 ¢ m)
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Summary

. ' 0 The of YBCO thin films
can be manipulated by properly controlling the

fluence of the irradiating femtosecond laser.

e OA was clearly observed on the
surface of one YBCO thin film.
~ - B The (001)-YBCO film turns into
:gjL{"___';f_;EEEE}fET - with the superconductivity remains almost
2 FEIRECH
g1 O Serve as of engineering the
{ material surfaces Into nanometer scale

structures.

Formation of nano-textured conical microstructures in titanium metal surface
B. K. Nayak, et al., Appl. Phys. A 90, 399 (2008)






