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 Introduction:
Experimental system:

Two-dimensional electron gas system (2DEG)
Integer Quantum Hall Effect (IQHE)
Negative differential conductivity (NDC)

Motivation:
Microwave induced zero resistance states in 2DEG
NDC at high magnetic field

NDC of 2DEG at high magnetic field
Measurement
Data analysis –Demonstration and consequence of NDC
Physical origin of NDC

Summary

Outline



Experimental system: GaAs-AlGaAs heterostructure

GaAs crystal structure Bandgap energy & Lattice constant for elemental and
binary compound semiconductors

Heterostructurs
/ band engineering



2DEG

2DEG is formed at the interface
between GaAs & AlGaAs

Electronic properties of 2DEG
•Carrier density: ns=1-41011 1/cm2

•Fermi wavelength: F=40nm
•Electron mobility: e=105-106cm2/Vs
•Mean free path: l =103-104nm
•Phase coherence length: l=200-nm

Experimental system: Two dimensional electron gas ( 2DEG )

MBE-growth

Ref: Prof. Kwo and Hong / NTHU

Device Fabrication:

•Photolithography

•Etching // Mesa

•Ohmic contacts

/Alloying

•Metallization 100m



Integer Quantum Hall effect (IQHE)
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Integer Quantum Hall effect
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Negative differential conductivity (NDC) in a bulk semiconductor

NDC space-charge growth

•Ohm Law: Linear
•Multivalueness in J-E relation
•Multivalley in Band
•NDC  unstable system
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(Ref. S.M. Sze, Physics of
Semiconductor Devices, 2nd, Ch11, p.639)
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Consequence of Bulk NDC

High field
domain

Low field
domain

I

I

High current
domain

Low current
domain

I

I

Region of slightly Higher field

N type S type

To reach the stability  system becomes electrically heterogeneous.

What happens if the system is in a strong
magnetic field?

(Ref. S.M. Sze, Physics of Semiconductor Devices, 2nd, Ch11, p.639)



Motivation: Microwave induced zero resistance states in 2DEG

•Zero Resistance

–Instability initiated by microwave irradiation

–Theories based on the framework of negative
differential conductivity (NDC) in bulk

(PRL 90, 046807, 2003)

(PRB 67, 241303(R) 2003)

Apply MW

RXX 0

But

RHh/2e2(1/)



Motivation: Physical picture of NDC at high magnetic Field

Electrical instability
•Hall angle large at high B field

•Due to the growth of space charges

•Criterion:

0 JE

Ref: Tatsumi Kurosawa,, J. Phys. Soc Japan
36,491(1974)

If the condition is fulfilled , the additional
current flows into the space-charge sheet
and builds it up

Consider a homogeneous system
with current J, electric field E and
magnetic field H. //E H z



Conditions of current instability : Kurosawa’s theory
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Conditions of current instability : Kurosawa’s theory

Define a parameter D:

Key : Even a weak nonlinearity in J-E can cause
the instability when H is strong enough !

When /2
 (1) is predominate
 D > 0 as long as 0

(1)

The condition for instability: D > 0
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NDC and IQHE

IQH states : Rxx=0, Rxy=h/2e2(1/)
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Current instability rises easily ! ?
QHE breakdown ?

Problem: inhomogeneous E-filed distribution inside the
sample in IQH regime

Solution: rising the lattice temperatures
Ref: Y. Kawano, etc. , Phys. Rev. B, Phys. Rev. B 61, 2931(2000)

IQHE



NDC in 2D Electron Gas System

Sample 1

Ns = 3.01011 cm-2

= 0.8106 cm2/Vs

GaAs/Al0.3Ga0.6As
heterostructure

Sample 2

Ns = 3.81011 cm-2

= 0.45106 cm2/Vs

GaAs/Al0.3Ga0.6As
heterostructure

w= 50 m
L = 100 m



Match Experiment with Theory

2 2 1/2

1

[( ) ( ) ]

tan ( )

xyxx

SD

xy

xx

VV
E

L W
I

J
W

V L
V W



 




)1(4tan)2(2tan 222  D

dE
d

E



dE
dJ

J
E

1&



Vxx vs ISD

Current anomaly



Vxy vs ISD

Sample1Sample1

Sample2Sample2

No current anomaly !

 Electron heating TDSI



J & as Function of E
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The J-E relation is almost linear
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& as Function of E

•obtained from -E
•As E , 
•As TL , 

•mainly determined by Vxy

•As E , 
•As TL , not clear
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D as Function of E
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INDC = Ith

L
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Domain growth of space charge in NDC
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Physical Origin of Instability

•Trend of Instability
–xx decreases & /2 as E

•Electric field gives the opposite effect to electron heating

•i.e. Scattering rates decreases with increasing E

•TL > 16K
–Acoustic phonon scattering xx

Nonlinear transport in 2DEG:

•Two mechanisms
(a) Effects of E-filed on the distribution function fT()
(b) Effects of E-filed on the kinematics of electron scattering

•As in>>q , effect (a) dominates.
in: inelastic scattering time
q : quantum or single particle relaxation time
fT() : at E=o, Fermi-distribution



DC E-field changes f(): a theoretical approach

Kinetic equation

Kubo formula
Self-consistent Born approximation

As 0, St {f}= St dc{f}
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Ref: A. Dmitriev,etc. Phys. Rev. Lett. 91
p226802 (2003)

Key formula, but we only need DC term



DC E-field changes f(): a theoretical approach
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Notice : notation change
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Continuous equation:
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DC E-field changes f(): a theoretical approach
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Ref. S. Das Sarma, Frank Stern. Phys. Rev. B.
32 p8442 (1985)

Single-particle relaxation time versus
scattering time in an impure electron gas
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Analysis results



Conclusion

•We have studied the current instability observed at ν=2 Hall plateau
in a 2DEG system at high lattice temperatures, TL∼ 17-35K

• We demonstrate that the instability is caused by the NDC
predicted by Kurosawa et al.

• The nonlinearity of the longitudinal voltages is the dominant effect to
drive the system into NDC

• The nonlinearity of the Hall voltages govern the domain growth
progress

• Physical origin of the nonlinearities inducing the NDC may be
explained with electric field dependence of the scattering rate.


