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Introduction:
e EXxperimental system:

Two-dimensional electron gas system (2DEG)
e [nteger Quantum Hall Effect (IQHE)
o Negative differential conductivity (NDC)
Motivation:

e Microwave induced zero resistance states in 2DEG
e NDC at high magnetic field

NDC of 2DEG at high magnetic field

e Measurement

e Data analysis — Demonstration and consegquence of NDC
e Physical origin of NDC

Summary



Experimental system: GaAs-AlGaAs heterostructure

GaAs crystal structure

Heterostructurs
/ band engineering

n-AlGaAs i-GaAs

Bandgap energy & Lattice constant for elemental and
binary compound semiconductors
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Experimental system: Two dimensional electron gas ( 2DEG )
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2DEG is formed at the interface
between GaAs & AlGaAs

Electronic properties of 2DEG

e Carrier density: ns=1-4x1011 1/cm?

e Fermi wavelength: Ag=40nm

e Electron mobility: p,=10°%-10%cm?/Vs
e Mean free path: | =103-10*nm

* Phase coherence length: |=200-nm

Device Fabrication:

e Photolithography

]

e Etching // Mesa th _| L_] “
e Ohmic contacts

/Alloying Tl ——
e Metallization ’L i 132“_m] i}




Integer Quantum Hall effect (IQHE)

Hall effect

e Hall angle : ¥ =tan™(E, / E,)
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Integer Quantum Hall effect

Landau levels
(single particle picture)
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Negative differential conductivity (NDC) in a bulk semiconductor

J-Erelaton J =0cE

e Ohm Law: Linear
e Multivalueness in J-E relation
« Multivalley in Band

\:\ « NDC — unstable system
| »  (Ref.S.M. Sze, Physics of

F: E Semiconductor Devices, 27, Chi1, p.639)
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Consequence of Bulk NDC

N type S type
Region of slightly Higher field
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domain domain domain domain

(Ref. S.M. Sze, Physics of Semiconductor Devices, 214, Chi1, p.639)

To reach the stability = system becomes electrically heterogeneous.

What happens if the system is in a strong
magnetic field?



Motivation: Microwave induced zero resistance states in 2DEG

« Zero Resistance

— Instability initiated by microwave irradiation

— Theories based on the framework of negative
differential conductivity (NDC) in bulk
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(PRB 67, 241303(R) 2003)
(PRL 90, 046807, 2003)




Motivation: Physical picture of NDC at high magnetic Field
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Ref: Tatsumi Kurosawa, J. Phys. Soc Japan
36,491(1974)

Consider a homogeneous system
with current J, electric field E and
magnetic field H. E | H//z

Electrical instability

« Hall angle v large at high B field
* Due to the growth of space charges
* Criterion:

AE-AJ <0

If the condition is fulfilled , the additional
current flows into the space-charge sheet
and builds it up




Conditions of current instability : Kurosawa’s theory
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Conditions of current instability : Kurosawa’s theory

Define a parameter D: D o Det(o Symm)

D =B*tan” ¥ + 20.(2—B) tan ¥ + o — 4(1—B)

(1)
The condition for instability: D > 0 REcAl <1
d
= |o <0
When ¥ — n/2 | 2 |
= (1) is predominate
— D >o0aslongaspf+#0 aEEd_\P
dE
Key : Even a weak nonlinearity in J-E can cause = 1—Ed—J
the instability when H is strong enough ! J dE

Nonlinearity of J(E)



NDC and IQHE

IQH states : R=0, Ry=h/2e?(1/v)

E=[C2) + ()12, 3 =

E V., d
¥ =tan(2L) 2 tan (-2 —
(Ex) (V )

=V, >0,¥Y—>n/2

Current instabllity rises easily ! ?
QHE breakdown ?
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Ref: Y. Kawano, etc., Phys. Rev. B 61, 2931(2000)
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NDC in 2D Electron Gas System

Rxx(k€Q)
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Match Experiment with Theory
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Vyy VS lgp
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J & ¥ as Function of E

V .V
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o & B as Function of E
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D as Function of E
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Domain growth of space charge in NDC
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Physical Origin of Instability

* Trend of Instability

— p,, decreases & ¥ — /2 as ET
 Electric field gives the opposite effect to electron heating
* |.e. Scattering rates decreases with increasing E
. T, > 16K
— Acoustic phonon scattering — p,,

Nonlinear transport in 2DEG:

® Two mechanisms

(a) Effects of E-filed on the distribution function fr(g)
(b) Effects of E-filed on the kinematics of electron scattering

® As tin>>1, , effect (a) dominates.

Tin. INelastic scattering time
T4 - quantum or single particle relaxation time

fr(e) : at E=0, Fermi-distribution



DC E-field changes f(¢g): a theoretical approach
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DC E-field changes f(g): a theoretical approach

Transport relaxation time: z, () =17, N,
0 = [deoy (e)[-0, f (¢)] N(e)
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A simple derivation for Egc —0f(¢)
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DC E-field changes f(¢g): a theoretical approach

Stationary kitnetic equation

D —_
jc ch 0 |:N2(8)if(8):|: f(g) fT(g)
N,N(¢g) O¢ oe T,
Overlapping LL J[\vfé‘v’?v?vf\vﬂvﬂv/\ AL
N =1- 25 cos 2% ' V(e)
COC
0= exp{—LJ <<1
®,T
ctq
| 2Tw | 27w ]
P, sin +4Q,.
Ty 1 e
Tac L+ P, sin® —— + Qg
L wc -
As v=0 T>w
:>G—>3<:1+252 173Qy T 21
O 1+ Qdc n T 2

s

2 2
_ 2Tin eEchF 7T
Que = T, [ coc2 ) (ha)c)

2
Prc ™ PryT

14267 17 R
1+ Q.

1+ 2652

N Pxx
pxx(Edc — O)

(1) Determine t,, ~ Data analysis

. eZNové strategy
"B 20260

oy — p,, (E—0) fromV _-I

(2) Determine 7,

(3) Fit py (o) Py (E=0)

fitting parameter .,

(4) Check 7, (T) relation




Determine tq

-
@]

— (b)
o 8 K 1
g N Al, ,Ga, ,As/GaAs
- 6 ~ 418 -3
"5 Npp,=10"cm
Z 4r
_____ —
o 2} VyEp=0.18eV  TTTTe—e A ——
O L
100 T

RELAXATION TIME (ps) SCATTERING TIME

SPACER THICKNESS (nm)

d’ k'
(217)3f

(9)

ul 2kp sin[

0

2

|

S(k'— kr)

k!

remote impurity: addation factor exp(—4k-d,sin(6/2))

d, : spacer thickness

Single-particle relaxation time versus
scattering time in an impure electron gas

Ref. S. Das Sarma, Frank Stern. Phys. Rev. B.

32 p8442 (1985)
42K /B=0T  Assume T,
=32pS — - 20
1~1.6ps ( from SdH osc.) g

Uniform-dope

Our wafer structure

Gahs cap layer (non-dope) 1004
2lGaAs (51 deope 1E+18/cm™3)

®=0.33

G00a

AlGaAs spacer layer (non-dope) l00A-6&00A

Gads (non-dope) Tum

Gaks 100a
AlGahAs 100A

non-dope

} * 20 times
Total 4000A

Gahs buffer layer non-dop 4000A




pxx / pxx(E=0)

Analysis results
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Conclusion

® We have studied the current instability observed at v=2 Hall plateau
In a 2DEG system at high lattice temperatures, T. ~ 17-35K

 We demonstrate that the instability is caused by the NDC
predicted by Kurosawa et al.

« The nonlinearity of the longitudinal voltages is the dominant effect to
drive the system into NDC

« The nonlinearity of the Hall voltages govern the domain growth
progress

« Physical origin of the nonlinearities inducing the NDC may be
explained with electric field dependence of the scattering rate.



