Quantum Effects in Dispersive Qubit-Resonator System

Dian Wahyu Utami (National Taiwan University)

Aashish Clerk (McGill University)

Phys. Rev. A 75, 042302 (2007) Phys. Rev. A.78. 042323 (2008)

System

- Study a dispersively coupled qubit-resonator system.
- Dispersive coupling arises when qubit freq. >> oscillator freq.
- ✤ Want to see quantum effects in oscillator:
 - Evidence of energy quantization

Entanglement

Method

Hamiltonian of the system: $H = (\omega_M + \lambda \sigma_z)(a^{\dagger}a + \frac{1}{2}) + f(t)(a + a^{\dagger}) + \frac{1}{2}\Omega_{ab}\sigma_z + H_{\gamma}$ Dispersive coupling: qubit state changes frequency of oscillator. Each qubit energy eigenstates $|\uparrow\rangle, |\downarrow\rangle$ Q leads to different oscillator frequencies. This type of coupling arises from Jaynes-Cumming $\hbar g(a^{\dagger}\sigma^{-}+a\sigma^{+})$. Written in basis |e
angle|n
angle & |g
angle|n+1
angle $g(n+1)^{1/2}\sigma_x$. In regime of $~~\omega_{qb}\gg\omega_M$ perturbation $\frac{g^2}{\hbar\Lambda}\sigma_z a^{\dagger}a$ 3

Method

$$H = (\omega_M + \lambda \sigma_z)(a^{\dagger}a + \frac{1}{2}) + f(t)(a + a^{\dagger}) + \frac{1}{2}\omega_{qb}\sigma_z$$
$$+ (a + a^{\dagger})\sum_j \nu_j(b_j + b_j^{\dagger}) + \sum_j \omega_j(b_j^{\dagger}b_j + \frac{1}{2})$$

Derive a standard master equation

$$\dot{\hat{\rho}} = -i \left[H_0, \hat{\rho} \right] + \gamma (n_{\rm eq} + 1) \mathcal{D}[\hat{a}] \hat{\rho} + \gamma n_{\rm eq} \mathcal{D}[\hat{a}^{\dagger}] \rho + (\Gamma_{\varphi}/2) \mathcal{D}[\hat{\sigma}_z] \hat{\rho}$$

$$\mathcal{D}[\hat{A}]\hat{\rho} = \hat{A}\hat{\rho}\hat{A}^{\dagger} - \left(\hat{A}^{\dagger}\hat{A}\hat{\rho} + \hat{\rho}\hat{A}^{\dagger}\hat{A}\right)/2. \qquad n_{eq} = \frac{1}{e^{\hbar\nu/k_bT} - 1}$$

Exact solution in terms of the displaced thermal distribution

$$\hat{\rho}_{eq}(T) = (1 - e^{-\omega/k_B T}) \sum_{n=0}^{\infty} e^{-n\omega_M/(k_B T)} |n\rangle \langle n|$$

Method (cont'd)

Exact solution in the qubit space:

$$\begin{split} \hat{\rho}_{\uparrow\uparrow}(t) &= \frac{1}{2} \hat{D}[\alpha_{\uparrow}(t)] \cdot \hat{\rho}_{eq}[T] \cdot \hat{D}^{\dagger}[\alpha_{\uparrow}(t)] \qquad \hat{\rho}_{\uparrow\uparrow}(t) = \langle \uparrow | \hat{\rho}(t) | \uparrow \rangle \\ \hat{\rho}_{\downarrow\downarrow}(t) &= \frac{1}{2} \hat{D}[\alpha_{\downarrow}(t)] \cdot \hat{\rho}_{eq}[T] \cdot \hat{D}^{\dagger}[\alpha_{\downarrow}(t)] \qquad \hat{D}[\alpha] = e^{(\alpha \hat{a}^{\dagger} - \alpha^{*} \hat{a})} \\ \hat{\rho}_{\uparrow\downarrow}(t) &= [\hat{\rho}_{\downarrow\uparrow}(t)]^{\dagger} = \frac{1}{2} e^{i\omega_{qb}t} Y(t) \times \\ \hat{D}[\tilde{\alpha}_{\uparrow}(t)] \cdot \left(\hat{\rho}_{eq}[T^{*}(t)] e^{-i\phi(t)(\hat{n} + \frac{1}{2})} \right) \cdot \hat{D}^{\dagger}[\tilde{\alpha}_{\downarrow}(t)] \end{split}$$

✤ Where we have defined:

 $\alpha_{\uparrow}(t), \alpha_{\downarrow}(t)$: Average of $\langle a \rangle$ given that the qubit is $|\uparrow\rangle, |\downarrow\rangle$ $\rho_{eq}(T)$: Thermal oscillator density matrix at temperature T $\tilde{\alpha}_{\uparrow}(t), \tilde{\alpha}_{\downarrow}(t)$: modified $\alpha_{\uparrow}(t), \alpha_{\downarrow}(t)$; reduces to $\alpha_{\uparrow}(t), \alpha_{\downarrow}(t)$ at *T=O* : Thermal distribution with new temperature $\rho_{eq}(T^*)$: factor describing oscillator-bath entanglement Y(t): time-dependent phase factor $\propto \lambda$ $\phi(t)$ 5

Number Splitting

Evidence of discrete energy level in mechanical system
 Qubit's off-diagonal density matrix element $\hat{\rho}_{\uparrow\downarrow}(t) = \langle \uparrow | \hat{\rho}(t) | \downarrow \rangle$ Excite qubit from ground state via time dependent field ω_{rf} Can relate to absorption spectrum of qubit
 $\Gamma_{abs}(\omega_{rf}) = |A|^2 \int_{-\infty}^{\infty} dt e^{+i\omega_{rf}t} \langle \sigma_{-}(t)\sigma_{+}(0) \rangle$ $= 2|A|^2 \operatorname{Re} \left[\int_{0}^{\infty} dt e^{+i\omega_{rf}t} \rho_{\uparrow\downarrow}(t) \right]$ (approx)

With no force at zero temperature:

$$\rho_{\uparrow\downarrow}(t) = e^{-i\Omega_{qb}t} \sum_{n=0}^{\infty} P(n) e^{-2i\lambda\omega_M(n+\frac{1}{2})t} \rho_{\uparrow\downarrow}(0)$$

Number splitting in NEMS

✤ Need to consider with finite temperature AND finite drive,

- For an arbitrary detuning of the drive, there are too many peaks in the spectrum 4000
- weight of 'true' peaks do not correspond to the initial number distribution of the mode...
- ✤ can we faithfully measure the mode number statistics if we

Analysis

Suppose we start with someone unknown state of oscillator (finite temperature, finite driving force, arbitrary detuning) can still relate the absorption to $\rho \uparrow \downarrow$?

YES, if:

- Keeping coupling off until t=0
- For t>0, use a large enough coupling

Dephasing Spectra

Realistic Numbers

✤ use oscillator and coupling numbers similar to Naik et al.

- $-\omega_{osc} = 2\pi \ 21.9 \text{ MHz}$
- $-\Omega_{qb} = 2\pi 2 \text{ GHz}$
- $\mathbf{Q} = 10^4$
- $\lambda = 0.71$ MHz (at 10 volts)
- $\Gamma \phi = 1 \text{ MHz}$
- *n*_{eq} (at 15 mK): 13

Entanglement

 μ_i negative eigenvalues of partially transposed ho^T

Entanglement

$$\hat{\rho}_{\uparrow\uparrow}(t) = \frac{1}{2}\hat{D}[\alpha_{\uparrow}(t)] \cdot \hat{\rho}_{eq}[T] \cdot \hat{D}^{\dagger}[\alpha_{\uparrow}(t)]$$

$$\hat{\rho}_{\downarrow\downarrow}(t) = \frac{1}{2}\hat{D}[\alpha_{\downarrow}(t)] \cdot \hat{\rho}_{eq}[T] \cdot \hat{D}^{\dagger}[\alpha_{\downarrow}(t)]$$

$$\hat{\rho}_{\uparrow\downarrow}(t) = [\hat{\rho}_{\downarrow\uparrow}(t)]^{\dagger} = \frac{1}{2}e^{i\omega_{qb}t}Y(t) \times$$

$$\hat{D}[\tilde{\alpha}_{\uparrow}(t)] \cdot \left(\hat{\rho}_{eq}[T^{*}(t)]e^{-i\phi(t)(\hat{n}+\frac{1}{2})}\right) \cdot \hat{D}^{\dagger}[\tilde{\alpha}_{\downarrow}(t)]$$

Result? - Analytical solution for T=0, non-zero dephasing
$$\mathcal{N} = -\frac{1}{4}(1 - Y - \sqrt{1 + Y^2 - 2Y\cos(2\theta)})$$
Purity
Overlap

$$Y = \frac{\exp(-(2i\lambda)\int_0^t dt'(\alpha_{\uparrow}(t')\alpha_{\downarrow}^*(t')))}{\cos(\theta)} \qquad \cos(\theta) = |\langle \alpha_{\uparrow} | \alpha_{\downarrow} \rangle|$$

- Semi analytical calculation for finite temperature!

Entanglement

- \bigstar At t=0 , prepare qubit in the state $|\!\uparrow
 angle$ + $|\!\downarrow
 angle$
- **\bigstar** For t > 0, qubit-oscillator entanglement may develop.
- * NB: if $\langle a \rangle = 0$, then there is NEVER ANY ENTANGLEMENT!
 - need to drive oscillator to get entanglement
 - two methods: entangle qubit with oscillator amplitude i.e. |a|

Amplitude Entanglement

Amplitude Entanglement

✤ Find that entanglement is non-monotonic with time, has a maximum.

Competition between two effects:

- $|\alpha_{\uparrow}(t) - \alpha_{\downarrow}(t)|^2$ grows with time \longrightarrow increases \mathcal{N}

15

Amplitude Entanglement

- easy for environment to distinguish two states of the superposition
- if oscillator has large |a| , creates many bath quanta;

if oscillator |a| small, few bath quanta created

Phase Entanglement

At *t*=0 prepare qubit in pure superposition state, and prepare oscillator in a state where $\langle a \rangle \neq 0$.

Phase vs Amplitude

Detecting entanglement

Entanglement Signature

Conclusion

- Learn about dispersively-coupled qubit-oscillator system
- A theory to see evidence of energy quantization that includes arbitrary temperature and driving of the mode
- We have studied the entanglement dynamics.
 - Two types: Amplitude & Phase entanglement
- Unambiguous way to detect entanglement in the system
- \clubsuit Use the frequency spectrum of $~\rho_{\uparrow\downarrow}(t)$ ($S(\omega)$)

as a "fingerprint" to deduce entanglement.

