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System

Experiment:

Qubit-Nems
LaHaye et al.
(Caltech)

Diagram:

Study a dispersively coupled qubit-resonator system. 

Dispersive coupling arises when qubit freq. >> oscillator freq.

Want to see quantum effects in oscillator:

Evidence of energy quantization

Entanglement
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Hamiltonian of the system:

Dispersive coupling: 

qubit state changes frequency of oscillator.

Each qubit energy eigenstates

leads to different oscillator frequencies.

This type of coupling arises from Jaynes-Cumming

Method

H = (ωM + λσz)(a
†a+ 1

2
) + f(t)(a+ a†) + 1

2
Ωqbσz +Hγ

ωqb À ωM

| ↑i, | ↓i

h̄g(a†σ− + aσ+) |ei|ni |gi|n+ 1i. Written in basis &

g(n+ 1)1/2σx . In regime of

g2

h̄∆σza
†aperturbation
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Derive a standard master equation

Method

˙̂ρ = −i [H0, ρ̂] + γ(neq + 1)D[â]ρ̂+ γneqD[â
†]ρ

+(Γϕ/2)D[σ̂z]ρ̂

D[Â]ρ̂ = Âρ̂Â† −
³
Â†Âρ̂+ ρ̂Â†Â

´
/2.

Exact solution in terms of the displaced thermal distribution

neq =
1

eh̄ν/kbT−1

ρ̂eq(T ) = (1− e−ω/kBT )
P∞

n=0 e
−nωM/(kBT )|nihn|

H = (ωM + λσz)(a
†a+ 1

2
) + f(t)(a+ a†) + 1

2
ωqbσz

+(a+ a†)
X
j

νj(bj + b
†
j) +

X
j

ωj(b
†
jbj +

1
2 )
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Method (cont’d)
Exact solution in the qubit space:

Where we have defined:

ρ̂↑↑(t) = 1
2
D̂[α↑(t)] · ρ̂eq[T ] · D̂

†[α↑(t)]

ρ̂↓↓(t) = 1
2
D̂[α↓(t)] · ρ̂eq[T ] · D̂

†[α↓(t)]

ρ̂↑↓(t) = [ρ̂↓↑(t)]
†
= 1

2e
iωqbtY (t)×

D̂[α̃↑(t)] ·

µ
ρ̂eq[T

∗(t)]e−iφ(t)(n̂+
1
2 )

¶
· D̂†[α̃↓(t)]

: Average of     given that the qubit is    ,
: Thermal oscillator density matrix at temperature T
: modified           ; reduces to           at T=0
: Thermal distribution with new temperature
: factor describing oscillator-bath entanglement
: time-dependent phase factor

α↑(t),α↓(t)

ρeq(T )

α̃↑(t), α̃↓(t)

ρeq(T
∗)

Y (t)

φ(t) ∝ λ

α↑(t),α↓(t) α↑(t),α↓(t)

hai |↑i |↓i

ρ̂↑↑(t) = h↑|ρ̂(t)|↑i

D̂[α] = e(αâ
†−α∗â)
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Number Splitting
Evidence of discrete energy level in mechanical system

Qubit’s off-diagonal density matrix element

Excite qubit from ground state via time dependent field 

Can relate to absorption spectrum of qubit

(approx)

ρ̂↑↓(t) = h↑|ρ̂(t)|↓i

ωrf

With no force at zero temperature:

ρ↑↓(t) = e
−iΩqbt

∞X
n=0

P (n)e−2iλωM (n+
1
2 )tρ↑↓(0)
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Number splitting in NEMS

Need to consider with finite temperature AND finite drive,

No longer

For an arbitrary detuning of the drive, there are too many peaks in the 

spectrum 

weight of ‘true’ peaks do not 

correspond to the initial number 

distribution of the mode...

can we faithfully measure the 

mode number statistics if we 

don't already know its initial state? 

additional peak

ρ↑↓(t) = e
−iΩqbt

∞X
n=0

P (n)e−2iλωM(n+
1
2 )tρ↑↓(0)
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Analysis

Suppose we start with someone unknown state of oscillator 

(finite temperature, finite driving force, arbitrary detuning) can 

still relate the absorption to       ? 

YES, if:
• Keeping coupling off until t=0

• For t>0, use a large enough coupling

ρ↑↓
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Dephasing Spectra
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Realistic Numbers

use oscillator and coupling numbers similar to Naik et al.

– ωosc= 2π 21.9 MHz
– Ωqb = 2π 2 GHz
– Q = 104

– λ = 0.71 MHz 
(at 10 volts)

– Γφ = 1 MHz
– neq (at 15 mK): 13

2λ,T

2λ,2T

λ,T
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Entanglement
Consider two systems A & B

The two systems is said to be entangled if:

(not separable)

Quantifying the amount of entanglement

want a computable measure

Log negativity EN = log2(2N + 1)

N =
||ρT ||− 1

2
=
X
i

|μi|

ρT 6= ρA ⊗ ρB

μi negative eigenvalues of partially transposed ρT
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Entanglement

Result? - Analytical solution for T=0, non-zero dephasing

- Semi analytical calculation for finite temperature!

N = −
1

4
(1− Y −

p
1 + Y 2 − 2Y cos(2θ))

Y =
exp(−(2iλ)

R t
0
dt0(α↑(t0)α∗↓(t

0))

cos(θ)
cos(θ) = |hα↑|α↓i|

ρ̂↑↑(t) = 1
2
D̂[α↑(t)] · ρ̂eq[T ] · D̂

†[α↑(t)]

ρ̂↓↓(t) = 1
2
D̂[α↓(t)] · ρ̂eq[T ] · D̂

†[α↓(t)]

ρ̂↑↓(t) = [ρ̂↓↑(t)]
†
= 1

2e
iωqbtY (t)×

D̂[α̃↑(t)] ·

µ
ρ̂eq[T

∗(t)]e−iφ(t)(n̂+
1
2 )

¶
· D̂†[α̃↓(t)]

Purity Overlap
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Entanglement
At      , prepare qubit in the state     +    

For      , qubit-oscillator entanglement may develop.

NB: if       , then there is NEVER ANY ENTANGLEMENT!

- need to drive oscillator to get entanglement

- two methods: - entangle qubit with oscillator amplitude i.e.       

- entangle qubit with oscillator phase, i.e

|↑i |↓it = 0
t > 0

hai = 0

|a|

arg(a)

Amplitude Phase
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Amplitude Entanglement

At t =0, prepare qubit in pure superposition state; 
drive the oscillator at
- only have resonance IF the qubit is up
- will lead to a "cat" state

Zero temperature: Simple analytic description

Finite temperature: Expand solution as matrix in basis of 
displaced Fock state

f(t) = γαf cos[(ωM + λ)t]

N = −
1

4
(1− Y −

p
1 + Y 2 − 2Y cos(2θ))

lnY =≈ −
α2f (t/γ)

3

24
cos(2θ) ≈ −

α2f (t/γ)
2

2
+

α2f (t/γ)
3

4
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Amplitude Entanglement

Find that entanglement is non-monotonic with time, has a maximum.

Competition between two effects:
- grows with time     increases
- oscillator-qubit system gets entangled with bath     decreases

|α↑(t)− α↓(t)|2 N
N

αf = 3.74
λ = 0.01ωM ,
γ = 10−5ωM
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Amplitude Entanglement

Non-zero temperature? kills entanglement very quickly

- easy for environment to distinguish two states of the superposition

- if oscillator has large    , creates many bath quanta;

if oscillator     small, few bath quanta created

|a|

|a|

αf = 3.74
λ = 0.01ωM ,
γ = 10−5ωM
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Phase Entanglement

At t=0 prepare qubit in pure superposition state, and prepare
oscillator in a state where        .

- As oscillator frequency set by qubit state, phase of oscillator 

(i.e.      ) will become entangled with qubit.

Entanglement vanishes periodically with period 
π
λ

hai 6= 0

arg(a)

α0 = 0.76
λ = 0.01ωM ,
γ = 10−5ωM
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Phase vs Amplitude

αf = 3.74

vs
α0 = 0.76

Amplitude Phase
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In Phase Entanglement case:
Dephasing revivals (i.e.         not monotonic).

can be measured using standard Ramsey interference/ 
state tomography.

Dephasing revivals ARE NOT proof of qubit-osc. entanglement

Detecting entanglement

Tr[ρ↑↓]

Tr[ρ↑↓]
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Entanglement Signature
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Conclusion

Learn about dispersively-coupled qubit-oscillator system

A theory to see evidence of energy quantization that includes 

arbitrary temperature and driving of the mode 

We have studied the entanglement dynamics.

Two types: Amplitude & Phase entanglement

Unambiguous way to detect entanglement in the system

Use the frequency spectrum of       (    ) 

as a "fingerprint" to deduce entanglement.

ρ↑↓(t) S(ω)


