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Comparison of optical microscopes
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® Performing optical spectroscopy in nanometer scales is one of the critical
steps in the development of nanoscience and nanotechnology.

® Taking advantage of localized enhanced field generated by plasmon, optical
signal generated in nanometer scale can be observed macroscopically.

® New physics involving light-matter interaction in nanometer scales need to
be developed.
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Nanoprobe enhanced optical microscopy
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Lycurgus Cup in Roman times
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The glass appears green in
daylight (reflected light),
but red when the light is
transmitted from the inside
of the vessel.

The Lycurgus Cup, Roman (4th century AD), British Museum
F. E. Wagner et al., Nature 407, 691 (2000).



Scattering by a metal sphere
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Induced dipole by the applied field
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Colors in nanometals
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L. M. Liz-Marzan, Materials Today 26, February 2004.



Schematic of s-SNOM
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CW multi-line laser
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® Direct probe of optical properties in nanometer scales
® Near-field spectroscopy




Spatial resolution
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Material contrast
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Polystyrene sphere on Si(111)
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® Detection limit of An: 0.02



Scattering-SNOM with single CNT
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AFM image Amplitude image Phase image

R. Hillenbrand et al., Appl. Phys. Lett. 83, 368 (2003).



Near-field fluorescence spectroscopy
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normalized fluorescence

Fluorescence enhancement near a silicon tip Tip-enhanced fluorescence image of quantum dots

J.M. Gerton et al., Phys. Rev. Lett. 93, 180801 (2004).



Near-field Raman spectroscopy of CNT
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Near-field Raman Shear-force image
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A. Hartschuh, E. J. Sdnchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 095503 (2003).



Single-molecule Raman spectroscopy
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Polarized single molecule Raman spectra of dye-to-colloidal particles
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S. Nie and S. R. Emory, Science 275, 1102 (1997).



Comparison between Raman and SERS
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K. Kneipp et al., Bioimaging 6, 104 (1998).



Interparticle field enhancement in SERS
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H. Xu, J. Aizpurua, M. Kall and P. Apell, Phys. Rev. B 62, 4318 (2000).

Dr. Juen-Kai Wang, CCMS, NTU




Fabrication procedure of Ag-particle arrays

® High-purity aluminum foil is

electropolished to 1-nm surface (@) Polishing
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(d) Ag deposition

roughness.

® The foil is then anodized using different
voltages to obtain arrays of self- Al
organized nanochannels with specific (b}  Anodization

interchannel spacings. -U—U—U—U-
® |dentical channel diameter is created by AN

controlled etching for the substrates with

(e) Remove AAO wall

different pore spacings. 6} Poreopening

® By AC electrochemical plating
procedure, Ag nanoparticles are grown
in the AAO nanochannels.

® The ‘hot junctions’ are then created by
subsequent etching of alumina walls.

H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, and Y.-L. Wang, Adv. Mater. 18, 491 (2006).



SEM and TEM examination
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The spread of the distribution of D and
W is ~5 nm.

The hot junctions were further examined
by cross-sectional transmission electron
microscopy.

In this study, the gap is tuned from 5 to “ 20F 20
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Enhancement & dynamical range
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Rhodamine 6G in water
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® Uniform Raman enhancement (<5% for different locations of a substrate)

10° more Raman enhancement than the substrate of ~30 nm Ag nanoparticles thermally
deposited on a silicon surface

® [arge dynamical range (>1000)



Gap dependence of SERS signal
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Adenine: no fluorescence background

from 514.5-nm excitation Adenine in water (10 M)
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SERS as a biomedical diagnostic tool
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Raman spectroscopy, providing molecular vibrational information, can become a
powerful and useful method to identify molecular species if its scattering cross
section can be enhanced many orders of magnitude.

Surface-enhanced Raman scattering (SERS) may serve as the solution.

Most of Raman enhancers have suffered two major drawbacks: low reproducibility
and small dynamical range. Therefore, a lot of efforts have been made to control
its enhancement mechanisms such that uniform high sensitivity can be achieved.

One key point is whether it is possible to control precisely the electromagnetic
enhancement factor induced by plasmonic resonance.

Theoretical and experimental studies indicate that the precise control of gaps
between nanostructures in the sub-10 nm regime, ‘hot junctions’, is likely to be
critical for the fabrication of SERS-active substrates with uniformly high Raman
enhancement factor.



Substrates made by nanosphere lithography
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® Nanosphere lithography: triangular nanoparticle array or metal film over nanosphere
® Uniform Raman enhancement

® Glucose detection

C. R. Yonzon et al., Talanta 67, 438 (2005).



SERS characterization of bacteria
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Bacteria on thermally evaporated Au nanoparticles
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® Poor reproducibility within one substrate (~15%) and even poorer from substrate to substrate
® Different vibrational signatures between SERS and bulk Raman

W. R. Premasirili et al., J. Phys. Chem. B 109, 312 (2005).



Conclusions
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® Scattering-type SNOM has been demonstrated to serve as a nanoprobe to
Investigate local optical properties and to probe local field distribution.

® Tip-enhanced optical spectromicroscope makes direct link between
structure and property in nanometer scale.

® The uniform and highly reproducible SERS-active properties and the wide
dynamical range facilitate the use of SERS for chemical and biological
sensing applications with high sensitivity.




