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Outline

�

Brief introduction of Extra Dimensional (XD) Models and the RS1 model

(A) XD with flat internal space
(a) Scalar fields in higher dimenionaltheories
(b) Kaluza-Klein (KK) decomposition
(c) Boundary conditions

(B) Warped internal space
(a) Scalar fields
(b) Fermions in RS location ,location, location
(c) Gauge Bosons
(d) The need for custodial

� � �� ��� . Bulk symmetry is� � �� �	� 
 � � �� �� 
 � �� �	� 
�
(e) Quark Mass Matrices : symmetrical or asymmetrical
(f) KK Fermions mixing�

Some Phenomenology�

Conclusions
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Intro to XD

�

Compactification of internal dimensions always involve a scale R or ’volume’,V�

Two equivalent descriptions

(A) At distances large compare to R
4D langage is more more appropriate � � KK modes

(B) At distances smaller than R
Higher dim language is better � � Takes into account of all KK modes�

Use the KK langauage since it is more relevant to phenomenology.
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The KK decomposition

Quantum fields in

�� � dimenions

� ��� ��� � � ���� � �� � � � � � � � � parametrize the compact space
! � � � "� � �

We can always expand any function in any complete set of functions

#%$ � � � �

via

� ��� �&� � � � � �'( $ ) $ � � � � #$ � � � �

) $ � � � * +
KK mode

Choose

#$ to be orthonormal (basis)functions
, #$ - #%. / � 0 $ .

We allows us to think of
) $

as independent d.o.f
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KK decomposition II

How to choose the basis is model dependent.
In general assume perturbation philosophy

� Understand the ’free’ part of the XD Lagrangian

� Add interactions later
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Scalar Fields

The action of a free scalar field is

� � 1 2 � 1 $ � �� �3 4 � 3 4 � � 5 6 � 6 � � � 1 2 � 1 $ � �� � �7 � 5 6 � �

and

7 � 5 6 � 3 � 3 � � 3 � 3 � � 5 6

Use the eigenfunctions of the XD part

�3 � 3 � � 5 6 � #$ � 8 6$ #$

�

This is linear partial differentail eqn we can solve�

Choose appropriate boundary conditions which is part of the definition of the
theory
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Scalar fields II

Use the KK expansion of

�

insert into S

� �( 1 2 � 1 $ � .:9 . ;
�� ) . ��� � � #%. � � � � < #=. ; � � � � 3 � 3 � ) . ; � � � � � ) . ; � � � � �3 � 3 � � 5 6 � #=. ; � � � �

We get

� �( . 9 . ;
> 1 $ � #%. � � � � #=. ; � � � � ? 1 2 � �� ) . ��� � � � 3 � 3 � � 8 6. ; � ) . ; � � � �

Implies

�( 1 $ � #@. #=. ; � 0 .:9 . ;
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Physics of KK decomposition

The theory can be written as

� $ 1 2 � �� ) $ �3 � 3 � � 8 6$ � ) $
A free XD scalar is equivalent to an infinite tower of 4D scalars with masses 8 $�

If 8A � �

we have a massless 4D field�

For 1 XD the eigenfunctions

#$ are circular functions�

Need to impose boundary conditions to specify these functions.
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Boundary Conditions

Illustrate by considering 5D or 1XD examples.�

Compactification on a circle

� B

(A) Impose periodic b.c

� � � � � � � �� � C D �

(B) If

5 6 � �

the KK masses are8 $ � $��

Compactify on an interval i.e � extends from � � �
to � � D

. They are called fixed
points where branes are situated. At the fixed points

(A) Dirichlet b.c

#$ � �

(B) Neumann b.c.

3 # � �

(C) or a mixture
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Bulk Gauge Fields

Use 5D QED compactify on a circle as an example to bring out the physics�

The action is

� � 1 2 � 6FE �
A � � � GIH 4 G H 4 � JKL JM # !� ! � J� GH 4 � 3 H N 4 � 3 4 N H

�

KK expand the gauge field as in the scalar case. Look at the

N � term

N � O $ N $ � ��� � #$ � � �

�

Becuase of bulk gauge invariance the zero mode is by
3QP #A � � � � �

�

The zero mode has a constant profile � � 4D gauge invaraince.�

Other KK modes similar to scalars
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Bulk Fermions

Again consider a minimal 5D Lagrangian for a fermion

R

. The action is

� � !� 1 S � TVU RW H 3 H R � 3 H U RW H R � 8U R R X
Notice a bulk mass term is included and sign of 8 is not determine.�

The bulk field

R

is a 4-component Dirac spinor.�

Decompose under 4D Lorents subgroup into a pair of Weyl spinors

R � Y[ZU]\ ^Z

�

Bulk equation of motion from
0 �

gives
� !U`_ � 3 � Y � 3aP U`\ � 8 U\ � �

� !_ � 3 � Ub\ � 3cP Y� 8 Y � �
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Bulk Fermions II

�

KK expand the 5D wavefunctions

Y � $ J $ � � � Y[d ��� �

Ub\ � $ #$ � � � Ub\ $ ��� �

�

These fermions obey the 4D Dirac equations

� !U_ � 3 � Y $ � 8 $ U`\ $ � �

� !_ � 3 � Ub\ $ � 8 $ Y $ � �

�

Substituting back into 5D EOM we get a set of coupled eigenvalue equations
3cP J $ � 8 J $ � 8 $ #$ � �

3cP #$ � 8 #$ � 8 $ J $ � �
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Bulk Fermions Boundary Conitions

�

Consider the fix point � � �

and the field takes the b.c. Dirichlet

Y � � - A

�

The other component must satify

� 3aP � 8 � Y � �
i.e. the Neumann condition�

For the zero mode the eigen equations decouple:

3QP JA � 8 JA � �3aP #A � 8 #A � �

�

If we choose

\ - A � � � #A � �
then

JA � � � M 
 6 . �� 8 e M 
 . P � e � � C D �

�
The wavefunction peaks at � � �

if 8 f �

and falls exponentially to the point

If then the wavefuntion peaks at

Use this to get heirachy for ferion masses without fine tuning Yukawa couplings
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Introduction to the Randall-Sundrum Model

�

There are more than 4 dim. Indeed RS assumes

� � �

dim with a warp or
conformal metric. AdS�

5D interval is given by

1hg 6 � iIj � 1� j 1� � � M 
 6 kmlon pq psr �t 1� � 1� t � u 6wv 1 ) 6

�

Two branes are located at

) � �

(UV) and
) �C (IR).�

Metric is

�C x ) xC � _ y z u v - ) - �

iIj � � {
| M 
 6F} r �t �� � u 6~v

�
� � ij � � {
| M � 6F} r � t �� � Bl �n

�
�
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RS model as 5D field theory

�

The action is generalized to 5D e.g. the bulk scalar field we have

� S � �� 1 2 � E

 E 1 ) ' i � i H 4 3 H �3 � � � 8 6 � 6 �

(1)

� �� 1 2 � E

 E u v 1 ) �M 
 6F} r �t 3 � �3 t � � � u 6�v �3 q � M 
 2} 3 q � � � 8 6 M 
 2} � 6 �

�

Integrate over

)

to give a 4D effective theory�

Do KK decomposition.

� � � � ) � � M }' u v $ � $ ��� � � $ � ) �

One recovers the canonical 4D scalar field

� � $ � � � and the KK eigen-mode� � $ � � �

. � $ is normalized by

E

 E 1 ) � $ � ) � � . � ) � � 0 . $
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RS:Scalars

�

The � $ � ) �

satisfies the eigenvalue eqn

� M } u 6v 3 q � M 
 2} 3 q � M } � $ � � � 8 6 M 
 6} � $ � 8 6$ � $

�

The 4D effective action becomes

� � �� $ 1 2 � �r �t 3 � � $ 3 t � $ � 8 6$ � 6$ �

� 8 $ � �

are the zero modes. Identify them as SM fields.�

The solutions are exponentials

�A � M kmlon q�A <M 
 t kmlon q � �A M � t kmlon q � � ��� y �� 8 6� z 6 �
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More RS

�

After integrating out the extra the dimension the 4D effective action is

� � �� $ 1 2 � �r �t 3 � � $ 3 t � $ � 8 6$ � 6$ �

�

For 8 $ � � �

the solutions are given by Bessel functions of order � � ' �� . �k �

� $ � ) � � M } �$ �� t ��� $ � � � $ �t ��� $ � �

� 8 $ and

� $ are determined by boundary conditions at

) � ��C . The derivatives
are continuous.
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Gauge Fields in RS

�

Take QED as the toy model. The action is

� S � � � � 1 2 � E

 E 1 ) ' i G H 4 G�H 4

�

Choose the unitarity gauge

N 2 � �

and KK decompose the gauge field

N � ��� � ) � � �' u v $ N $ � � � � Y $ � ) �

with a normalization E

 E 1 ) Y $ Y . � 0 . $

�

The 4D Lagrangian is

� 2 � � �� r �t . 9 $ N $ � N .t E

 E 1 ) Y . 3 q > M 
 6F}u 6�v 3 q Y $ ?

We can identify the mass eigenvalue of the n-th KK mode by

JNN Nov 08 – p.18/34



RS Gage Fields II

�

The zero mode has a flat profile

Y A � �' � C

This preserves charge universality�

The solutions for KK excitaions are Bessel functions of order unity

Y $ � 8 $ M }z �$ �� B ��� $ � � K $ � B �� $ � �

� K $ and 8 $ are determined by b.c.c at the fixed points

) � ��C
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Fermions in 5D Bulk

�

5D fermions are 4-component spinors i.e. vector-like fermions

R ��� � � � � � {
| \ � ��� � � � �\ � ��� ��� � �

�
�

�

The Dirac matrices in 5D are � H � � � � � ! � S �

�

Project out the L,R chiral states by boundary conditions or orbifold parities ,i.e.
how the field transforms under

� 6 � � � � ��

{
| \ � ��� � � �\ � ��� � � �

�
� � � � {
| \ � ��� � � � �

� \ � � � � � � �
�

�
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Fermions in Warp Space

�

5D action for fermions is

1 2 � 1 ) ' i� j�� U R � �  �j R
where

� j� � 1 ! K J T¡M } � M } � M } � M } � BlFn X

�

Do the usual KK decomposition:

R�9 � ��� � ) � � M ¢� }' u v $ R�9 �$ ��� � £ )�¤9 �$ � ) �

(2)

E

 E 1 ) £ )�`¥ $ � ) � £ )� . � ) � � E

 E 1 ) £ )� ¥ $ � ) � £ )� . � ) � � 0 . $

�

The profile of the wavefunction is controlled by 8 � ¦ z

. Enters into the order of
Bessel fn.
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Bulk Fermions II

�

The equations are

> 8 � z� � � u v 3 q ? £)� $ � 8 $ M } £)� $ (3)> 8� z� � � u v 3 q ? £)� $ � 8 $ M } £)� $

�

The zero modes which we identify as SM fermions ¦ � � y . k

£ )� A � �A� M kmlon q § B ¨ 6 � t © � �A� � z u v ��� � � � � �

M 6 kmlon E § t � B ¨ 6 © � � (4)

£ )� A � �A� M kmlon q § B ¨ 6 
 t © � �A� � z u v �� � � � � �

M 6 kmlFn E § B ¨ 6 
 t © � �

�

Since both solutions are

� 6 even at

) � �

, only one of the two is allowed by the� 6 .�

The RH chiral zero mode lives near the UV (IR) brane if � f � � � � � ª � � � �

.�

LH zero mode resides close to UV (IR) brane for � ª � � � � � � f � � � � �
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Profiles of bulk fermions
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Fermion Masses in RS

�

The coefficients ¦¬9 � control the zero modes i.e peaks at UV or IR�

Localize the Higgs at the IR brane�

Have the zero modes i.e. the SM chiral fermions localize near UV brane�

The overlap after SSB will be very samll�

No need to fine tune Yukawa’s.�

Quark masses are naturally small.�

If all the fermions both LH doublet and RH singlets are localized near UV then
t-quark comes out too light�

t-quark or

� «� � �� �

must not be too far from IR brane
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Quark Masses in RS

�

The quark masses are given by

� 5� ­¯® � �° � ±² ³ ®S9 �°z u vC # A� �C � ¦� ®h´� # A� �C � ¦� ®hµ� y ±² ³ ®S9 �°z u vC G� � ¦� ®h´� G� � ¦� ®hµ� � # �L � 1 �

where the label

#

denotes up-type or down-type quark species. ±:¶ � � · �

GeV.

# A�9 � � )� ¦�¤9 � � � z u vC �� ¸ � ¦�9 � �

M kmlon E § B¹ 6 vº¼» ½ © � � M § B ¨ 6¹ v º» ½ © kml`n q

where the upper (lower) sign applies to the LH (RH) zero mode�

The Yukawa couplings

³ �° are not necessarily symmetric in

!� ¾� #�¤9 � shows that the masses are control by values of ¦�9 ��

The task is to configurations that fits the CKM matrix.�

Added bonus : both LH and RH quark configurations are given for each solution�

Both LH and RH rotations are given for each solution�

In the SM only LH rotations are detectable.

( ¿À H �( Á Â� ( Ã� .
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General Configurations

�

In general quark mass matrices are not symmetrical in RS. Several configurations
found. One example:

¦Ä � Å ��Æ Ç � �� ��Æ È È Ç� �Æ � È Ç É �¦Ê � Å � ��Æ Ç Ç �� � �Æ È � Ç� ��Æ �Ë È É �¦Ì � Å � ��Æ Ç �� � � �Æ È ·� � � ��Æ Ç� Ç É Æ (5)

�

The u and d quark mass matrices (at TeV scale)

, - 5 Á - / �
{

ÍÎ|
Ë Æ Ï · 
 � � 
 2 ��Æ � � Ï��Æ · Ç ·��Æ �� ���Æ È È � Ë Æ Ç Ï��Æ � Ç ÇÏ�Æ � Ç � �� Æ � Ï

�
ÐÎ� � , - 5 Ã - / �

{
ÍÎ|

��Æ � �� Ï �Æ �� · ��Æ � � � ���Æ �� � �Æ � Ï Ç��Æ � È ���Æ � È� �Æ � � Ï��ÆË � �
�

ÐÎ� �

where we have used

z M 
 kmlFn E � � Æ È

TeV.
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RS Quark Masses contd

�

The CKM matrix elements for the above

-( � ÁÑ - � ��Æ � Ç �� � � � -( � Á Ò - � ��Æ � � Ï �� � � � -( � v Ò - � ��Æ � · Ï � · � � �-( � ÁÑ - � ��Æ �� �� � � � -( � Á Ò - � ��Æ � � �� � � � -( � v Ò - � ��ÆË Ï �� � � � (6)

�

Note the RH rotations are larger than the LH ones.�

Appears to be true from the numerical searches we found�

How to test it?
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Symmetrical Mass Matrices in RS

�

Most of the ’constructions’ start from conjecture assuming that they are
symmetrical�

Put zeros ( 1 to 3) in appropriate places to fit CKM and the observed mass
heirarchies.�

Can RS accomodate these without fine tuning the Yukawa couplings�

Only ONE texture zero structures are allowed.�

By construction

�� � ��
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All is not well

�

The main problem is that the new KK modes will modify EWPT�

The

�� Ó

parameters will receive tree level corrections�

It is known that Ô � � is protected by a custodial

� � �� �
symmetry�

Promote that to a bulk gauge symmetry.�

Tree level KK gauge effects are suppressed�

The gauge symmetry is now

� � �� � � 
 � � �� �� 
 � �� �	Õ�

Take

Ö � × � e
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Custodial RS model

�

Break

� � �� �� � � �� �� by orbifold b.c.

�( Ø DÙ Ú � B9 6 � �Û « ÜM u JKL JM # ! M Ý1hg � �

� � �� �� 
 � �� �Õ � � �� �	Þ by vev on UV brane. We have a

� ß

and

× �

� ß � � J S ÙÚ � à � J ß S Ù× �J 6S � J ß 6S

and
× � � J ß S Ù Ú � à � J S Ù× �J 6S � J ß 6S

� × � is the SM hypercharge gauge boson and broken with

� � �� � � on IR brane by
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Quark Representations

�

Zero modes have parity

�� � ��

Usual assignment

� � �� �	� � � �� ��«� �� «� á��
because

«� is a zero mode and

� � �� �� is broken on UV� 1� and

«� must have their own (- +) partners

� � �� ��� � � �� ��

«� ��
â ãä åÓ� �� «� ×�

�

They don’t affect the quark mass matrix.
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FCNC in the Minimal Constrained RS Model

�

Besides the direct production of the KK Z

æ � Æ È

TeV is tree level FCNC�

FCNC

� � �À À and

� � � ßÀ ç

mixing

XKK Z

f

f̄ < H > < H >

�

KK-fermion mixings

fKK f̄KK

Z

f f̄

< H > < H >

�

Going to the mass basis the unitarity is broken � � FCNC
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è é ê]ë ìîí èðï

�

The BR is

× u � « � ¦ �L � � � � �ñòó 6ô ² T -õ÷ö � «� � £hø �úù v § Á © - 6 � -õ÷ö � «� � £ ø � ù v § Á © - 6 X > � � � ù� � �ù
? 6 > � � � �� � � �� � ÆË Ç · · 
 T -õûö � «� � £ ø �üù v § Á © - 6 � -õûö � «� � £hø � ù v § Á © - 6 X

where � ù � . �þý. �ÿ and �ù � . �
�. �ÿ and

õ ö � # � � Ó à� � # � � õ ó ��� 6ô ¶ õ ®

�

LH and RH decays are different becuase ø � f ø � in the config we found

£hø Á� Ò � � � Á � Â� à � ø �Ä �¢ � ø ®Ä �¢ � � Áà Ò � õ Á � ÅL � ¦� « É

� × D � «� � � � ¦ �L �� � f × D � «� � �� ¦ �L �� �

by O � �

.�

The BR is O � � 
 S
c.f SM O � � 
 B à

.�

Compare the decays in

«U «
vs single

« Ú

channels.
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Conclusions

�

We have found that the RS model can have good quark mass matrices without fine
tuning Yukawas�

It can accomodate symmtricall mass matrices if there is only one texture zero and
not more�

For asymmetrical conf

�� f ���

Tree level FCNC best probe in

« � �� ¾ M « g�

BR is O � � 
 S

makes it very exciting at the LHC�

Predicts RH decays are dominant.
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