Beyond Standard Model Higgs

Ling-Fong Li

Nov 2008

1 / 15

Outline

- Standard Model Higgs Particle
- Beyond Standard Model Higgs
- Higgs Particle as Partner of Guage Boson

Ling-Fong Li () Nov 2008 2 / 15

Standard Model Higgs Particle

Left-handed fermions

$$egin{aligned} I_{iL} = \left(egin{array}{c}
u_e \\ e \end{array}
ight)_L \left(egin{array}{c}
u_\mu \\ \mu \end{array}
ight)_L \left(egin{array}{c}
u_ au \\ t \end{array}
ight)_L, \qquad I_{iR} = e_R, \; \mu_R, \; au_R \end{aligned}$$
 $egin{array}{c} q_{iL} = \left(egin{array}{c} u' \\ d \end{array}
ight)_L \left(egin{array}{c} c' \\ s \end{array}
ight)_L \left(egin{array}{c} t' \\ b \end{array}
ight)_L, \qquad q_{iR} = u_R, \; c_R, \; t_R \; \cdots \end{aligned}$

Higgs Scalar

$$\phi=\left(egin{array}{c}\phi^0\ \phi^-\end{array}
ight)$$
 , $\qquad \langle\phi
angle=rac{1}{\sqrt{2}}\left(egin{array}{c}v\ 0\end{array}
ight)$, $\qquad v=2$ 46 Gev

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

Ling-Fong Li () Nov 2008 3 / 15

Important roles of Higgs scalar:

• Break the gauge symmetry: $SU\left(2\right) \times U\left(1\right) \rightarrow U\left(1\right)_{em}$ Only $h=\operatorname{Re}\phi^0$ left over after spontaneous symmetry breaking Gauge boson masses ratio

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

This is a property of Higgs in doublet.

Give fermion masses Yukawa coupling

$$L_Y = \left(f_{ij}\overline{I}_{iL}I_{jR}\phi + \cdots\right)$$

fermion mass matrices

$$m_{ij}=f_{ij}\frac{v}{2}$$
,

Diagonalization of $m_{ij} \Longrightarrow \text{Yukawa coupling conserves flavor \& magnitude is proportional to fermio mass} \Rightarrow \text{favor heavy particles}$

Ling-Fong Li () Nov 2008 4 / 15

Higgs mass-not determined by theory and data indicates

$$m_{H} > 114 \; Gev/c^{2}$$

Search for Higgs

LHC(Large Hadron Collider): 7 Tev on 7 Tev proton machine

• Production at hadron machine:

(i) Gluon fusion : $pp \rightarrow gg \rightarrow H + \cdots$,

(ii) V V fusion: $pp \rightarrow VV \rightarrow H + \cdots$,

 $\mbox{\it (iii)} \qquad \mbox{Association with V} \qquad \mbox{\it pp} \rightarrow \mbox{\it qq\prime} \rightarrow \mbox{\it VH} + \cdots.$

Decay of Higgs

2) Beyond Standard Model Higgs Motivations for extra Higgs:

- 1 Neutrino mass(Majorana mass)-leptonic number violation
- Supersymmetry
- Spontaneous CP violation
- Breaking of larger symmetries—
- Left-Right model
- Grand Unified Theory(GUT)
- Little Higgs
-

Ling-Fong Li () Nov 2008 7 / 15

Neutrino mass:

Leptons:

$$I_{aL} = \left(egin{array}{c} \mathcal{V}_a \\ I_a^- \end{array}
ight)_L \sim \left(\mathbf{2}, -rac{1}{2}
ight), \quad I_{aR}^- \sim \left(\mathbf{1}, -1
ight), \quad \phi = \left(egin{array}{c} \phi^0 \\ \phi^- \end{array}
ight) \sim \left(\mathbf{2}, -rac{1}{2}
ight)$$

leptonic bilinears:

$$\overline{I_a}_L I_{bR}^- \sim \left(\mathbf{2}, -\frac{1}{2}\right)$$
, usual doublet with lepton number L=0

$$\overline{I_{a}}_{L}^{c}I_{bL}\sim(\mathbf{1},-1)+(\mathbf{3},-1)$$
, triplet and singlet, L=2
 $\overline{I_{a}}_{R}^{c}I_{\overline{bR}}\sim(\mathbf{1},-2)$, doubley charged singlet, L=2

To get neutrino masses, we need lepton number violation. This can be achieved by trilinear coupling

φφh

where h is one of L=2 Higgs singlet or triplet.

4 D > 4 B >

Example : Zee model—singlet charged Higgs h +one additional doublet ϕ_2 Yukawa coupling

$$L_Y = f_{ab} \overline{I_a}_{iL}^c I_{bjL} \epsilon_{ij} h + h..c.$$

Note that h has 2 units of lepton number. To generate leptons number we need the trilinear coupling

$$L_{\phi} = \varepsilon_{ij}\phi_{1i}\phi_{2i}h + h.c.$$

Due to the antisymmetric nature of ε_{ij} we need 2 doublets of Higgs. The neutrino masses is generated through 1-loop diagram,

Ling-Fong Li () Nov 2008 9

Doubly charged singlet k^{++} can give rise to neutrino masses

and also contribute to nuclear $\beta\beta$ decays,

4□ > 4□ > 4 = > 4 = > = 90

10 / 15

 k^{++} can also contribute to many $\Delta L=2$ processes similar to nuclear etaeta decays,

Ling-Fong Li () Nov 2008 11 / 15

Supersymmetry:

Quarks:

$$q_{aL} = \left(egin{array}{c} u_a \ d_a \end{array}
ight)_L \sim \left(\mathbf{2}, -rac{1}{6}
ight), \qquad u_{aR} \sim \left(\mathbf{1}, rac{2}{3}
ight), \qquad d_{aR} \sim \left(\mathbf{1}, -rac{1}{3}
ight)$$

quarks bilinear

$$\overline{q}_{aL}u_{bR}\sim\left(\mathbf{2},\frac{1}{2}
ight)\sim\phi^{\dagger},\qquad \overline{q}_{aL}u_{aR}\sim\left(\mathbf{2},-\frac{1}{2}
ight)\sim\phi$$

But in supersymmetry ϕ and ϕ^{\dagger} belongs to two different chiral multiplets \Rightarrow two different doublets of Higgs-one gives masses to up-type of quarks and the other to down-type of quarks

After spontaneous symmetry breaking, 5 scalar particles left-over, 3 neutral and 2 charged

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

Ling-Fong Li () Nov 2008 12 / 15,

Spontaneous CP violation:(TD Lee 1973)

Two doublet of Higgs with vacuum expectation value

$$\phi_1 = \left(egin{array}{c} 0 \
ho_1 \end{array}
ight), \qquad \phi_2 = \left(egin{array}{c} 0 \
ho_2 \mathrm{e}^{i heta} \end{array}
ight)$$

The *CP* violation comes from the phase $e^{i\theta}$.

Problem: the Higgs couplings will not conserve flavors

Breaking larger symmetries:

Left-right symmetric model: spontaneous violation of parity

Grand unification theory: unifies strong, electroweak interactions

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ ___ 쒼٩♡

Higgs scalar as partner of gauge field in higher dimension

Abelian case

Field tensor:

$$F_{ab} = \partial_a A_b - \partial_b A_a, \qquad A_a = \left(A_0, \overrightarrow{A}, \phi\right)$$

The part which contains the scalar field ϕ is

$$F_{\mu 4} = \partial_{\mu} \phi - \partial_{4} A_{\mu}$$

There is no scalar field self interaction. This is true in any dimension.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ ___ 쒼٩♡

Non-Abelian case

(a) 5-dimension

Field tensor:

$$F_{CD}^a = \partial_C A_D^a - \partial_D A_C^a + igf^{abc} A_C^b A_D^c, \qquad A_C^a = \left(A_0^a, \stackrel{
ightarrow}{A}, \phi^a\right)$$

The part contains scalar fields is

$$F^a_{\mu 4} = \partial_\mu \phi^a - \partial_4 A^a_\mu + igf^{abc} A^b_\mu \phi^c$$

= $\partial_\mu \phi^a + gf^{abc} A^b_\mu \phi^c$ covariant derivative

where A_u^a is assumed to be independent of x_4 .

Again there is no self interaction of scalar field ϕ^a .

(b) 6-dimension
$$A_C^a = \left(A_0^a, \vec{A}^a, \phi_1^a, \phi_2^a\right)$$

$$F_{45}^a = \partial_4 \phi_1^a - \partial_5 \phi_2^a + g f^{abc} \phi_1^b \phi_2^c$$

Now we get scalar fields self interaction,

$$F_{45}^aF^{a45}\longrightarrow g^2f^{abc}f^{ade}\phi_1^b\phi_2^c\phi_1^d\phi_2^e$$

The quadratic term can come from the $\partial_4\phi_1^a-\partial_5\phi_2^a$ part of the field

Ling-Fong Li () Nov 2008 15 / 15