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Spacetime, geometry and
gravity

Puzzles in general relativity

m Black holes
4
4G

S




Black hole and singularity
theorem

+

¢+ Schwarzschild [1916]:

. , 2GM .
ds® = —(1 — \dt? +

o 1 —

1

GM dr? 4 12 [:GT'-QE + sin? Odg? )
T

e r = 2GM: horizon; r = 0: singularity.

Pattern Singularity Theorem:
If a spacetime of sufficient differentiability satisfies

e a condition on the curvature

e a causality condition
e and an appropriate initial and/or boundary condition

then there are null or timelike inextensible incomplete geodesics.
= Singularities are unavoidable in GR.

¢ GR can not be complete! It predicts its own breakdown.




Spacetime, geometry and
gravity

m Cosmology

Big bang
Singularity :




Black hole thermodynamics

4 Hawking (1972): the area of the event horizon of a black hole cannot
decrease.

4 Bekenstein (1973): associate an entropy to a black hole

.':"1‘E’H — |'EI"_._1

Hawking (1975): black hole temperature 7" = —+,

1
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What are the microscopic degrees of freedom responsible for this
entropy?

What are the higher order corrections to the Benkenstein-Hawking
entropy formula?
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There are a number of similarities between black-hole physics and thermodynamics.
Most striking is the similarity in the behaviors of black-hole area and of entropy: Both
quantities tend to increase irreversibly. In this paper we make this similarity the basis of
a thermodynamic approach to black-hole physics. After a brief review of the elements of
the theory of information, we discuss black-hole physics from the point of view of informa-
tion theory. We show that it is natural to introduce the concept of black-hole entropy as the
measure of information about a black-hole interior which is inaccessible to an exterior
ohgerver. Considerations of simplicity and consistency, and dimensional arguments indi-
cate that the black-hole entropy is equal to the ratio of the black-hole area to the square of
the Planck length times a dimensionless constant of order unity. A different approach
making use of the specific properties of Kerr black holes and of concepts from information
theory leads to the same conclusion, and suggests a definite value for the constant. The
physical content of the concept of black-hole entropy derives from the following generalized
version of the second law: When common entropy goes down a black hole, the commaon
entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity
of this version of the second law is supported by an argument from information theory as
well as by several examples.




Quantum statistical mechanics

+

e In quantum statistical mechanics the mean value of some dynamical variable f(q)
can be expressed in the form

1 .
<fe=- ; | / b5 (0) f(@)¢r(g)e=PE dg

where ¢ (g) is the stationary state eigenfunction with Hop = Eog. 3 = (1/T)
is the inverse temperature and Z(/3) is the partition function.

e The quantum mechanical kernel giving the probability amplitude for the system to go
from the state g at time £ = 0 to the state ¢’ at time ¢ is given by

K(q' t:q,0) = > ¢5(d)¢p(q)e "
E

e [he thermal average can be obtained by

1 .
< [ >= - /l:-hj' K(g.—i3;q,0)f(q)

with the following:
(i) Analytically continuation to imaginary time with it = 7.

(ii) Periodicity in the imaginary time 7 with period 3.




Horizon and Temperature

T

Spacetimes with horizons possess a natural analytic continuation from Minkowski
signature to the Euclidean signature with t — 7 = it.

If the metric is periodic in 7, then one can associate a natural notion of a
temperature to such spacetimes.

e Consider a metric of the form
dr?

f(r)

where n’Lﬁ_ : transverse 2-dimensional metric, f(r) has a simple zero at r = ry.

ds® = f(r)dt? — — dL?

e Near r = ry, f(r) = B(r —ry) where B = f'(rg).

e Since goo ~ (1 4+ 2¢x ) in the Newtonian limit, the surface gravity
, 1 1 1 1 ., . 1
k= |on(ra)| = 3|HBD{T'HJ| = 3|fILT'HJ| = 5|B|

e Shifting to the coordinate £ = [2k 1 (r — rg)]*/? the metric near the horizon
becomes

ds? = k2&23dt2 — de? — thi



Horizon and Temperature

The Euclidean continuation t — 7 = if now leads to the metric

—ds® = E2d(kt)? + d€* + dLA

which is essentially the metric in the polar coordinates in the 7 — £ plane.

For this metric to be well defined near the origin, k7 should behave like an angular

coordinate # with periodicity 2.

Therefore, we require all well defined physical quantities defined in this spacetime

to have a periodicity in 7 with the period (27/|x|).

Thus, all metrics of the form with sim ple zero for f(r) leads to a horizon with

temperature T = |k|/27 f4m

e In the case of de Sitter spa{:etime. this gives T = (H /27) where H is the Hubble
constant.

e For the Schwarzschild metric, this gives T' = (1/87 M) where M is the mass
of the black hole.




Horizon and Entropy

T

The partition function for this set of metrics & is given by the path integral sum

1
Z(B) =) exp(—Ag(g)) =) exp (— I~ [ / VIeRE([f(r 1‘])

ges ges

where Einstein action has been continued in the Euclidean sector and we have
imposed the periodicity in 7 with period 3 = 47/

e Using R =V2f —(2/r?)(d/dr) [r(1 — f)] valid for metrics of the particular form,

; b
—Ap = If / dr [—[r*f'] +2[r(1 - )] = If[uEB — 2a] + Q[f(b), f(b)]

where we have used the conditions [f(a) = 0, f'(a) = B].

e Using 5 = 47 /B the final result can be written as:
1 o 1 . X
Z(3) = Zyexp IL'—l’.'TH ) = B(5)| o< exp [S(a) — FE(a)]
with the identifications for the entropy and energy being given by:

1 1 1 Anori vz
S = EL.-_];,?,—”E::I = Ifllmrizon:. E = H“ = (%)

)



Einstein field equation : A theory of space, time and Matter

Spacetime is curved

1 due to the gravitational
— action of matter
R, - ERg’”’ = kTW
Geometry of Matter
space time
= - =
Quantization Quantization
— < L

Quantum Gravity? ‘ QM,QED,QCD... ‘




Sketch of canonical
quantization

¢ Pick a Poisson algebra of classical quantities.

4 Represent these quantities as quantum operators acting on
a space of quantum states.

¢ Implement any constraint you may have as a quantum

operator equation and solve for the physical states.
4 Construct an inner product on physical states.

¢ Develop a semiclassical approximation and compute
expectation values of physical quantities.




Brief history of loop guantum
gravity

m 1920, Einstein-Cartan Theory

Metric » Connection

1960, Roger Penrose
Spin networks

m 1986 > Abhay Ashtekar
Complex new variables

m 1990 > Carlo Rovelli, Lee Smolin
Loop representation, Spin networks -
guantum geometry




Canonical analysis in ADM

variable

‘ € Einstein-Hilbert action [in metric variables]

1 : Y & !
Igw] = 160 /fﬁ-f'xf—m R — 2A)
4+ ADM Dea:(:»mpc;mitimt introduce a foliation of spacetime M = X x R

® guv — qab, Na @ shift function, N: laspe function.

2 - .
o ds* = g,dxtda —N2(dz®)? + gup(da® + N%dz®)(dz® + N°d2?)
g = q“{"mr“‘?\’rh — N? gaN° gtV — —1_’.-*"-“5,-”3 Na /N2

Y ‘-}uflﬂ\‘rh Gab s ‘?.,*."f:'ll;,f"?.,*."i uh :\,\‘"u ‘.,k fl ‘.,'r 2

4 After performing the Legendra transformation:

/fff/(f 2 [7™Gap — H]

—ab __ ab - _aby . - -
e T = —“ﬂ( (K" — Kg®) : momenta canonically conjugate to ¢,

Kay = 55 (—0oqap + VaNy + Vi, N,) @ extrinsic curvature.

b
_‘rl:{jﬂb n'l. g _\ ] _




Canonical analysis in ADM
variable

+

7 j— - _— - 3 . . . ..
H{qﬂ-b' ’Tﬂj' -\' s -\' ) = -\- q.f‘ir.-_- '::Urn.b. Tfﬂb} —+ }‘- L‘Ir {ﬂru.h- ;Tﬂh )

e Super-momentum constraint: H,(qa. 7°) = — lﬁiﬁ;vbrﬂ
e Super-Hamiltonian constraint:

81G ‘a0 .
pr— ( Jaedhd + Jadbe — Qabed ] “h fd \: ,-':R': (j] — 241 |
V4 167G

€ Degrees of freedom of GR in 4D:

6 pairs (gqp. ™) subject to 4 constraints = 2 FIELD d.o.f.
4 The Poisson brackets are

JIE’ I: {Iftfh :_Tf-:,fl ]

{;.‘f‘b{.r}.g,m_r_liyjl} lbm} rsu”'*'-’ ),

19ab( ). gealy) | {rr“‘b (), ”‘!f y) b =0

4 Phase space variables: (¢g,p. 7°7)



Canonical Quantization of GR

Does not require background spacetime (background independence)

4 Can be used for strong and weak GR fields.

4 Conjugate variables:

[qap(T). 7)Y pB. =

I\b|l—'

—|— r“rb .r‘.f Elr}jli! — E,.FJ

4 Canonical Quantization :

{ 1 }PB — F[ ]: Gab — {f'ﬂb- }.—L—ﬂ'b _ ﬁ_u.h

€ Metric representation: Wavefunction W|q.s]

* fju—bl]:’i[qﬂ-b] — ‘-r_fahllj [‘-r_fah] ; Hﬂb]‘]}[qmﬁ] — ﬁdq ) I[qﬂb]

4 Constraints (First Class) (Dirac Quantization):

Hﬂ_lif_'f,&h fTLE |l]:j[(jrtlb] Hﬂ-{(jﬂ-b il ¢ 5q l I [qﬂb] =0

= Vgl = VUlqas] if qap is related to ¢, by a 3-dimensional
diffeomorphism




Canonical Quantization of GR

+ < V[G]. 3-geometry G € SUPERSPACE:
Space of all 3-geometries (equivalence class of 3-metrics) ¢, ~ Gab
iff they are related by 3-dim. general coordinate transformation.
4 Constraint Algebras (Classical):
(Definition: H,[N?] = [, N*(Z)H,(7)d*>» X= Cauchy surface)

e Dirac Algebra (explicitly with (g.;. 7**) conjugate pair and Einstein’s
theory)

(H[N), B[ M)} pp. = —H(LgM)"]
AN H[M]}pp = —H[(LgM)]
HINL,HM]}pp. = —Hal(¢®(NOyM — MdpN))

{ a

4 Quantum super-Hamiltonian Constraint: Wheeler-DeWitt Equation

) A _
"G abed=—— + Va(R(q) — 2A)]"¥[G] =0
OGab OGcd




Canonical Quantization of
GR

S8mG

- —y 8 ) ) .
SupermEtrl{: (-Tabc'd — W(Q(wgbuf + Jadbe — Q(:b(f{'d)-

Symbolically,

(52
— T (R(q) — 2A)|W[G] =0

o+ (R

4 Technical issues:

Ordering, Regularization, Anomalies, Explicit Solutions, of
Wheeler-DeWitt Equation.

4 Important conceptual issues: Where/what is physical "time" in
Quantum Gravity?

e Note: 2" is not "time". Theory is reparametrization invariant.

H does not generate "time” translation: exp (_f;ﬂH)llJ[g] = U[g].

¢ B. S. DeWitt [Phys. Rev. 160, 1113 (1967)]:



The triad formulation

To

To use a triad (a set of 3 1-forms at each point in X)

1 J‘
Hab — €4 E»{}U‘

e Densitized triad: E¢ = 1e®¢¢;jre] ek

e Additional 3 (Gauss) constraints: G (E¢, KJ) = e EY Ky =

<4 With new variables, the action of GR becomes

i A ¥ S B

I[E® KJ,N,, N, N dt. 2 [E° K"
—N"H,(E®, K?) — NH( E;. Ki) — TN G (B2, KI))

1

The sympletic structure now becomes
{E‘;llf . jlbl 1 |} Q{r(r'iﬂ.r";;(";l;.f’. ij.l.
{E‘;F(.;»J_E;L;;j} T (2), Ki(y)} =0




The Ashtekar-Barbero

connection variables

+

4 There is a natural so(3)-connection (spin-connection 1'%) that defines
the notion of covariant derivative compatible with the dreibein

U[q.r‘é] + f—"é'ﬂl,l_‘{ﬂ_('; = ()

e Ashtekar-Barbero variable: .2

N T e
i'u T ru- _|_ lr.’“-.’r,
e - : Immirzi parameter, v € R — {0}.

<4 \With the connection variables, the action becomes

ch‘ fs"'j.r'[E;‘:ii

I[BY, AL, Na, N, N7] = =

—N°H,y(Ej, A]) — .\*f-f{Eﬂ Al) — N 'Gyi(Ef, AL

L1

o H, |E”’.4—1J|—E“ngb—d—i—‘g“ﬂ =0

1/

_ . Eap?t
7 a Iy iP5 (] ko 21 -;H
o H(EF Aj) = wdmﬁlu L FE (1 + ﬂ[aﬂz] ) =0

o (,(E* Al) = D,E* =0



The Ashtekar-Barbero

connection variables

e where !, = 0, Al — 0, A’ + F";ﬂ,ﬂﬂ_ﬂé’ and

a __ 9 (L -k AF a
DﬂEi — "r"htl-E-é. + 'L-i._j "_ltl-Ek

4 The Poisson bracket of the new variables are

Bl AT\l . R KA ST S o)
. a g o - e AL - ; a . .
ES(x), Ap(y) By oy 050(x, )
1ES (x), Ebl(y)} = {Ai(x), Ai(y)} =0

4 Phase space variables: (A!. E?)

4 Series of (Canonical) transformations:
. (Gab. ;T“hj
— (€eqi. ™)+ 3 gauge constraints (Gauss' Law)
— (E¢, K!)+ Gauss' Law
— (E*, A’ =17 —iK!)+ Gauss' Law (Ashtekar Variable)
— (E*, A =T" +~+vK!)+ Gauss' Law (Ashtekar-Barbero Variable)
(related discussion: C.H.C, R.H. Tung, H. L. Yu, PRD 72, 064016 (2005))



Conceptual Breakthroughs

4 Distinction between geometrodynamics and gauge

dynamics is bridged. Identify £% as the momentum

conjugate to the gauge potential A’;

= (E£¢, Al) phase space identical to Yang-Mills Theory.

4 Quantum States can be wavefunctions in A-representation

U[A], with B¢ = (325") % All manipulations done on

gauge variables.




Technical Breakthroughs

Constraints much simpler:

Exact solution found (e.g. Chern-Simons state, in field theory variables)

Loop variables: Wilson loops: holonomy elements.
e Gauss's constraint solved by W[Wilson loops in A] ;

e H, = 0 solved by W[knot classes of Wilson loops in A].

4 Super-Hamiltonian constraint still difficult, but can be made

well-defined:
e Volume V' and area A operators : well-defined operators acting on

loop and spin network states and have discrete spectra.

Derivation of horizon entropy, both for black hole and cosmological

horizons.
e Black hole evaporation via transition from higher A states to lower

A states.



Technical Breakthroughs

‘ e Matching Bekenstein-Hawking entropy formula for large black holes
A Y >

kpln N = Sy ~ J’ZBI; A > 'Fp'

il
including quantum logarithmic correction when A4 is small,

A, 1, A
Spr = kp(—=
2BH "FBL_”‘;J ) —H‘E

(related discussion: C.H.C, Y. Ling, C. Soo, H. L. Yu, PLB 637, 12 (2000))

4 Resolution of big-bang singularity, curvature bounded and

not divergent. (Bojowald)

4 Addressing black hole singularity (Ashtekar and Bojowald):

Minisuperspace (spherical symmetric) investigation.
(related discussion: C.H.C, C. Soo, H. L. Yu, PRD 76, 084004 (2007))



The construction of LQG

4 Holonomy:

UlA,~](s) = Pexp / A =Pexp / ds~" A ” (v(s))T;

Ea
s .r

% The key idea of LQG is to choose the loop states as the
basis states for quantum gravity

U, (A) =TrU[A,~](s)

4 The spin network state Wg(A): a cylindrical function fg
associated to spin network .S whose graph is I

Us(A) =Vr . (A) = fs(UA, M), ..., UA, y))




Spin networks and guantum
geometry

e Spin networks
e Quantum states of gravitational field:
Spin network states

[T Vi)

1,3
= _11,_,21---
’T 272

‘n,l,m>




Quantization of Area

< Rovelli and Smolin (1994); Ashtekar, Lewandowski et al
(1995): given a surface

PR ’ Ilu"ll . L 12
A(S) = / \/ "a EnyEbd o
JS Y

4 [ he quantum area spectrum is

A(S)IS) =87y > Vir(p + 1)|S)
P

e [ he result is topological and background independent.
e [ he spectrum of the operator is discrete.

e [he spin of the lines of a spin network can be viewed as

""quanta of area.



Discreteness of guantum
geometry

m Area spectrum

L)

AS) =] do?[det(%h)

= [, do* JE,E"n (o), (o)

AS)|T, j) =8yl 2\[j(i+D|T, /)

Dim(j)=2j+1









Discreteness of guantum
geometry

m Microscopic version of space




Discrete horizons from
guantum geometry

m The most probable distribution

{jmin’jmin""’jmin}

m The area of discrete horizon

A(j) =
N87Z7/lp2\/jmin (jmin +1)




Statistical entropy of black
holes

m Bekenstein-Hawking entropy

A

S =
4G

S=In(# of microstates)

4=(4)



Quantum Black Holes

T

In LQG the area of a surface in quantized:

A(j) =8myv3(G + 1)

where ~ is the Immirzi parameter.

¢ The dimension of the boundary Hilbert space is
[T (25: + 1)
4 With the lowest possible spin j,,;, dominate assumption,
the entropy S = N In(27,,:, + 1),
A A

A ( Jmin ) S T \/f min (J? i -+ 1 )

Aln(27,in + 1)
}Tﬁf’: \/‘?-m.-i-r?. (j min + }




Quantum Black Holes

4 |f we require this to be consistent with
Berkenstein-Hawking formula S = £, we get

y  —

~ In2




Correspondence Principle and

Area spectrum of black hole

+

) 2

Bohr's Correspondence Principle (1923): an oscillatory
frequency of a classical system should be equal to a
transition frequency of the corresponding quantum system

hln 3

AM = hwony = S

4 Since A = 167M?, we have AA =327 MAM = 4h1n 3,
4dhln3 =AA=A (f -m.é.n) — SWT \/j-m?'.n (j-m.-i-n. —+ l)

In 3
27 \/ j—;rn.-i-rl (:j.'rn.-i-r?. + J-}

-~ —

it 7 — 1 . _ In3
it Jmin =3, 7= 17
L J |f J’IJ.”_I;II:. — J = In3

(o] |

2TV -



Correspondence Principle and
Area spectrum of black hole

4 Hence 4,,;, = 1 is the only value which is consistent with
e Area Spectrum
e Black Hole entropy

e Quasi-normal mode of black hole

4 This implies the gauge group of LQG is SO(3)!



Estimate of the Immirzi
parameter

4 Domagala and Lewandowski (2004): Taking the higher
spin into account, the configurations should be governed

by sequences labelled by

A - :
Z VImd(lmi]|+1) < a= > Z m; = 0:

with m; € —j3;,,—7: + 1,...,7; and 3, € N/2.
4 Meissner (2004): the number of states for a given area is
given by
Cy

N(a) = —=—==¢




Estimate of the Immirzi
parameter

4 The black hole entropy is consequently

M\ A ('
S =InN(a)= 1l}1—-m At In——es

I i

e By matching this to the Bekenstein-Hawking entropy
formula for large black holes, v = ~

e [ he coefficient of logarithmic correction to the
Bekenstein-Hawking entropy formula is —<.




Values of the Immirzi
parameter in SU2)

<4 Meissner (2004

1 = .;):f—'"‘alﬂ—.-_;. CY A N\ j'lj—|—l|']'

<4 Ghosh and Mitra (2005): ~a

1 = E {)j—|—l}f—-11}1—:__,. YA \/ J.f{J.ur—I—lI'}

<4 Tamaki and Nomura (2005): ~as

27 +1

1= ) 2| | exp(—27ya V7 (7 + 1))

. N
I€T

=




Effective gauge group of LQG

+

$

The dimension of the representation space is dependent
upon the global structure of the gauge group. One needs
to examine the full physical contents of the theory to
determine the actual gauge group.

4 A Lie algebra valued connection 1-form always transforms
according to the adjoint representation of the gauge group:

A'=gAg ' +igdg" ;

4 Since the center of the group, €', commutes with all
elements of the Lie algebra, as far as gauge potentials are
concerned, the effective gauge group is not G but G/ C".

4 The gauge group of SU(N) pure Yang-Mills theory in
NOT SU(N) but SU(N)/Zn.




Effective gauge group of LQG

4~,

4 Same conclusion for the quantum theory with loop
variables.

—

Yy
g()P exp(ﬁ/ A)g (T

—

r p

where both ¢(7) and ¢ '(Z) are effectively elements of
G/Cie SO(3) (or SO(3,C)).

The configuration space is the space of SO(3) gauge
connections modulo the action of SO(3) gauge group, and
it is faithfully parametrized by holonomy elements of
SO(3) connections with integer spin representations,
rather than SU(2) holonomies which include half-integer
spin representations.




New estimate of the Immirzi
parameter

m Chou, Lin, Soo, Yu:
e [ he expression for the number of states
o C) Yrvnra
N(a) = M ?mma
o \/ A Byra Sapa
remains the same.

e [he new Immirzi parameter is ~,;, = 0.170...

_ 27+ 1 o ——
1 = Z 2[———]exp(—2mymv3(J + 1))

=

JeEN
e [ he coefficient of logarithmic correction to the

Bekenstein-Hawking entropy formula is —=.




Quantum black hole in SUGRA

T

In loop quantization of /N = 1 supergravity

R | 1 N
AsvcralJ) = 87y \/ JJ+3), Jeo

and the degeneracy of state D(.J) = 4. + 1.
4 One finds that

o

Asvcral(y)




Quantum black hole in SUGRA

Jexp(=2m(2) /(7 + 1)

jeN

4 The result for the SUGRA case will be the same as for the
case of SO(3) but with the Immirzi parameter ~ = 2~

£7750(3)-
4 Note that this relation between the Immirzi parameters

produces exactly the same area spectrum for both pure

LQG without supersymmetry and its supersymmetric
extension.




Summary

4 The effective gauge group for pure four-dimensional LQG is
SO(3) (or SO(3,C")) instead of SU(2) (or SL(2,C)).

4 Our observations imply a new value of v ~ 0.170 for the
Immirzi parameter.

4 The results of both pure LQG and the SUSY extension of
LQG can be made compatible and v = 27503 -

4 The —5 coefficient of logarithmic correction to the
Bekenstein-Hawking entropy formula is robust.

C.H. Chou, Y. Ling, C. Soo and H.L. Yu, Phys. Lett. B637,12
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