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deSitter Spacetime

Solution of Einstein’s equations with a positive 
cosmological constant

Global deSitter spacetime is maximally symmetric
10 Killing vectors in 4 dimensions,

Same as Minkowski spacetime

A portion of deSitter spacetime describes 
inflationary expansion

ds2 = −dt2 + a(t)2 (dx2 + dy2 + dz2)

a(t) = eHt



Why is the stability of deSitter space important?

Instabilities might alter the predictions of 
inflationary models.

Instabilities might lead to a natural resolution 
of the cosmological constant problem.

decaying cosmological constant models

e.g., Dolgov, Barr, LF, ect



Part I: Gravitons in deSitter Spacetime
quantize linear perturbations -
active fluctuations of geometry

Write gµν = γµν + hµν

background (deSitter) metric metric perturbation -
tensor modes

Impose the transverse tracefree (TT) gauge:

hµν
;ν = 0 h = hµ

µ = 0 hµν uµ = 0

covariant derivative on the 
background

a timelike vector; here the
comoving obverver 4-velocity



Result: tensor modes behave as massless scalars
Lifshitz 1946

!S hµ
ν = 0

scalar wave operator

Consequences:
deSitter space is classically stable

gravitons are equivalent to a pair of massless 
scalar fields

!S ϕ = ϕ;ν
;ν = 0



Infrared divergences 

〈ϕ(x)ϕ(y)〉 is not defined in the deSitter invariant state 
(Bunch-Davies) vacuum, but can be defined in a 
class of states which break deSitter  symmetry

Linde, Starobinsky, Vilenkin & LF

Consequence: linear growth in comoving time

〈ϕ2〉 ∼ H3t

4π2

〈hµνhµν〉 ∼
H3t

2π2



Is this growth an instability of deSitter space?

One loop level:   No, gauge invariant quantities do 
not grow LF 1985

Two loop level:   Controversial

Tsamis & Woodard (1996) claim to find 
cosmological constant damping

Λeff = Λ(1− π−2 "4p H6 t2) Λ =3 H2

Planck length

This result disputed by others (Garriga & Tanaka)



An alternative model: gravitons coupled to photons

J.T. Hsiang, D.S. Lee, H.L. Yu & LF

Preliminaries: stress tensor renormalization in 
curved spacetime

〈Tµν〉 ∼ A
gµν

σ2
+ B

Gµν

σ
+

(
C1H

(1)
µν + C2H

(2)
µν

)
ln σ

Divergent parts: Einstein tensor
regulator 
parameter

H(1)
µν ≡

1√
−g

δ

δgµν

[√
−gR2

]
= 2∇ν∇µR− 2gµν∇ρ∇ρR− 1

2
gµνR2 + 2RRµν

H(2)
µν ≡

1√
−g

δ

δgµν

[√
−gRαβRαβ

]
= 2∇α∇νRα

µ −∇ρ∇ρRµν −
1
2
gµν∇ρ∇ρR− 1

2
gµνRαβRαβ + 2Rρ

µRρν

scalar curvature

Ricci tensor



Add      and           counterterms in the gravitational 
action and write Einstein’s equations as

R2 RαβRαβ

Gµν + Λ0gµν + α0H
(1)
µν + β0H

(2)
µν = 8πG0〈Tµν〉

Remove the divergent parts of
by a renormalization of

〈Tµν〉
G0, Λ0, α0, β0

We want the renormalized values of 
to avoid a fourth order equation.

α0, β0 = 0

In general,                 is not expressible in terms of 
geometric quantities.

〈Tµν〉ren



An exception: conformally invariant fields (e.g., photons) 
in a conformally flat spacetime (e.g. deSitter space).

(in the vacuum state)

〈Tµν〉ren = C BµνHere

where

Bµν =
1
2
RαβRαβ gµν +

2
3
RRµν −Rρ

µRρν −
1
4
R2 gµν

C =
31

1440π2 (photons)

Bunch, Davies, 
Brown & Cassidy

Bµ
µ != 0 conformal anomaly

In deSitter space,                          so just shifts〈Tµν〉ren ∝ gµν Λ



Our model:  assume that this form for 
holds in perturbed deSitter spacetime.

Self consistent:           is still a conserved tensor.Bµν

Key result: equation for the metric perturbations becomes

!S hµ
ν + 48π C "2p H4 hµ

ν = 0
tachyonic mass

〈Tµν〉ren

and has an exponentially growing solution:

Gauge invariant quantities, such as the Ricci tensor, also grow.

hµ
ν ∝ e16πC #2p H3 t



Time scale for the onset of the instability is

Planck energy

τ =
1

16πC #2p H3
≈ 104 E2

p

E2
I

H−1

Ep = energy scale of inflationEI =

Implications:
Allows adequate inflation to solve horizon & 

flatness problems

Does not allow for eternal inflation.



Part II: Quantum Stress Tensor Fluctuations in deSitter 
Spacetime

C.H. Wu, K.W. Ng & LF; also work in progress with 
S.P. Miao & R. Woodard

Basic idea look at the effects of fluctuations of the 
vacuum electromagnetic field stress tensor.



Stress tensor and expansion fluctuations

uα
= 4-velocity of a congruence of timelike geodesics

θ = uα
;α= expansion of the congruence

Raychaudhuri equation 

Rµν = 8π(Tµν −
1
2
gµνT )

 Ordinary matter: focussing 



θFluctuations FluctuationsTµν

Conservation law for a perfect fluid:

E.g., Robertson-Walker universe:

Stress tensor fluctuations imply density fluctuations

(Not necessarily for the same field)

ρ̇ + θ(ρ + p) = 0



Robertson-Walker Spacetime

dt = a(η)dη

dt =
dη =

comoving time

conformal time

Stress tensor correlation function

 Conformally invariant fields:

CRW
µναβ(x, x′) = a−4(η) a−4(η′) Cflat

µναβ(x, x′)

Cµναβ(x, x′) = 〈Tµν(x)Tαβ(x′)〉 − 〈Tµν(x)〉〈Tαβ(x′)〉
(conformal anomaly cancels)



θ fluctuations
Assume σµν = ωµν = 0, so that

dθ

dλ
= −Rµνuµuν − 1

3
θ2

Let θ = θ0 + θ1, where θ0 = 3ȧ/a, and
dθ1

dt
= − (Rµνuµuν)q −

2
3
θ0θ1

θ1(t) = −a−2(t)
∫ t

t0

dt′ a2(t′) (Rµνuµuν)q



Expansion correlation function:

〈θ(η1) θ(η2)〉 − 〈θ(η1)〉〈θ(η2)〉 =

a−2(η1) a−2(η2)
∫ η1

η0

dη a−1(η)
∫ η2

η0

dη′ a−1(η′) E(∆η, r)

E(∆η, r) = flat space energy density 
correlation function

Eem =
(r2 + 3∆η2)2

4π4(r2 −∆η2)6

Treat as distributions - integrate by parts

(8π)2×



Inflationary expansion followed by reheating 
and a radiation dominated universe

a(η) =
1

1−Hη
, η0 < η < 0,

a(t) = eH(t−tR) , t ≤ tR ,

tR = reheating time in comoving time

η0 = conformal time
when inflation begins

a(η) = 1 + H η, η > 0,

a(t) =
√

1 + 2H(t− tR), t ≥ tR.



Effect of expansion  fluctuations on 
redshifting after reheating

p = wρ

〈(
δρ

ρ

)2
〉

= (1 + w)2
∫ ηs

0
dη1a(η1)

∫ ηs

0
dη2a(η2)

(〈θ(η1) θ(η2)〉 − 〈θ(η1)〉〈θ(η2)〉)

Let and integrate the conservation law 
to find the density fluctuations:

ηs = conformal time of last scattering

Power spectrum of the density fluctuations:
〈(

δρ

ρ

)2
〉

=
∫

d3k ei!k·∆!x Pk(ηs)

(Non-Gaussian fluctuations)



Grow as the duration of inflation increases- a 
different instability of deSitter space.

Pk = −!4p(1 + w)2
k4 |η0|3

480π2
ln2[a(ηs)]

Result:

Pk ∝ |η0|3
!

!

Interpret the sign as telling us whether the density 
fluctuations on a given scale are correlated or 

anti-correlated.

Interpret as due to non-cancellation of anti-correlated 
fluctuations.θ



density perturbation:

δρ

ρ
∝ #2p

(
S

λ

)3/2

expansion factor during inflation

λ = length scale of the perturbation

a quantum gravity effect

Constraint on the duration of inflation:

δρ

ρ
< 10−4 S < 1037

(
1012GeV

ER

)5/3

S = H|η0| =

reheating energy



Allows enough inflation to solve the horizon and 
flatness problems

Opens the possibility of observing quantum gravity 
effects as a non-Gaussian, non-scale invariant 

component in the large scale structure.



Summary

5) When stress tensor fluctuations are included, 
there is also an inhomogeneous instability.

2) In pure quantum gravity, it is stable at the one loop level.

1) deSitter space is classically stable. 

3) This may not hold in higher orders?

4) In a simple model with gravitons + photons,  there 
is a homogeneous instablity. No eternal inflation.

6) The latter could produce observable features in 
large scale structure.


