Warped AdS/CFT Correspondence

Hsien-Chung Kao, NTNU

and

Wen-Yu Wen, NTU.

I.)AdS/CFT Correspondence

II.)AdS $_3$ /CFT $_2$ Correspondence

III.)Warped AdS_3/CFT_2 Correspondence

IV.)Discussions

AdS/CFT Correspondence

 $\mathcal{N} = 4$ SYM in 4D \simeq IIB String in $AdS_5 \times S^5$

 S^5 : $X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2 + X_6^2 = R^2$ in R^6

 $AdS_5: -X_{-1}^2 - X_0^2 + X_1^2 + X_2^2 + X_3^2 + X_4^2 = -R^2$ in $R^{2,4}$

•	N=4 SYM	Conformal Sym. in 4D: $SO(4,2)$	<i>R</i> -sym.: <i>SU</i> (4)
	IIB String	Isometry in AdS_5 : $SO(4,2)$	Isometry in S^5 : $SO(6)$

't Hooft coupling: $\lambda = g_{YM}^2 N = g_s N$, $R = (4\pi g_s N)^{1/4} l_s \sim \lambda^{1/4} l_{pl}$

 g_s : string coupling, $2\pi l_s^2$: inverse string tension.

For $\lambda \gg 1, R \gg l_{pl}$, SUGRA limit.

- The holographic principle.
- CFT calculation of BH entropy, BH greybody factor.
- PP wave limit.

Let $X_{-1} = R \cosh \rho \cos \tau$, $X_0 = R \cosh \rho \sin \tau$, $X_1 = R \sinh \rho \sin \theta_1 \sin \theta_2 \cos \phi$, $X_2 = R \sinh \rho \sin \theta_1 \sin \theta_2 \sin \phi$, (1) $X_3 = R \sinh \rho \sin \theta_1 \cos \theta_2$, $X_4 = R \sinh \rho \cos \theta_1$.

Global coordinate: $ds^2 = R^2 \left[-\cosh^2 \rho d\tau^2 + d\rho^2 + \sinh^2 \rho d\Omega_3^2 \right]$ (2)

Figure 1. Penrose diagram and the AdS boundary $(S^3 \times R)$.

Define $dx = d\rho/\cosh\rho$, $\tan(x/2) = \tanh(\rho/2)$, $\rho \to \infty \sim x = \pi/2$. $\Rightarrow -\cosh^2\rho d\tau^2 + d\rho^2 = \sec^2 x(-d\tau^2 + dr^2)$.

Let
$$X_{-1} + X_4 = R/z$$
, $X_\mu = Rx_\mu/z$ for $\mu = 0, \dots 3$.
Poincare coordinate: $ds^2 = R^2 \left(\frac{-dx_0^2 + dx_1^2 + dx_2^2 + dx_3^2 + dz^2}{z^2} \right)$ (3)
R⁴
Boundary
 $Z = 0$
Figure 2. AdS boundary: $S^3 \times R$.

States of CFT on S^3 = Operators of Euclidean CFT on R^4

$$\mathcal{Z}_{bulk}\left[\phi(\vec{x},z)|_{z=0} = \phi_0(\vec{x})\right] = \langle e^{\int d^4 x \phi_0(\vec{x}) \mathcal{O}(\vec{x})} \rangle_{\text{Field Theory}}$$
(4)

Scalar field of mass *m*:
$$S = N^2 \int \frac{dx^4 dz}{z^5} [z^2 (\partial \phi)^2 + m^2 R^2 \phi^2]$$
 (5)

$$\Rightarrow z^{3}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}\phi\right) - p^{2}\phi - \frac{m^{2}R^{2}}{z^{2}}\phi = 0$$
(6)

$$\phi = z^2 \left[A_+ I_\nu(pz) + A_- K_\nu(pz) \right], \text{ with } \nu = \sqrt{4 + m^2 R^2}.$$
 (7)

Near
$$z = 0, \ \phi \sim B_+ z^{2+\nu} + B_- z^{2-\nu}$$
. (8)

Boundary condition: $\phi(x,z)|_{z=\epsilon} = \epsilon^{2-\nu}\phi_0^r(x)$, $\phi_0^r(x)$ fixed for $\epsilon \to 0$.

The rescaling $x_{\mu}
ightarrow \lambda x_{\mu}, \ z
ightarrow \lambda z$ is a isometry in AdS,

 ϕ does not get rescaled, ϕ_0^r has dimension $2 - \nu$,

 \Rightarrow the correponding operator *O* has dimension $\Delta \equiv 2 + \nu$.

Bulk Green function in AdS_5 : $G_{\Delta}(z, x^{\mu}, x'^{\mu}) = \frac{z^{\Delta}}{[(x - x')^2 + z^2]^{\Delta}}$ (9)

Figure 4. Three point functions.

With a cubic term in the action,

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \rangle \sim \int \frac{d^4 x dz}{z^5} G_\Delta(z, x, x_1) G_\Delta(z, x, x_2) G_\Delta(z, x, x_3).$$
 (10)

 $\begin{cases} 0 > m^2 R^2 \ge -4, \ 2 - \nu < 0, \ \phi \text{ induces relevant pertubation;} \\ m^2 R^2 > 0, \qquad 2 - \nu > 0, \ \phi \text{ induces irrelevant pertubation.} \\ \begin{cases} (E_{\mathsf{FT}}) = \frac{1}{z} (E_{\mathsf{proper}}); \\ (\operatorname{size})_{\mathsf{FT}} = z (\operatorname{proper size}). \end{cases} \begin{cases} z \to 0 \sim \operatorname{spatial infinity, \ UV;} \\ z \to \infty \sim \operatorname{horizon, \ IR.} \end{cases}$

IR/UV Correspondence: UV in field theory \sim IR in gravity .

Blackhole \Rightarrow Hawking temperature $(T_H) \Rightarrow$ thermal effect. Simplest black hole in Poicare coordinate (S^5 supressed):

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-\left(1 - \frac{z^{4}}{z_{0}^{4}}\right) dt^{2} + d\vec{x}^{2} + \left(1 - \frac{z^{4}}{z_{0}^{4}}\right)^{-1} dz^{2} \right].$$
 (11)

For
$$z \simeq z_0$$
, $ds^2 \propto \left[-16 \left(1 - \frac{z}{z_0} \right)^2 dt^2 + dz^2 + \dots \right]$. (12)

Period in imaginary time: $\beta = \pi z_0/2$.

Bekenstein Hawking entropy: $S_{BH} = \frac{(\text{Area})}{4G_N} \Rightarrow \frac{S_{BH}}{V} = \frac{\pi^2}{2}N^2T^3$. (13)

Weakly coupled field theory entropy: $\frac{S_{FT}}{V} = \frac{4\pi^2}{32}N^2T^3$. (14)

Figure 5. Field theory entropy vs. Bekenstein Hawking entropy.

 g^2N correction to S_{FT} and R^4 to S_{BH} go in the right direction.

AdS_3/CFT_2 Correspondence

CFT interpretation of **BH** QMN

The BTZ blackhole (R = 1), part of SUGRA:

$$ds^{2} = -\left[\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{r^{2}}\right]dt^{2} + \left[\frac{r^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}\right]dr^{2} + r^{2}\left[d\theta - \frac{r_{+}r_{-}}{r^{2}}dt\right]^{2}.(15)$$

$$M = (r_{+}^{2} + r_{-}^{2}), \ J = 2r_{+}r_{-}.$$

$$T_{H} = (r_{+}^{2} - r_{-}^{2})/(2\pi r_{+}), \ \mathcal{A}_{H} = 2\pi r_{+}, \ \Omega_{H} = J/(2r_{+}^{2}).$$
Locally equivalent to AdS_{3} :

$$ds^{2} = -\sinh^{2}\mu(r_{+}dt - r_{-}d\phi)^{2} + d\mu^{2} + \cosh^{2}\mu(r_{+}d\phi - r_{-}dt)^{2}.$$
 (16)

The dual CFT on the boundary is (1+1)-D.

Two independent copies of CFT with

$$T_L = (r_+ - r_-)/(2\pi), \ T_R = (r_+ + r_-)/(2\pi), \ 1/T_L + 1/T_R = 2/T_H.$$

Operators O in (1+1)-D CFT are characterized by

the conformal weights: (h_L, h_R) :

$$h_L + h_R = \Delta, \quad h_R - h_L = \pm s.$$
 (17)
Scalar: $\Delta = \sqrt{1 + m^2};$
Spinor and vector: $\Delta = 1 + |m|.$

Retarded Green function: $D_{\text{ret}}(x, x') = i\theta(t - t') \langle [\mathcal{O}(x), \mathcal{O}(x')] \rangle_T$, (18)

$$= i\theta(t-t')\bar{\mathcal{D}}(x,x').$$

 $\overline{\mathcal{D}}(x,x') = \mathcal{D}_+(x,x') - \mathcal{D}_-(x,x'), \ x^{\pm} = t \pm \sigma.$

$$\mathcal{D}_{+}(x) = \frac{(\pi T_{R})^{2h_{R}}}{\sinh^{2h_{R}}(\pi T_{R}x^{-} - i\epsilon)} \frac{(\pi T_{L})^{2h_{L}}}{\sinh^{2h_{L}}(\pi T_{L}x^{+} - i\epsilon)};$$
(19)
$$\mathcal{D}_{-}(x) = \frac{(\pi T_{R})^{2h_{R}}}{\sinh^{2h_{R}}(\pi T_{R}x^{-} + i\epsilon)} \frac{(\pi T_{L})^{2h_{L}}}{\sinh^{2h_{L}}(\pi T_{L}x^{+} + i\epsilon)}.$$
(20)

With $k_{\pm} = (\omega \mp k)/2$, Fourier transform of $\overline{\mathcal{D}}(x)$: $\overline{\mathcal{D}}(k_{\pm}, k_{\pm}) = \Gamma\left(h_{L} + \frac{ik_{\pm}}{2\pi T_{L}}\right) \Gamma\left(h_{R} + \frac{ik_{\pm}}{2\pi T_{R}}\right) \Gamma\left(h_{L} - \frac{ik_{\pm}}{2\pi T_{L}}\right) \Gamma\left(h_{R} - \frac{ik_{\pm}}{2\pi T_{R}}\right).$ (21)

Two sets of poles in the lower complex plane of ω :

$$\omega_L = k - 4\pi i T_L(n + h_L); \quad \omega_R = -k - 4\pi i T_R(n + h_R).$$
(22)

 $n = 0, 1, 2, \dots$ They characterize they decay of the perturbation.

These poles coincide precisely with the QMN in the BTZ backgound!

Scalar perturbation satisfies $\left|\frac{1}{\sqrt{|g|}}\partial_{\mu}(\sqrt{|g|}g^{\mu\nu}\partial_{\nu}) - m^2\right|\Phi = 0.$

Let $\Phi = e^{-i(k_+x^+ + k_-x^-)} f(\mu), \ x^{\pm} = r_{\pm}t - r_{\mp}\phi, \ z = \tanh^2 \mu$,

$$(k_{+} + k_{-}) (r_{+} - r_{-}) = \omega - k; \quad (k_{+} - k_{-}) (r_{+} + r_{-}) = \omega + k.$$

$$z(1-z)\tilde{f}''(z) + (1-z)\tilde{f}'(z) + \left[\frac{k_{+}^{2}}{4z} - \frac{k_{-}^{2}}{4} - \frac{m^{2}}{4(1-z)}\right]\tilde{f}(z) = 0.$$
 (24)

(23)

$$\tilde{f}(z) = z^{\alpha} (1-z)^{\beta_s} {}_2F_1(a_s, b_s; c_s; z),$$

$$\alpha = -ik_+/2, \ \beta_s = \left(1 - \sqrt{1+m^2}\right)/2$$

$$a_s = -i(k_+ - k_-)/2 + \beta_s, \ b_s = -i(k_+ + k_-)/2 + \beta_s, \ c_s = 1 + 2\alpha.$$
(25)

QNM: vanishing Dirichlet condition at infinity.

Flux:
$$\mathcal{F} = \sqrt{g} \frac{1}{2i} \left(f^* \partial_\mu f - f \partial_\mu f^* \right) \propto \left| \frac{\Gamma(c_s) \Gamma(c_s - a_s - b_s)}{\Gamma(c_s - a_s) \Gamma(c_s - b_s)} \right|^2$$
. (26)

 ${\mathcal F}$ vanishes if

$$\begin{cases} c_s - a_s = -n \\ c_s - b_s = -n \end{cases} \Rightarrow i(k_+ \pm k_-)/2 = n + \left(1 + \sqrt{1 + m^2}\right)/2. \quad (27)$$

For spinors,

$$\beta_f = -(m+1/2)/2, \ c_f = 1/2 + 2\alpha.$$

 $a_f = -i(k_+ - k_-)/2 + \beta_f + 1/2, \ b_f = -i(k_+ + k_-)/2 + \beta_f.$

For vectors,

$$\beta_v = m/2, \ c_v = 1 + 2\alpha.$$

 $a_v = -i(k_+ - k_-)/2 + \beta_v, \ b_v = -i(k_+ + k_-)/2 + \beta_v.$

CFT interpretation of **BH** Greybody Factor

$$ds^{2} = -\left[\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{r^{2}}\right]dt^{2} + \left[\frac{r^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}\right]dr^{2} + r^{2}\left[d\theta - \frac{r_{+}r_{-}}{r^{2}}dt\right]^{2}.(28)$$

Consider massless scalar Φ . Let $\Phi = e^{-i\omega t + im\theta} R_{\omega,m}(r)$,

$$\partial_r^2 R_{\omega,m}(r) + \left[-\frac{1}{r} + \frac{2r}{r^2 - r_+^2} + \frac{2r}{r^2 - r_-^2} \right] \partial_r R_{\omega,m}(r) + \frac{r^4}{(r^2 - r_+^2)^2 (r^2 - r_+^2)^2} \left[\omega^2 - m^2 + \frac{Mm^2 - J\omega m}{r^2} \right] R_{\omega,m}(r) = 0.$$
(29)

Let
$$z = (r^2 - r_+^2)/(r^2 - r_-^2), \ A_1 = \left(\frac{\omega - m\Omega_H}{4\pi T_H}\right)^2, \ B_1 = -\left(\frac{\omega r_-^2 - m\Omega_H r_+^2}{4\pi T_H r_+ r_-}\right)^2$$

$$z(1-z)\tilde{R}''_{\omega,m}(z) + (1-z)\tilde{R}'_{\omega,m}(z) + \left[\frac{A_1}{z} + B_1\right]\tilde{R}_{\omega,m}(z) = 0.$$
(30)

 $z=0\sim$ horizon, $z\rightarrow\infty\sim$ spatial infinity.

In-going into BH at horizon:

$$\tilde{R}_{\omega,m}(z) = z^{\alpha} {}_{2}F_{1}(a,b;c;z), \ \alpha = i\sqrt{A_{1}},$$

 $a + b = 2\alpha, \ ab = -A_{1} - B_{1}, \ c = 1 + 2\alpha.$ At horizon, $z = 0$,

Flux:
$$\mathcal{F} = 2\mathcal{A}_H(\omega - m\Omega_H).$$
 (31)

 $BTZ \sim AdS_3$, hard to tell in-coming from out-going.

$$R_{\omega,m}^{\text{in}} = A_i \left(1 - i \frac{c}{r^2} \right), \quad R_{\omega,m}^{\text{out}} = A_o \left(1 + i \frac{c}{r^2} \right).$$
(32)

$$\Rightarrow \mathcal{F}_{in} = 8\pi c |A_i|^2; \quad \sigma = \frac{\mathcal{F}}{\mathcal{F}_{in}}.$$
(33)

In low energy limit $\omega \to 0$, $\sigma_{abs} \simeq \frac{\sigma^{m=0}}{\omega} = \frac{\mathcal{A}_H}{\pi c} \frac{|\Gamma(a+1)\Gamma(b+1)|^2}{|\Gamma(a+b+1)|^2}$. (34)

Choose c so that $\sigma_{abs}|_{\omega=0} = \mathcal{A}_H$.

Decay rate:

$$\Gamma = \frac{\sigma_{\text{abs}}}{e^{\omega/T_H} - 1}$$

$$= 4\pi^2 \omega^{-1} T_L T_R e^{-\omega/(2T_H)} \left| \Gamma \left(1 + i \frac{\omega}{4\pi T_L} \right) \Gamma \left(1 + i \frac{\omega}{4\pi T_R} \right) \right|^2. \quad (35)$$
From CFT, $\Gamma = \int d\sigma^- e^{-i\omega(\sigma_- - i\epsilon)} \left[\frac{2T_L}{\sinh(2\pi T_L \sigma^-)} \right]^2$

$$\times \int d\sigma^+ e^{-i\omega(\sigma_+ - i\epsilon)} \left[\frac{2T_R}{\sinh(2\pi T_R \sigma^+)} \right]^2. \quad (36)$$

The result is identical to that obtained from the gravity side.

Warped AdS_3/CFT_2 Correspondence

Warped BTZ Black Hole

The warped BTZ black hole is a solution of TMG:

$$I_{TMG} = \frac{1}{16\pi G} \int_{\mathcal{M}} d^3x \sqrt{-g} \left(R + 2/\ell^2 \right) + \frac{\ell}{96\pi G\nu} \int_{\mathcal{M}} d^3x \sqrt{-g} \varepsilon^{\lambda\mu\nu} \Gamma^r_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}_{r\nu} + \frac{2}{3} \Gamma^{\sigma}_{\mu\tau} \Gamma^{\tau}_{\nu r} \right).$$
(37)
where $\varepsilon^{\tau\sigma u} = +1/\sqrt{-g}, \ \nu = \frac{m_g \ell}{3}$.

For $\nu = 1/3$, critical chiral gravity theory.

EOM:
$$G_{\mu\nu} - \frac{1}{\ell^2} g_{\mu\nu} + \frac{\ell}{3\nu} \varepsilon_{\mu}^{\ \alpha\beta} \nabla_{\alpha} \left(R_{\beta\nu} - \frac{1}{4} g_{\beta\nu} R \right) = 0.$$
 (38)

$$ds^{2} = -N^{2}(r)dt^{2} + \ell^{2}R^{2}(r)[d\theta + N_{\phi}(r)dt]^{2} + \frac{\ell^{4}dr^{2}}{4R^{2}(r)N^{2}(r)}, \quad (39)$$

$$R^{2}(r) \equiv \frac{r}{4} \left[3(\nu^{2} - 1)r + (\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\sqrt{r_{+}r_{-}(\nu^{2} + 3)} \right],$$

$$N^{2}(r) \equiv \frac{\ell^{2}(\nu^{2} + 3)(r - r_{+})(r - r_{-})}{4R^{2}}, \quad N_{\theta}(r) \equiv \frac{2\nu r - \sqrt{r_{+}r_{-}(\nu^{2} + 3)}}{2R^{2}}.$$

$$T_H = \frac{\nu^2 + 3}{4\pi} \left\{ \frac{r_+ - r_-}{2\nu r_+ - \sqrt{(\nu^2 + 3)r_+ r_-}} \right\}, \ \mathcal{A}_H = \pi \left\{ 2\nu r_+ - \sqrt{r_+ r_- (\nu^2 + 3)} \right\}.$$

 $\nu>$ 1, streched AdS_3 , $\nu=$ 1, BTZ limit,

 ν < 1, squashed AdS_3 , closed time-like curve.

 t, r, θ differnent from the BTZ case.

Warped AdS_3 (locally equvalent to warped BTZ):

$$ds^{2} = \frac{\ell^{2}}{\nu^{2} + 3} \left[-\cosh^{2}\sigma d\tau^{2} + d\sigma^{2} + \frac{4\nu^{2}}{\nu^{2} + 3} (du + \sinh\sigma d\tau)^{2} \right]. \quad (40)$$

Greybody Factor in Warped BTZ

Consider scalar Φ with mass μ . Let $\Phi = e^{-i\omega t + im\theta}\phi(r)$,

$$\frac{d^{2}\phi(r)}{dr^{2}} + \frac{2r - r_{+} - r_{-}}{(r - r_{+})(r - r_{-})}\frac{d\phi(r)}{dr} - \frac{(\alpha r^{2} + \beta r + \gamma)}{(r - r_{+})^{2}(r - r_{-})^{2}}\phi = 0, \qquad (41)$$

$$\alpha = -\frac{3\omega^{2}(\nu^{2} - 1)}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}}{\nu^{2} + 3}, \quad \gamma = -\frac{4m\left[m - \omega\sqrt{r_{+}r_{-}(\nu^{2} + 3)}\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}r_{+}r_{-}}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\mu^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\left[\omega^{2}\sqrt{r_{+}r_{-}(\nu^{2} + 3)} - 2m\omega\right]}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}\ell^{2}(r_{+} + r_{-})}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3}{\nu^{2} + 3}, \quad \beta = -\frac{\omega^{2}(\nu^{2} + 3)(r_{+} + r_{-})}{(\nu^{2} + 3)^{2}} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + 2}{\nu^{2} + 3} + \frac{\omega^{2}(\nu^{2} + 3)(r_{+} + 2}{\nu^{2} + 3})}$$

 $z = \frac{r-r_+}{r-r_-}, \quad z = 0 \sim$ horizon, $z = 1 \sim$ spatial infinity.

$$z(1-z)\tilde{\phi}''(z) + (1-z)\tilde{\phi}'(z) + \left[\frac{A}{z} + \frac{B}{1-z} + C\right]\tilde{\phi}(z) = 0;$$
(42)
$$A = \frac{4(\omega\Omega_{+}^{-1} + m)^{2}}{(r_{+} - r_{-})^{2}(\nu^{2} + 3)^{2}}, B = -\alpha, C = -\frac{4(\omega\Omega_{-}^{-1} + m)^{2}}{(r_{+} - r_{-})^{2}(\nu^{2} + 3)^{2}}.$$

$$\Omega_{+}^{-1} = \nu r_{+} - \frac{\sqrt{r_{+}r_{-}(\nu^{2}+3)}}{2}, \qquad \Omega_{-}^{-1} = \nu r_{-} - \frac{\sqrt{r_{+}r_{-}(\nu^{2}+3)}}{2}.$$

$$\phi(z) = z^{p}(1-z)^{q}u(z), \text{ with } p = -i\sqrt{A}, \ q = \frac{1}{2}\left(1 - \sqrt{1+4\alpha}\right),$$

$$\Rightarrow z(1-z)u''(z) + \{c - (a+b+1)z\}u'(z) - abu(z) = 0, \qquad (43)$$
with $a = p + q + \sqrt{C}, \ b = p + q - \sqrt{C}, \ c = 2p + 1.$

In-going at horizon:
$$u(z) = z^p (1-z)^q {}_2F_1(a,b;c;z).$$
 (44)

At
$$r \to \infty$$
: $\phi \simeq A_{in} \left(r^{-h^*_{-}} - \frac{i\eta}{\pi} r^{-h^*_{+}} \right) + A_{out} \left(r^{-h^*_{-}} + \frac{i\eta}{\pi} r^{-h^*_{+}} \right).$ (45)
 $h^*_{\pm} = \frac{1}{2} (1 \pm \Delta^*), \quad \Delta^* = \sqrt{1 + 4\alpha} = \sqrt{1 - \frac{12\omega^2(\nu^2 - 1)}{(\nu^2 + 3)^2} + \frac{4\mu^2\ell^2}{\nu^2 + 3}}.$
 η is chosen so that $\sigma_{abs}|_{\omega=0} = \mathcal{A}_H.$

Retaining ω dependence,

$$\sigma_{abs} \propto \left| \frac{\Gamma\left[\frac{1}{2}(1+\sqrt{1+4\alpha}) - i\frac{\omega}{4\pi\tilde{T}_R}\right]\Gamma\left[\frac{1}{2}(1+\sqrt{1+4\alpha}) - i\frac{\omega}{4\pi\tilde{T}_L}\right]}{\Gamma\left[1 - i\frac{\omega}{2\pi T_H}\right]\Gamma\left[\sqrt{1+4\alpha}\right]} \right|^2, (46)$$

$$\tilde{T}_L = \frac{\nu^2 + 3}{8\pi\nu}, \ \tilde{T}_R = \frac{(\nu^2 + 3)(r_+ - r_-)}{8\pi \left[\nu(r_+ + r_-) - \sqrt{r_+ r_- (\nu^2 + 3)}\right]}.$$
(47)

$$2/T_{H} = 1/\tilde{T}_{L} + 1/\tilde{T}_{R}.$$
(48)
Waped $AdS_{3}, \ \Phi = e^{-i\omega_{g}\tau + iku}\phi_{g}(\sigma):$

$$\frac{d^{2}\phi_{g}}{d\sigma^{2}} + \tanh\sigma\frac{d\phi_{g}}{d\sigma} + \left[(\omega_{g}\operatorname{sech}\sigma + k\tanh\sigma)^{2} - \frac{(\nu^{2} + 3)k^{2}}{4\nu^{2}} - \frac{\mu^{2}\ell^{2}}{\nu^{2} + 3}\right]\phi_{g} = 0.$$
(49)

Define
$$\phi_g = z_g^{(\omega_g + ik)/2} (1 - z_g)^{(\omega_g - ik)/2} f(z_g), \ z_g \equiv \frac{1 + i \sinh \sigma}{2}.$$

 $z_g(1 - z_g) f'' + [c_g - (1 + a_g + b_g) z_g] f' - a_g b_g f = 0$ (50)
 $a_g b_g = \omega_g(\omega_g + 1) + \frac{3k^2(\nu^2 - 1)}{4\nu^2} - \frac{\mu^2 \ell^2}{\nu^2 + 3}, \ a_g + b_g = 1 + 2\omega_g,$
 $c_g = 1 + \omega_g + ik.$
For $z_g \to \infty, \ \phi_g(z_g) \to C_+ z_g^{h_+} + C_- z_g^{h_-},$ (51)
with $h_{\pm} = \frac{1}{2} (1 \pm \Delta), \qquad \Delta \equiv \sqrt{1 - \frac{3k^2(\nu^2 - 1)}{\nu^2} + \frac{4\mu^2 \ell^2}{\nu^2 + 3}}.$
Boundary of warped $AdS_3 : \sigma \to \infty.$
 $x = e^{-\sigma}$ and $t = \tau/2$, local patch:

$$ds^{2} \to \frac{\ell^{2}}{(\nu^{2}+3)x^{2}} \left[\frac{3(\nu^{2}-1)}{\nu^{2}+3} dt^{2} + dx^{2} + \frac{4\nu^{2}}{\nu^{2}+3} x^{2} du^{2} + \frac{8\nu^{2}}{\nu^{2}+3} x dt du \right].$$
 (52)

On the boundary,

$$\left(\frac{1}{\sqrt{-g}}\partial_x\sqrt{-g}g^{xx}\partial_x + \partial_u g^{uu}\partial_u - m^2\right)K(x,u) = 0.$$
(53)

$$K(x,u) = e^{iku}x^{h+} \Rightarrow K(x,u,t) = e^{iku}\left(\frac{x}{|x^2 - t^2|}\right)^{h+}.$$
(54)

Bulk field:
$$\phi(x, t, u) \sim \int dt' du' K_b(x, t, u, t', u') \phi_0(t', u').$$
 (55)

In the limit
$$x \to 0$$
, $\frac{\partial}{\partial x} \phi(x, t, u) \sim x^{h+-1} \int dt' \, du' \frac{e^{ik(u-u')}\phi_0(t', u')}{|t-t'|^{2h+}}$. (56)

$$S_{eff} = \lim_{x \to 0} \left\{ -\frac{1}{2} \int dt \, du \sqrt{-g} g^{xx} \phi \partial_x \phi \right\}$$

$$\sim \frac{1}{2} \int dt \, du \, dt' \, du' \frac{e^{ik(u-u')}}{|t-t'|^{2h+}} \phi_0(t,u) \phi_0(t',u').$$
(57)

From the AdS/CFT dictionary:
$$e^{-S_{eff}(\phi)} = \left\langle e^{\int \phi_0 \mathcal{O}} \right\rangle$$
. (58)

Correlator:
$$\left\langle \mathcal{O}_{*}(u_{+}, u_{-})\mathcal{O}_{*}(0, 0) \right\rangle^{L} \sim \frac{e^{i\omega u_{+}}}{|u_{-}|^{2h_{+}^{*}}},$$
 (59)
 $\left\langle \mathcal{O}_{*}(u_{+}, u_{-})\mathcal{O}_{*}(0, 0) \right\rangle^{R} \sim \frac{e^{i\omega u_{-}}}{|u_{+}|^{2h_{+}^{*}}}, \quad u_{\pm} \equiv u \pm t/2c.$ (60)

Assigning \tilde{T}_L and \tilde{T}_R to the left and right sectors.

$$\left\langle \mathcal{O}_{*}(u_{+}, u_{-})\mathcal{O}_{*}(0, 0) \right\rangle_{T} \sim (2h_{+} - 1)e^{i\omega(u_{+} + u_{-})} \left[\frac{\pi \tilde{T}_{R}}{\sinh(\pi \tilde{T}_{R} u_{+})} \right]^{2h_{+}^{*}} \left[\frac{\pi \tilde{T}_{L}}{\sinh(\pi \tilde{T}_{L} u_{-})} \right]^{2h_{+}^{*}}.$$
 (61)

$$\mathcal{O}_*(x_+, x_-)$$
 with conformal dimension $h_+^* \equiv h_+ |_{k=k_*} \equiv \frac{2\nu}{\nu^2+3} \omega'$

$$\sigma_{\text{abs}} \sim \int dx_{+} dx_{-} e^{-i\omega(x_{+} + x_{-})} \left\langle \mathcal{O}_{*}(x_{+}, x_{-}) \mathcal{O}_{*}(0, 0) \right\rangle_{T}.$$
 (62)

Discussions

• There is indeed a warped AdS_3/CFT_2 correspondence.

•Gravity side:

$$\sigma_{abs} \propto \left| \frac{\Gamma \left[\frac{1}{2} (1 + \sqrt{1 + 4\alpha}) - i \frac{\omega}{4\pi \tilde{T}_R} \right] \Gamma \left[\frac{1}{2} (1 + \sqrt{1 + 4\alpha}) - i \frac{\omega}{4\pi \tilde{T}_L} \right]}{\Gamma \left[1 - i \frac{\omega}{2\pi T_H} \right] \Gamma \left[\sqrt{1 + 4\alpha} \right]} \right|^2,$$

$$\tilde{T}_L = \frac{\nu^2 + 3}{8\pi\nu}, \ \tilde{T}_R = \frac{(\nu^2 + 3)(r_+ - r_-)}{8\pi \left[\nu (r_+ + r_-) - \sqrt{r_+ r_- (\nu^2 + 3)} \right]}, \ 2/T_H = 1/\tilde{T}_L + 1/\tilde{T}_R.$$

24

• CFT side:
$$\left\langle \mathcal{O}_*(u_+, u_-)\mathcal{O}_*(0, 0) \right\rangle^L \sim \frac{e^{i\omega u_+}}{|u_-|^{2h_+^*}},$$

 $\left\langle \mathcal{O}_*(u_+, u_-)\mathcal{O}_*(0, 0) \right\rangle^R \sim \frac{e^{i\omega u_-}}{|u_+|^{2h_+^*}}.$

Assigning \tilde{T}_L and \tilde{T}_R to the left and right sectors.

$$\left\langle \mathcal{O}_*(u_+, u_-) \mathcal{O}_*(0, 0) \right\rangle_T \sim (2h_+ - 1) e^{i\omega(u_+ + u_-)} \left[\frac{\pi \tilde{T}_R}{\sinh(\pi \tilde{T}_R u_+)} \right]^{2h_+} \left[\frac{\pi \tilde{T}_L}{\sinh(\pi \tilde{T}_L u_-)} \right]^{2h_+} \cdot \mathcal{O}_*(x_+, x_-) \sim \mathcal{O}_*(u_+, u_-) \text{ with } h_+^* \equiv h_+ \Big|_{k=k_*} \equiv \frac{2\nu}{\nu^2 + 3} \omega'$$

$$\sigma_{\text{abs}} \sim \int dx_+ dx_- e^{-i\omega(x_+ + x_-)} \left\langle \mathcal{O}_*(x_+, x_-) \mathcal{O}_*(0, 0) \right\rangle_T,$$

$$\propto \left| \frac{\Gamma \left[\frac{1}{2} (1 + \sqrt{1 + 4\alpha}) - i \frac{\omega}{4\pi \tilde{T}_R} \right] \Gamma \left[\frac{1}{2} (1 + \sqrt{1 + 4\alpha}) - i \frac{\omega}{4\pi \tilde{T}_L} \right]}{\Gamma \left[1 - i \frac{\omega}{2\pi T_H} \right] \Gamma \left[\sqrt{1 + 4\alpha} \right]} \right|^2.$$

25

• $\nu > 1$, superradiant modes appear when

$$\omega^2 > \frac{(\nu^2 + 3)^2}{12(\nu^2 - 1)} + \frac{\nu^2 + 3}{3(\nu^2 - 1)}\mu^2\ell^2.$$

Conformal weight h^*_{\pm} becomes complex. $\omega \sim$ angular velocity.

The effective mass of scalar is below the B-F bound

$$\mu_{eff}^2 \equiv \frac{4\mu^2}{\nu^2 + 3} - \frac{12(\nu^2 - 1)\omega^2}{(\nu^2 + 3)^2\ell^2} < -\frac{1}{\ell^2}.$$

• Tortoise coordinate r^* : $\phi^*(r^*) \equiv z(r)\phi(r), r^* = f(r)$.

Choose
$$f(r), z(r)$$
 s.t. $\left[-\frac{d^2}{dr^{*2}} - \omega^2 + U^*(r^*)\right]\phi(r^*) = 0.$

In spatial infinity, the effective potential

$$\lim_{r \to \infty} U^*(r) \to U^*_{\infty} = \frac{(\nu^2 + 3)(\nu^2 + 3 + 4\mu^2\ell^2)}{12(\nu^2 - 1)}$$

Superrandiance: $\omega^2 - U_{\infty}^* > 0$.

• Comparing the poles of bulk QNM and boundary retarded Green function.

• Dual theory of a rotating background.