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Motivation
■ Energy budget of the Universe
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■ 95% of the Universe is made of dark object.
■ It should be stressed that there remains a mystery in 
the visible sector as well.

Where did antibaryons go?
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BAU
Baryon Asymmetry of the Universe (BAU)

■ If the BAU is generated before 
T=1 MeV, the light element 
abundances can be explained 
by the standard Big-Bang 
cosmology.

How did the BAU arise 
dynamically?

Question:

[PDG ’08]

η ≡ nB

nγ
=

nb − nb̄

nγ

= (4.7− 6.5)× 10−10 (95%C.L.)



Sakharov’s criteria
To get the BAU from initially baryon symmetric Universe,
the following conditions must be satisfied. [Sakharov, ’67]

w/o (2), namely, if C and CP symmetries exist,

〈nB〉 = tr(ρBnB) = tr(ρBnBO−1O)

= tr(ρBOnBO−1) = −tr(ρBnB)

〈nB〉 = 0∴ (CBC−1 = −B, (CP )B(CP )−1 = −B)

(1) Baryon number (B) violation
(2) C and CP violation
(3) out of equilibrium

[ρ(t),O] = 0, (O = C, CP ), i!∂ρ(t)

∂t
+ [ρ(t), H] = 0,

(1) is trivial.

B is vector-like



w/o (3), namely, if the B violating process is in 
equilibrium, one would get

nb = nb̄ ⇒ 〈nB〉 = 0

[N.B.] The masses of particle and antiparticle are 
assumed to be the same. (∵ CPT theorem)

Two possibilities
(1) B-L generation above the electroweak (EW) scale

Leptogenesis, GUTs, Affleck-Dine etc
(2) B generation during the EW phase transition (PT)

EW baryogenesis (BG)

(2) is directly linked to EW Physics.
It is testable at colliders



EW baryogenesis
B violation: sphaleron process

C violation: chiral gauge interaction

CP violation: Kobayashi-Maskawa (KM) phase and 
other sources in the BSM.

out of equilibrium: 1st order PT with expanding 
bubble wall

The SM has the problems with the last 2 conditions:
■ The KM phase is too small to generate the BAU.
■ The PT is not 1st order for the viable Higgs mass. 
(>114.4 GeV)

The SM failed to explain the BAU



Mechanism of EWBG

Due to CP violation, asymmetry of 
particle number densities at the 
bubble wall occur.

they diffuse into symmetric phase.

Left-handed particle number 
densities are converted into B via 
sphaleron process.

Sphaleron process is decoupled 
after the PT.

B is frozen.

H:Hubble constant

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (‘85) ]
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Effective potential



Effective potential T=0

V1(ϕ) = − i

2

∫
d4p

(2π)4
ln det

[
iG−1(p; ϕ)

]
.

1-loop effective potential:

MS-bar scheme:

After performing the integration, we can get

e.g. scalar loop:

The effective potential is defined by

V1(ϕ) =
1

2
µε

∫
dDpE

(2π)D
ln

(
p2

E + m2(ϕ)
)
, D = 4− ε

After a Wick rotation,

V1(ϕ) =
m4

64π2

(
ln

m2

µ2
− 3

2

)
.

V1(ϕ) =
m4

64π2

(
− 2

ε
− ln 4π + γE + ln

m2

µ2
− 3

2
+ O(ε) + · · ·

)
.

μ: renormalization scale

Veff(ϕ) = −Γ[ϕ(x) = ϕ]/

∫
d4x



Effective potential at finite T

∫
d4k

(2π)4
→ iT

∞∑

n=−∞

∫
d3k

(2π)3
(· · · )

∣∣∣∣
k0=iωn

Imaginary time formalism:

1-loop effective potential:

ωn =

{
2nπT (boson)
(2n + 1)πT (fermion)

∞∑

n=−∞

z

z2 + 4π2n2
=

1

2
+

1

ez − 1
,

Frequency sum:
(boson)

(fermion)
∞∑

n=−∞

z

z2 + (2n + 1)2π2
=

1

2
− 1

ez + 1

V1(ϕ, T ) =
T

2

∞∑

n=−∞

∫
d3k

(2π)3
ln(w2

n + w2), ω =
√

k2 + m2



IB,F (a2) =

∫ ∞

0

dx x2 ln
(
1∓ e−

√
x2+a2

)
,

where
T=0

Since the divergences appear only in the 1st term (T=0 
part), the counter terms at T=0 are enough.

[N.B.]

V1(ϕ, T ) =

∫
d3k

(2π)3

[
w

2
+ T ln

(
1∓ e−w/T

)]

= V1(ϕ) +
T 4

2π2
IB,F (a2), a2 = m2(ϕ)/T 2.



High T expansion

IB(a2) = −π4

45
+

π2

12
a2−π

6
(a2)3/2 − a4

32

(
log

a2

αB
− 3

2

)
+O(a6)

IF (a2) =
7π4

360
− π2

24
a2 − a4

32

(
log

a2

αF
− 3

2

)
+O(a6)

log αB = 2 log 4π − 2γE " 3.91, log αF = 2 log π − 2γE " 1.14,

Euler’s constant: γE ! 0.577

The bosonic loop gives a cubic term a3 which 
comes from a zero frequency mode.

For a=m/T<<1, IB,F can be expanded in powers of a.
boson:

fermion:



Validity of HTE
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Sphaleron



Sphaleron
■ A static saddle point solution with finite energy of the 
gauge-Higgs system. [N.S. Manton, PRD28 (’83) 2019]

NCS =
g2
2

32π2

∫
d3x εijkTr

[
FijAk −

2

3
g2AiAjAk

]
∆B = 3∆NCS

Transition rates:

Energy

sphaleron

instanton

Ncs0-1 1

Esph

Γ(b)
sph ! (αW T )4e−Esph/T , (broken phase)

Γ(s)
sph ! (αW T )4, (symmetric phase), αW = g2

2/4π

∆B != 0
Instanton: quantum tunneling
Sphaleron: thermal fluctuation

B violation is active at finite T but is suppressed at T=0. 
⇒ no proton decay problem



Energy functional:

Equation of motion:
d2

dξ2
f(ξ) =

2

ξ2
f(ξ)(1− f(ξ))(1− 2f(ξ))− 1

4
h2(ξ)(1− f(ξ)),

d

dξ

(
ξ2dh(ξ)

dξ

)
= 2h(ξ)(1− f(ξ))2 +

λ

g2
2

(h2(ξ)− 1)h(ξ).

Ansatz:

Sphaleron solution for SU(2) gauge-Higgs system

ξ = g2vr

Sphaleron decoupling condition:

Ai(µ, r, θ, φ) = − i

g2
f(r)∂iU(µ, θ, φ)U−1(µ, θ, φ),

Φ(µ, r, θ, φ) =
v√
2

[
(1− h(r))

(
0

e−iµ cos µ

)
+ h(r)U(µ, θ, φ)

(
0
1

) ]
.

To preserve the generated B after the PT,
Γ(b)

sph

T 3
c

< H(Tc) ⇒ vc

Tc

>∼ 1.
Hubble parameter:
H(T ) ! 1.66

√
g∗T 2/mP

Esph =
4πv

g2

∫ ∞

0

dξ

[
4

(
df

dξ

)2

+
8

ξ2
(f − f 2)2 +

ξ2

2

(
dh

dξ

)2

+ h2(1− f)2 +
λ

4g2
2

ξ2(h2 − 1)2

]
.



PT in the SM



Order of the PT
This is what the 1st and 2nd order PTs look like.

■ order parameter 
= Higgs VEV

■ EWBG requires
1st order PT  

vC ≡ lim
T↑TC

v "= 0



Higgs potential

Tree:

1-loop:
F

(
m2(ϕ)

)
=

m4(ϕ)

64π2

(
ln

m2(ϕ)

M2
ren

− 3

2

)

∆V (ϕ, T ) =
T 4

2π2

[ ∑

i=W,Z

niIB(a2
i ) + ntIF (a2

t )

]
,1-loop finite T:

∆gV (ϕ) = 2 · 3F
(
m2

W (ϕ)
)

+ 3F
(
m2

Z(ϕ)
)
,

∆tV (ϕ) = −4 · 3F
(
m2

t (ϕ)
)
,

Renormalization conditions:
∂(∆V (ϕ) + ∆V c.t.)

∂ϕ

∣∣∣∣
ϕ=v0

= 0,

∂2(∆V (ϕ) + ∆V c.t.)

∂ϕ2

∣∣∣∣
ϕ=v0

= 0,

V0(Φ) = −µ2|Φ|2 + λ|Φ|4

Veff(ϕ) = V0(ϕ) + ∆V (ϕ) + ∆V c.t.

= V0(ϕ) + ∆gV (ϕ) + ∆tV (ϕ) + ∆tV (ϕ, T ) + ∆V c.t.,

(vacuum)

(Higgs mass)



Higgs potential (cont)

Veff(ϕ, T ) ! D(T 2 − T 2
0 )ϕ2 − ET |ϕ|3 +

λT

4
ϕ4 + · · · ,

T 2
0 =

1

D

(
1

4
m2

h − 2Bv2
0

)
,

B =
3

64π2v4
0

(
2m4

W + m4
Z − 4m4

t

)
,

D =
1

8v2
0

(
2m2

W + m2
Z + 2m2

t

)
,

E =
1

4πv3
0

(
2m3

W + m3
Z

)
∼ 10−2,

λT =
m2

h

2v2
0

[
1− 3

8π2v2
0m

2
h

{
2m4

W log
m2

W

αBT 2
+ m4

Z log
m2

Z

αBT 2
− 4m4

t log
m2

t

αF T 2

}]
,

T 2
c =

T 2
0

1− E2/(λTcD)
.

The critical temperature Tc is given by

If we use the high T expansion,



0

0 50 100 150 200 250 300
! (GeV)

Veff

T=Tc

T>Tc

T<Tc

At Tc

Sphaleron decoupling condition:

This upper bound has been excluded by the LEP data. 

The potential has two degenerate 
minima at

mh <∼ 48 GeV.

ϕ = 0, ϕc =
2ETc

λTc

.

ϕc

Tc
=

2E

λTc

>∼ 1

strength of the PT ⤵Higgs mass (λ) ⤴

Since λTc ∼ m2
h/2v

2
0,

strength of the PT ⤴E ⤴
[N.B.]

What is the minimally required value of E for mh=114.4 GeV?



To have a strong 1st order PT, the extra bosonic degrees 
of freedom are needed.

From the sphaleron decoupling condition,
ϕc

Tc
=

2E

λTc

> 1

Minimal value of E

ESM =
1

4πv3
0

(
2m3

W + m3
Z

)
! 0.01

SM contributions:

Note: The origin of E is the zero frequency modes of the 
bosonic loops.

Emin >
m2

h

4v2
0

! 0.054, for mh = 114.4 GeV



The loop effect is large. 

Suppose that the bosonic particle whose mass is given by

The loop effect is vanishing.

M2 = m2 + g2ϕ2, m2 : gauge invariant mass

For m2 ! g2ϕ2

For m2 ! g2ϕ2 No (−g3ϕ3T ) term in Veff

Requirements: 1. large coupling g, 2. small m2.

“Bosons do not always play a role.”
Caveat

g : coupling constant

Veff ! −g3ϕ3T ⇒ strengthen the 1st order PT



PT in the MSSM



Stop loop effect

■ Stop masses:
m2

q̃ ! m2
t̃R

, X2
t , Xt = At − µ/ tan β.

m̄2
t̃1

= m2
t̃R

+ D2
t̃R

+
y2

t sin2 β

2

(
1− |Xt|2

m2
q̃

)
v2,

m̄2
t̃2

= m2
q̃ + D2

t̃L
+

y2
t sin2 β

2

(
1 +

|Xt|2

m2
q̃

)
v2 " m2

q̃ ,

soft SUSY breaking masses: m2
q̃, m

2
t̃R

, D2
t̃L,R

∼ O(g2)

To have a large loop effect, m2
t̃R

should be small.

m2
t̃R

= 0 gives mt̃1 < mt

[Carena, Quiros, Wagner, PLB380 (‘96) 81]

Furthermore 
Xt = 0 (no-mixing) maximizes the loop effect

The LEP bounds on mH and ρ-parameter constraints demand



Stop loop effect (cont)
■ Coefficient of cubic term in Veff(T)

Such a light stop can play a role in strengthening the 1st 
order PT.

Veff ! −(ESM + Et̃1)Tv3

Using the High T expansion, 

Et̃1 ! +
y3

t sin3 β

4
√

2π

(
1− |Xt|2

m2
q̃

)3/2

.

Et̃1 ! 0.054, for Xt = 0

E = (ESM + Et̃1) > Emin = 0.054Therefore

Requirements: 1. large coupling g, 2. small m2.

→ top Yukawa yt → m2
t̃R

= 0
and large statistical factor nt̃ = NC × 2 = 6

As I wrote before, to have a strong 1st order PT



Updated analysis
[K. Funakubo (Saga U.), E.S.]



Tension in the MSSM BG

■ There is a tension between the LEP data and the sphaleron 
decoupling in the MSSM.

More precise analysis of the sphaleron decoupling is needed. 
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■ The LEP data put a strong constrains on the light Higgs boson.



Allowed region
■ The allowed region is highly constrained by the experimental
 data.

The sphaleron process is not 
decoupled at Tc.

Loophole:
⇒ The PT begins to proceed 
with bubble wall at below Tc.

We need to know the dynamics of bubble wall. 

vC

TC
=

107.10 GeV

116.27 GeV
= 0.92

supercooling

Maximal v/T:
mq̃ = 1200 GeV, mt̃R ! 0, At = Ab = −300 GeV.

tan β = 10.1, mH± = 127.4 GeV



Critical bubble

− 1

ξ2

(
ξ2dh2

dξ

)
+ h2

(
h2

1 cos2 β

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)2

+
1

v3 sin β

∂Veff

∂ρu
= 0, (1.28)

− 1

ξ2

d

dξ

(
ξ2h2

1h
2
2

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)
+

1

v4 sin2 β cos2 β

∂Veff

∂θ
= 0, (1.29)

with the boundary conditions:

lim
ξ→∞

h1(ξ) = 0, lim
ξ→∞

h2(ξ) = 0, lim
ξ→∞

θ(ξ) = 0, (1.30)

and

dh1(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dh2(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dθ(ξ)

dξ

∣∣∣∣
ξ=0

= 0. (1.31)

2 CP-conserving case

In the CP-coserving case the energy functional is reduced to

E = 4π

∫ ∞

0

dr r2

[
1

2

{(
dρd

dr

)2

+

(
dρu

dr

)2}
+ Veff(ρd, ρu; T )

]
. (2.1)

The EOM for ρd and ρu are given by

− 1

r2

d

dr

(
r2dρd

dr

)
+

∂Veff

∂ρd
= 0, (2.2)

− 1

r2

d

dr

(
r2dρu

dr

)
+

∂Veff

∂ρu
= 0. (2.3)

The boundary conditions for EOM are imposed in the symmetric phase as

lim
r→∞

ρd(r) = 0, lim
r→∞

ρu(r) = 0, (2.4)

and in the broken phase as

dρd(r)

dr

∣∣∣∣
r=0

= 0,
dρu(r)

dr

∣∣∣∣
r=0

= 0. (2.5)

It is convenient to parameterize the Higgs profiles (ρd, ρu) in terms of the dimensionless
quantities. We thus change variables as

ξ = vr, h1(ξ) =
ρd(r)

v cos β
, h2(ξ) =

ρu(r)

v sin β
. (2.6)

In this case, E takes the form

E = 4πv

∫ ∞

0

dξ ξ2

[
1

2

{(
dh1

dξ

)2

cos2 β +

(
dh2

dξ

)2

sin2 β

}
+ Ṽeff(h1, h2; T )

]
, (2.7)

where Ṽeff = Veff/v4. Correspondingly, the EOM are rewritten as

− 1

ξ2

(
ξ2dh1

dξ

)
+

1

v3 cos β

∂Veff

∂ρd
= 0, (2.8)

4

− 1

ξ2

(
ξ2dh2

dξ

)
+ h2

(
h2

1 cos2 β

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)2

+
1

v3 sin β

∂Veff

∂ρu
= 0, (1.28)

− 1

ξ2

d

dξ

(
ξ2h2

1h
2
2

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)
+

1

v4 sin2 β cos2 β

∂Veff

∂θ
= 0, (1.29)
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∣∣∣∣
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d

dr
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∂Veff
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d
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2
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}
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]
, (2.7)
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− 1

ξ2

(
ξ2dh1

dξ

)
+

1

v3 cos β

∂Veff

∂ρd
= 0, (2.8)

4

− 1

ξ2

(
ξ2dh2

dξ

)
+ h2

(
h2

1 cos2 β

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ
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+
1
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= 0, (1.28)
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ξ2

d

dξ

(
ξ2h2

1h
2
2
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dθ

dξ
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1
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∂Veff
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= 0, (1.29)

with the boundary conditions:

lim
ξ→∞

h1(ξ) = 0, lim
ξ→∞

h2(ξ) = 0, lim
ξ→∞

θ(ξ) = 0, (1.30)

and

dh1(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dh2(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dθ(ξ)

dξ

∣∣∣∣
ξ=0

= 0. (1.31)

2 CP-conserving case

In the CP-coserving case the energy functional is reduced to

E = 4π

∫ ∞

0

dr r2

[
1

2

{(
dρd

dr

)2

+

(
dρu

dr

)2}
+ Veff(ρd, ρu; T )

]
. (2.1)

The EOM for ρd and ρu are given by

− 1

r2

d

dr

(
r2dρd

dr

)
+

∂Veff

∂ρd
= 0, (2.2)

− 1

r2

d

dr

(
r2dρu

dr

)
+

∂Veff

∂ρu
= 0. (2.3)

The boundary conditions for EOM are imposed in the symmetric phase as

lim
r→∞

ρd(r) = 0, lim
r→∞

ρu(r) = 0, (2.4)

and in the broken phase as

dρd(r)

dr

∣∣∣∣
r=0

= 0,
dρu(r)

dr

∣∣∣∣
r=0

= 0. (2.5)

It is convenient to parameterize the Higgs profiles (ρd, ρu) in terms of the dimensionless
quantities. We thus change variables as
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, h2(ξ) =

ρu(r)

v sin β
. (2.6)

In this case, E takes the form

E = 4πv
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dξ ξ2
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{(
dh1

dξ

)2

cos2 β +
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dh2

dξ

)2

sin2 β
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+ Ṽeff(h1, h2; T )

]
, (2.7)

where Ṽeff = Veff/v4. Correspondingly, the EOM are rewritten as

− 1

ξ2

(
ξ2dh1

dξ

)
+

1

v3 cos β

∂Veff

∂ρd
= 0, (2.8)
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b.c.

Higgs fields:

Energy functional:

Φd =
1√
2

(
ρd

0

)
, Φu =

1√
2

(
0
ρu

)
,

Equation of motion:

critical bubble = static solution which is unstable against variation 
of radius.
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1
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∂Veff
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)
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∂Veff

∂θ
= 0, (1.29)

with the boundary conditions:
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∣∣∣∣
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∣∣∣∣
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Bubble nucleation

vN

TN
=

116.73

115.59
= 1.01

■ The sphaleron process is not decoupled at TN either.

10% enhancement! But,

v

T
> 1.35

(preliminary)

where Ecb(T ) is the energy of the critical bubble at temperature T 2. Note that this is
a rate per unit volume. We define the nucleation temperature TN as the temperature
at which the rate of nucleation of a critical bubble within a horizon volume is equal to
the Hubble parameter at that temperature. Since the horizon scale is roughly given by
H(T )−1, the nucleation temperature is defined by3

ΓN(TN)H(TN)−3 = H(TN). (4.2)

Since the Hubble parameter at temperature T is

H(T ) =

√
8πG

3
ρ(T ) =

(
8π

3m2
P

π2

30
g∗(T )T 4

)1/2

! 1.66 g∗(T )1/2 T 2

mP
, (4.3)

where g∗(T ) is the effective massless degrees of freedom at T defined by

g∗(T ) =
∑

B

θ(T − mB(T ))gB +
7

8

∑

F

θ(T − mF (T ))gF , (4.4)

with gB and gF being intrinsic degrees of freedom of boson B and fermion F , respectively,
the definition of TN (4.2) is reduced to

(
Ecb(TN)

2πTN

)3/2

e−Ecb(TN )/TN = 7.59 g∗(TN)2 T 4
N

m4
P

, (4.5)

or
Ecb(TN)

TN
− 3

2
log

Ecb(TN)

TN
= 152.59 − 2 log g∗(TN) − 4 log

TN

100GeV
. (4.6)

A Derivatives of the effective potential

Here we summarize the first and second derivatives of the effective potential, which are
used in the tadpole conditions, the equations of motion and matrix elements in the relax-
ation algorithm.

A.1 tadpole conditions

The tadpole conditions are imposed in the vacuum at zero temperature.

〈Φd〉0 =
1√
2

(
v0d

0

)
, 〈Φu〉0 =

eiθ0

√
2

(
0

v0u

)
(A.1)

2In [3], the author only evaluated the contribution from translational zero modes which is proportional
to E3/2

cb , but not that from rotational zero modes and those from nonzero modes. He multiplied T 4 with the
prefactor on the dimensional ground. We expect a factor of T 3 comes from the 3-dimensional translational
zero modes, while the remaining factor of T may have its origin in the negative mode corresponding to
the instability of the critical bubble. Any way, this uncertainty in the prefactor will have small effect on
the estimation of the nucleation temperature, which is mainly determined by the exponent.

3One may think that only one bubble nucleated within a horizon volume cannot convert the whole
region into the broken phase. In this sense, this definition of nucleation temperature will give an upper
bound of temperature at which the phase transition begins to proceed.
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The boundary value θs is determined by finiteness of the energy functional[1]. At r = 0,
the functions satisfy the Neumann-type boundary condition because of spherical symme-
try,

∂ξh1(ξ) = 0, ∂ξh2(ξ) = 0, ∂ξθ = 0, at ξ = 0. (2.31)

3 Numerical Analysis

To numerically study solutions to the equations of motion, we change the variable ξ with
infinite range to some variable with a finite range. We adopt x defined as

1 − x = e−aξ, or ξ = −1

a
log(1 − x), (3.1)

where a is some real number which will be chosen for later convenience. This relation
maps ξ ∈ [0,∞) to x ∈ [0, 1] With this new variable, the equations of motion are rewritten
as

d2h1

dx2
=

1

1 − x

(

1 +
2

log(1 − x)

)
dh1

dx
+ h1

(
h2

2 sin2 β

H

dθ

dx

)2

+
1

a2v3 cos β(1 − x)2

∂Veff

∂ρd
,(3.2)

d2h2

dx2
=

1

1 − x

(

1 +
2

log(1 − x)

)
dh2

dx
+ h2

(
h2

1 cos2 β

H

dθ

dx

)2

+
1

a2v3 sin β(1 − x)2

∂Veff

∂ρu
,(3.3)

d2θ2

dx2
=

[
1

1 − x

(

1 +
2

log(1 − x)

)

− H

h2
1h

2
2

d

dx

(
h2

1h
2
2

H

)]
dθ

dx

+
1

a2v4 cos2 β sin2 β(1 − x)2

H

h2
1h

2
2

∂Veff

∂θ

=

[
1

1 − x

(

1 +
2

log(1 − x)

)

− 2

(
h′

1

h1
+

h′
2

h2
− h1h′

1 cos2 β + h2h′
2 sin2 β

H

)]
dθ

dx

+
1

a2v4(1 − x)2

(
1

h2
1 cos2 β

+
1

h2
2 sin2 β

)
∂Veff

∂θ
, (3.4)

where H(x) ≡ h1(x)2 cos2 β + h2(x)2 sin2 β and the prime denotes derivative with respect
to x. The energy functional is expressed as

E = 4πv
∫ 1

0
dx log2(1 − x)

{
1 − x

2a




(

dh1

dx

)2

cos2 β +

(
dh2

dx

)2

sin2 β +
h2

1h
2
2 cos2 β sin2 β

H

(
dθ

dx

)2




+
1

a3(1 − x)
Ṽeff(h1, h2, θ; T )

}

. (3.5)

4 Bubble Nucleation

According to [3], the bubble nucleation rate per unit time per unitvolume is given by

ΓN(T ) % T 4

(
Ecb(T )

2πT

)3/2

e−Ecb(T )/T , (4.1)

5
Nucleation T:

Nucleation rate:
[A.D. Linde, NPB216 (’82) 421]

Numerical results:

E = 1.77, Ntr = 6.65, Nrot = 12.27

Sphaleron decoupling cond.@TN :

ξ = vr, h1(ξ) =
ρd(r)

v cos β
, h2(ξ) =

ρu(r)

v sin β



More examples
Table 1: Examples of the 1st order PT. |Ab| = |At| = 300 GeV, mt̃R = 10−4 GeV, mb̃R

= 1000
GeV, |µ| = 100 GeV, M2 = 500 GeV, δA ≡ δAt = δAb

= π, δµ = 0.

mq̃ (GeV) 1200 1300 1400 1500

tan β 10.11 9.87 9.75 9.57
mH± (GeV) 127.30 127.40 127.40 127.40

vC/TC
107.095

116.274
= 0.921

107.512

116.496
= 0.923

107.768

116.770
= 0.923

107.914

117.045
= 0.922

tan βC 13.812 13.640 13.606 13.465

vN/TN
116.726

115.585
= 1.010

117.155

115.798
= 1.012

117.403

116.068
= 1.012

117.530

116.340
= 1.010

tan βN 13.684 13.503 13.462 13.317
Ecb/(4πv0) 5.623 5.633 5.646 5.659

Ecb/TN 150.386 150.379 150.369 150.360

Esph/(4πv0/g2) 1.7686 1.7695 1.7704 1.7711
Ntr 6.6522 6.6576 6.6623 6.6666
Nrot 12.266 12.253 12.241 12.230

vN/TN > 1.345 1.344 1.344 1.343

1

Typically, vN/TN > 1.34 is needed for sphaleron decoupling.

Ab = At = −300 GeV, mt̃R = 10−4 GeV, mb̃R
= 1000 GeV,

µ = 100 GeV, M2 = 500 GeV,
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Is MSSM BG dead?

 TN ⇒ onset of the PT. We should know a temperature at 
which the PT ends. The sphaleron decoupling condition 
should be imposed at such a temperature.

 Higher order (2-loop) contributions must be taken into 
account. [J.R. Espinosa, NPB475, (’06) 273]

It looks almost dead, but there might be a way out.

⇒ The sphaleron decoupling cond. might be relaxed. 
 The potential can be extended in such a way that stop also has 

a nontrivial VEV. (Color-Charge-Breaking vacuum)
⇒ MSSM BG is viable. [Canena et al, NPB812,(‘09) 243] 
[N.B.] EW vacuum: metastable, CCB vacuum: global minimum 

If the refined sphaleron decoupling cond. is used, is it still viable?



Summary
We have studied EW bayogenesis focusing on the 
EWPT.

In the SM, the PT is not 1st order for the viable 
Higgs mass.

In the MSSM, the 1st order PT can be strengthen 
by the light stop.

However, it is found that the sphaleron process is 
not decoupled at both Tc and TN.

More refined analysis is needed to reach a 
convincing conclusion for successful EWBG in the 
MSSM.

mt̃1 < mt

mH > 114.4 GeV
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