Introduction to electroweak phase transition

Eibun Senaha (NCU) March 12, 2009@NTHU

Outline

Overview Seffective potential Sphaleron Selectroweak phase transition (EWPT) SM, MSSM Opdated analysis of EWPT in the MSSM Summary

Energy budget of the Universe

Dark Energy Dark Matter Baryons

 95% of the Universe is made of dark object.
 It should be stressed that there remains a mystery in the visible sector as well. Where did antibaryons go?

Dark Energy Dark Matter Baryons

 95% of the Universe is made of dark object.
 It should be stressed that there remains a mystery in the visible sector as well. Where did antibaryons go?

Dark Energy

72%

BAU

Baryon Asymmetry of the Universe (BAU)

 $\eta \equiv \frac{n_B}{n_{\gamma}} = \frac{n_b - n_{\bar{b}}}{n_{\gamma}}$ $= (4.7 - 6.5) \times 10^{-10} (95\% \text{C.L.})$

 If the BAU is generated before T=1 MeV, the light element abundances can be explained by the standard Big-Bang cosmology.

Question: How did the BAU arise dynamically?

[PDG '08]

Sakharov's criteria

To get the BAU from initially baryon symmetric Universe, the following conditions must be satisfied. [Sakharov, '67]

(1) Baryon number (B) violation
(2) C and CP violation
(3) out of equilibrium

(1) is trivial. (1) is trivial. (1) is trivial. (1) is trivial. (2), namely, if C and CP symmetries exist, $[\rho(t), \mathcal{O}] = 0, \quad (\mathcal{O} = C, CP), \quad i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0,$ $\langle n_B \rangle = 0, \quad (\mathcal{O} = C, CP), \quad i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0,$ $\langle n_B \rangle = 0, \quad (\mathcal{O} = C, CP), \quad i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0,$ $\langle n_B \rangle = 0, \quad (\mathcal{O} = C, CP), \quad i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0,$ $\langle n_B \rangle = 0, \quad (\mathcal{O} = C, CP), \quad i\hbar \frac{\partial \rho(t)}{\partial t} + [\rho(t), H] = 0,$ $= tr(\rho_B n_B) = tr(\rho_B n_B \mathcal{O}^{-1} \mathcal{O}),$ $= tr(\rho_B \mathcal{O} n_B \mathcal{O}^{-1}) = -tr(\rho_B n_B),$ $\langle n_B \rangle = 0, \quad (CBC^{-1} = -B, \quad (CP)B(CP)^{-1} = -B),$ B is vector-like w/o (3), namely, if the B violating process is in equilibrium, one would get $n_b = n_{\bar{b}} \Rightarrow \langle n_B \rangle = 0$ [N.B.] The masses of particle and antiparticle are assumed to be the same. (\cdots CPT theorem)

Two possibilities

(1) B-L generation above the electroweak (EW) scale Leptogenesis, GUTs, Affleck-Dine etc
 (2) B generation during the EW phase transition (PT) EW baryogenesis (BG)

 (2) is directly linked to EW Physics.
 It is testable at colliders

EW baryogenesis

B violation: sphaleron process

- C violation: chiral gauge interaction
- OP violation: Kobayashi-Maskawa (KM) phase and other sources in the BSM.
- out of equilibrium: 1st order PT with expanding bubble wall

The SM has the problems with the last 2 conditions:
The KM phase is too small to generate the BAU.
The PT is not 1st order for the viable Higgs mass. (>114.4 GeV)
The SM failed to explain the BAU

Mechanism of EWBG

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

H:Hubble constant

Due to CP violation, asymmetry of particle number densities at the bubble wall occur.

They diffuse into symmetric phase.

 Left-handed particle number densities are converted into B via sphaleron process.

 Sphaleron process is decoupled after the PT.

B is frozen.

Mechanism of EWBG

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

Due to CP violation, asymmetry of particle number densities at the bubble wall occur.

They diffuse into symmetric phase.

 Left-handed particle number densities are converted into B via sphaleron process.

Sphaleron process is decoupled after the PT.

B is frozen.

Effective potential

Effective potential T=0 The effective potential is defined by 1-loop effective potential: e.g. scalar loop: After a Wick rotation, $V_1(\varphi) = \frac{1}{2} \mu^{\epsilon} \int \frac{d^D p_E}{(2\pi)^D} \ln\left(p_E^2 + m^2(\varphi)\right), \quad D = 4 - \epsilon$ After performing the integration, we can get $V_1(\varphi) = \frac{m^4}{64\pi^2} \left(-\frac{2}{\epsilon} - \ln 4\pi + \gamma_E + \ln \frac{m^2}{\mu^2} - \frac{3}{2} + \mathcal{O}(\epsilon) + \cdots \right).$ MS-bar scheme: $V_1(\varphi) = \frac{m^4}{64\pi^2} \left(\ln \frac{m^2}{\mu^2} - \frac{3}{2} \right).$ µ: renormalization scale

Effective potential at finite T

Imaginary time formalism:

 $\int \frac{d^4k}{(2\pi)^4} \to iT \sum_{n=-\infty}^{\infty} \int \frac{d^3k}{(2\pi)^3} (\cdots) \Big|_{k^0 = i\omega_n} \quad \omega_n = \begin{cases} 2n\pi T \quad \text{(boson)}\\ (2n+1)\pi T \quad \text{(fermion)} \end{cases}$

1-loop effective potential:

$V_1(\varphi, T) = \frac{T}{2} \sum_{n=-\infty}^{\infty} \int \frac{d^3k}{(2\pi)^3} \ln(w_n^2 + w^2), \quad \omega = \sqrt{k^2 + m^2}$

Frequency sum:

 $\sum_{\substack{n=-\infty\\\infty\\n=-\infty}}^{\infty} \frac{z}{z^2 + 4\pi^2 n^2} = \frac{1}{2} + \frac{1}{e^z - 1}, \quad \text{(boson)}$ $\sum_{\substack{n=-\infty\\n=-\infty}}^{\infty} \frac{z}{z^2 + (2n+1)^2 \pi^2} = \frac{1}{2} - \frac{1}{e^z + 1} \quad \text{(fermion)}$

$V_{1}(\varphi, T) = \int \frac{d^{3}k}{(2\pi)^{3}} \left[\frac{w}{2} + T \ln \left(1 \mp e^{-w/T} \right) \right]$ = $\frac{V_{1}(\varphi)}{\Gamma_{1}(\varphi)} + \frac{T^{4}}{2\pi^{2}} I_{B,F}(a^{2}), \quad a^{2} = m^{2}(\varphi)/T^{2}.$ T=0 where $I_{B,F}(a^{2}) = \int_{0}^{\infty} dx \ x^{2} \ln \left(1 \mp e^{-\sqrt{x^{2}+a^{2}}} \right).$

[N.B.] Since the divergences appear only in the 1st term (T=0 part), the counter terms at T=0 are enough.

High T expansion

For a=m/T<<1, $I_{B,F}$ can be expanded in powers of a.

boson: $I_B(a^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}a^2 - \frac{\pi}{6}(a^2)^{3/2} - \frac{a^4}{32}\left(\log\frac{a^2}{\alpha_B} - \frac{3}{2}\right) + \mathcal{O}(a^6)$ **fermion:** $I_F(a^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}a^2 - \frac{a^4}{32}\left(\log\frac{a^2}{\alpha_F} - \frac{3}{2}\right) + \mathcal{O}(a^6)$ $\log \alpha_B = 2\log 4\pi - 2\gamma_E \simeq 3.91, \quad \log \alpha_F = 2\log \pi - 2\gamma_E \simeq 1.14,$ Euler's constant: $\gamma_E \simeq 0.577$

The bosonic loop gives a cubic term a³ which comes from a zero frequency mode.

Validity of HTE

Boson case

 $|I_B(a^2) - I_B^{\text{HTE}}(a^2)| < 0.05 \text{ for } a \leq 2.3$

Validity of HTE

Fermion case

 $|I_F(a^2) - I_F^{\rm HTE}(a^2)| < 0.05 \text{ for } a \leq 1.7$

Sphaleron

Sphaleron

A static saddle point solution with finite energy of the gauge-Higgs system.
 [N.S. Manton, PRD28 ('83) 2019]

Transition rates:

 $\Gamma_{\rm sph}^{(b)} \simeq (\alpha_W T)^4 e^{-E_{\rm sph}/T}$, (broken phase) $\Gamma_{\rm sph}^{(s)} \simeq (\alpha_W T)^4$, (symmetric phase), $\alpha_W = g_2^2/4\pi$

B violation is active at finite T but is suppressed at T=0. \Rightarrow no proton decay problem

Sphaleron decoupling condition:

 $\Gamma^{(b)}_{
m sph}$

To preserve the generated B after the PT,

 v_{c}

$$T_{c}^{3} = H(t^{c}) + [T_{c} \approx T] = H(T) \approx 1.66\sqrt{g_{*}T^{2}/m_{P}}$$
Sphaleron solution for SU(2) gauge-Higgs system
$$A_{i}(\mu, r, \theta, \phi) = -\frac{i}{g_{2}}f(r)\partial_{i}U(\mu, \theta, \phi)U^{-1}(\mu, \theta, \phi),$$
Ansatz:
$$\Phi(\mu, r, \theta, \phi) = \frac{v}{\sqrt{2}}\Big[(1 - h(r))\left(\begin{array}{c}0\\e^{-i\mu}\cos\mu\end{array}\right) + h(r)U(\mu, \theta, \phi)\left(\begin{array}{c}0\\1\end{array}\right)\Big]$$
Energy functional:
$$E_{sph} = \frac{4\pi v}{g_{2}}\int_{0}^{\infty}d\xi \left[4\left(\frac{df}{d\xi}\right)^{2} + \frac{8}{\xi^{2}}(f - f^{2})^{2} + \frac{\xi^{2}}{2}\left(\frac{dh}{d\xi}\right)^{2} + h^{2}(1 - f)^{2} + \frac{\lambda}{4g_{2}^{2}}\xi^{2}(h^{2} - 1)^{2}\right].$$
Equation of motion:

Hubble parameter:

 $\frac{d^2}{d\xi^2} f(\xi) = \frac{2}{\xi^2} f(\xi) (1 - f(\xi)) (1 - 2f(\xi)) - \frac{1}{4} h^2(\xi) (1 - f(\xi)),$ $\frac{d}{d\xi} \left(\xi^2 \frac{dh(\xi)}{d\xi} \right) = 2h(\xi) (1 - f(\xi))^2 + \frac{\lambda}{g_2^2} (h^2(\xi) - 1)h(\xi).$

PT in the SM

Order of the PT

This is what the 1st and 2nd order PTs look like.

Higgs potential

$$\begin{split} & \left| V_{\text{eff}}(\varphi) = V_{0}(\varphi) + \Delta V(\varphi) + \Delta V^{\text{c.t.}} \\ &= V_{0}(\varphi) + \Delta_{*}V(\varphi) + \Delta_{*}V(\varphi) + \Delta_{*}V(\varphi, T) + \Delta V^{\text{c.t.}}, \\ & \text{Tree:} \quad V_{0}(\Phi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{2} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi) = -\mu^{2} |\Phi|^{4} + \mu^{2} |\Phi|^{4} \\ & \Delta_{*}V(\varphi)$$

Higgs potential (cont)

If we use the high T expansion,

$$\begin{cases} V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET|\varphi|^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots, \\ T_0^2 &= \frac{1}{D} \left(\frac{1}{4}m_h^2 - 2Bv_0^2 \right), \\ B &= \frac{3}{64\pi^2 v_0^4} \left(2m_W^4 + m_Z^4 - 4m_t^4 \right), \\ D &= \frac{1}{8v_0^2} \left(2m_W^2 + m_Z^2 + 2m_t^2 \right), \\ E &= \frac{1}{4\pi v_0^3} \left(2m_W^3 + m_Z^3 \right) \sim 10^{-2}, \\ \lambda_T &= \frac{m_h^2}{2v_0^2} \left[1 - \frac{3}{8\pi^2 v_0^2 m_h^2} \left\{ 2m_W^4 \log \frac{m_W^2}{\alpha_B T^2} + m_Z^4 \log \frac{m_Z^2}{\alpha_B T^2} - 4m_t^4 \log \frac{m_t^2}{\alpha_F T^2} \right\} \right], \end{cases}$$

The critical temperature T_c is given by

$$T_c^2 = \frac{T_0^2}{1 - E^2 / (\lambda_{T_c} D)}$$

At T_c

Veff

The potential has two degenerate minima at $\varphi = 0, \quad \varphi_c = \frac{2ET_c}{\lambda_T}.$ Sphaleron decoupling condition: $\frac{\varphi_c}{T_c} = \frac{2E}{\lambda_T} \gtrsim 1$ Since $\lambda_{T_c} \sim m_b^2 / 2v_0^2$. $m_h \lesssim 48 \text{ GeV}.$

This upper bound has been excluded by the LEP data. [N.B.] Higgs mass $(\lambda) \checkmark$ strength of the PT \searrow $E \checkmark$ strength of the PT \checkmark What is the minimally required value of E for m_h=114.4 GeV?

Minimal value of E

From the sphaleron decoupling condition, $\frac{\varphi_c}{T_c} = \frac{2E}{\lambda_T} > 1$

 $E_{\min} > \frac{m_h^2}{4v_0^2} \simeq 0.054, \quad \text{for } m_h = 114.4 \text{ GeV}$

SM contributions:

$$E_{\rm SM} = \frac{1}{4\pi v_0^3} \left(2m_W^3 + m_Z^3 \right) \simeq 0.01$$

Note: The origin of E is the zero frequency modes of the bosonic loops.

To have a strong 1st order PT, the extra bosonic degrees of freedom are needed.

"Bosons do not always play a role." Suppose that the bosonic particle whose mass is given by $M^2 = m^2 + q^2 \varphi^2$, m^2 : gauge invariant mass g: coupling constant For $m^2 \ll g^2 \varphi^2$ $V_{\rm eff} \ni -g^3 \varphi^3 T \implies \text{strengthen the 1st order PT}$ The loop effect is large. For $m^2 \gg g^2 \varphi^2$ No $(-g^3 \varphi^3 T)$ term in V_{eff} The loop effect is vanishing.

Requirements: 1. large coupling g, 2. small m^2 .

PT in the MSSM

Stop loop effect

[Carena, Quiros, Wagner, PLB380 ('96) 81]

The LEP bounds on m_H and ρ -parameter constraints demand $m_{\tilde{q}}^2 \gg m_{\tilde{t}_R}^2, X_t^2, \quad X_t = A_t - \mu/\tan\beta.$ • Stop masses:

$$\bar{m}_{\tilde{t}_{1}}^{2} = m_{\tilde{t}_{R}}^{2} + D_{\tilde{t}_{R}}^{2} + \frac{y_{t}^{2} \sin^{2} \beta}{2} \left(1 - \frac{|X_{t}|^{2}}{m_{\tilde{q}}^{2}} \right) v^{2},$$

$$\bar{m}_{\tilde{t}_{2}}^{2} = m_{\tilde{q}}^{2} + D_{\tilde{t}_{L}}^{2} + \frac{y_{t}^{2} \sin^{2} \beta}{2} \left(1 + \frac{|X_{t}|^{2}}{m_{\tilde{q}}^{2}} \right) v^{2} \simeq m_{\tilde{q}}^{2},$$

soft SUSY breaking masses: $m_{\tilde{q}}^2, m_{\tilde{t}_R}^2, \quad D_{\tilde{t}_{L,R}}^2 \sim \mathcal{O}(g^2)$ To have a large loop effect, $m_{\tilde{t}_R}^2$ should be small. $m_{\tilde{t}_R}^2 = 0$ gives $\boxed{m_{\tilde{t}_1} < m_t}$ Furthermore $X_t = 0$ (no-mixing) maximizes the loop effect

Stop loop effect (cont) Using the High T expansion, Coefficient of cubic term in Veff(T)

 $V_{\text{eff}} \ni -(E_{\text{SM}} + E_{\tilde{t}_1})Tv^3 \qquad E_{\tilde{t}_1} \simeq +\frac{y_t^3 \sin^3 \beta}{4\sqrt{2\pi}} \left(1 - \frac{|X_t|^2}{m_z^2}\right)^{3/2}.$ $E_{\tilde{t}_1} \simeq 0.054$, for $X_t = 0$ **Therefore** $E = (E_{SM} + E_{\tilde{t}_1}) > E_{min} = 0.054$

Such a light stop can play a role in strengthening the 1st order PT.

As I wrote before, to have a strong 1st order PT

Requirements: 1. large coupling g, 2. small m^2 .

 $\rightarrow \text{top Yukawa } y_t \qquad \rightarrow m_{\tilde{t}_P}^2 = 0$

and large statistical factor $n_{\tilde{t}} = N_C \times 2 = 6$

Updated analysis

[K. Funakubo (Saga U.), E.S.]

Tension in the MSSMBG The LEP data put a strong constrains on the light Higgs boson.

There is a tension between the LEP data and the sphaleron decoupling in the MSSM.

More precise analysis of the sphaleron decoupling is needed.

Allowed region

The allowed region is highly constrained by the experimental data.

 $m_{\tilde{q}} = 1200 \text{ GeV}, \ m_{\tilde{t}_R} \simeq 0, \ A_t = A_b = -300 \text{ GeV}.$

Maximal v/T: $\tan \beta = 10.1, m_{H^{\pm}} = 127.4 \text{ GeV}$

$$\frac{v_C}{T_C} = \frac{107.10 \text{ GeV}}{116.27 \text{ GeV}} = 0.92$$

The sphaleron process is not decoupled at Tc. Loophole: supercooling ⇒ The PT begins to proceed with bubble wall at below Tc.

We need to know the dynamics of bubble wall.

Critical bubble

critical bubble = static solution which is unstable against variation of radius.

Higgs fields:
$$\Phi_d = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_d \\ 0 \end{pmatrix}, \quad \Phi_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_u \end{pmatrix},$$

Energy functional:

$$E = 4\pi \int_0^\infty dr \ r^2 \left[\frac{1}{2} \left\{ \left(\frac{d\rho_d}{dr} \right)^2 + \left(\frac{d\rho_u}{dr} \right)^2 \right\} + V_{\text{eff}}(\rho_d, \rho_u; T) \right] \quad r = \sqrt{\boldsymbol{x}}$$

Equation of motion: $\frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d\rho_{d}}{dr} \right) + \frac{\partial V_{\text{eff}}}{\partial \rho_{d}} = 0, \quad \lim_{r \to \infty} \rho_{d}(r) = 0, \quad \lim_{r \to \infty} \rho_{u}(r) = 0, \\
-\frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d\rho_{u}}{dr} \right) + \frac{\partial V_{\text{eff}}}{\partial \rho_{u}} = 0. \quad \frac{d\rho_{d}(r)}{dr} \Big|_{r=0} = 0, \quad \frac{d\rho_{u}(r)}{dr} \Big|_{r=0} = 0.$ Bubbles can be nucleated at below Tc.

 $v \,[{
m GeV}]$

Veff

Bubble nucleation

Nucleation rate: $\Gamma_N(T) \simeq T^4 \left(\frac{E_{\rm cb}(T)}{2\pi T}\right)^{3/2} e^{-E_{\rm cb}(T)/T}$ [A.D. Linde, NPB216 ('82) 421] Nucleation T: $\Gamma_N(T_N)H(T_N)^{-3} = H(T_N)$

$$\frac{v_N}{T_N} = \frac{116.73}{115.59} = 1.01$$

$$10\% \text{ enhancement! But,}$$
Sphaleron decoupling cond.@ T_N :
 $\mathcal{E} = 1.77, \ \mathcal{N}_{tr} = 6.65, \ \mathcal{N}_{rot} = 12.27$

$$\frac{v}{T} > 1.35$$

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} \; (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}} (\text{GeV})$	127.30	127.40	127.40	127.40
v_C/T_C	$\frac{107.095}{116.274} = 0.921$	$\frac{107.512}{116.496} = 0.923$	$\frac{107.768}{116.770} = 0.923$	$\frac{107.914}{117.045} = 0.922$
$\tan \beta_C$	13.812	13.640	13.606	13.465
v_N/T_N	$\frac{116.726}{115.585} = 1.010$	$\frac{117.155}{115.798} = 1.012$	$\left \begin{array}{c} \frac{117.403}{116.068} = 1.012 \\ 12.462 \end{array} \right $	$\frac{117.530}{116.340} = 1.010$
$\tan \beta_N$	13.684	13.503	13.462	13.317
$E_{\rm cb}/(4\pi v_0)$	5.623	5.633	5.646	5.659
$E_{\rm cb}/T_N$	150.386	150.379	150.369	150.360
$E_{\rm sph}/(4\pi v_0/g_2)$	1.7686	1.7695	1.7704	1.7711
$\mathcal{N}_{\mathrm{tr}}$	6.6522	6.6576	6.6623	6.6666
$\mathcal{N}_{ m rot}$	12.266	12.253	12.241	12.230
$v_N/T_N >$	1.345	1.344	1.344	1.343

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}} (\text{GeV})$	127.30	127.40	127.40	127.40
v_C/T_C	$\frac{107.095}{116.274} = 0.921$	$\frac{107.512}{116.496} = 0.923$	$\frac{107.768}{116.770} = 0.923$	$\frac{107.914}{117.045} = 0.922$
$\tan \beta_C$	13.812	13.640	13.606	13.465
$\begin{vmatrix} v_N/T_N \\ \tan \beta_N \end{vmatrix}$	$\begin{vmatrix} \frac{116.726}{115.585} = 1.010\\ 13.684 \end{vmatrix}$	$\frac{117.155}{115.798} = 1.012$ 13.503	$\begin{vmatrix} \frac{117.403}{116.068} = 1.012\\ 13.462 \end{vmatrix}$	$\frac{117.530}{116.340} = 1.010$ 13.317
$E_{\rm cb}/(4\pi v_0)$	5.623	5.633	5.646	5.659
$E_{\rm cb}/T_N$	150.386	150.379	150.369	150.360
$E_{\rm sph}/(4\pi v_0/g_2)$	1.7686	1.7695	1.7704	1.7711
$\mathcal{N}_{ m tr}$	6.6522	6.6576	6.6623	6.6666
$\mathcal{N}_{\mathrm{rot}}$	12.266	12.253	12.241	12.230
$v_N/T_N >$	1.345	1.344	1.344	1.343

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} \; (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}} (\text{GeV})$	127.30	127.40	127.40	127.40
ω_{π}/T_{π}	107.095 - 0.021	107.512 - 0.023	107.768 - 0.023	107.914 - 0.022
UC/IC	$\frac{116.274}{116.274} = 0.921$	$\frac{116.496}{116.496} = 0.923$	$\frac{116.770}{116.770} = 0.923$	$\frac{117.045}{117.045} = 0.922$
$\tan \beta_C$	13.812	13.640	13.606	13.465
m_{T}/T_{T}	$\frac{116.726}{-1.010}$	$\frac{117.155}{-1.012}$	$\frac{117.403}{-1.012}$	$\frac{117.530}{-1.010}$
U_N / I_N	$\frac{115.585}{115.585} = 1.010$	115.798 - 1.012	$\frac{116.068}{116.068} = 1.012$	$\frac{116.340}{116.340} = 1.010$
$\tan \beta_N$	13.684	13.503	13.462	13.317
$E_{\rm cb}/(4\pi v_0)$	5.623	5.633	5.646	5.659
$E_{\rm cb}/T_N$	150.386	150.379	150.369	150.360
$E_{\rm sph}/(4\pi v_0/g_2)$	1.7686	1.7695	1.7704	1.7711
$\mathcal{N}_{ m tr}$	6.6522	6.6576	6.6623	6.6666
$\mathcal{N}_{ m rot}$	12.266	12.253	12.241	12.230
$v_N/T_N >$	1.345	1.344	1.344	1.343

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} \; (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}} (\text{GeV})$	127.30	127.40	127.40	127.40
w_{α}/T_{α}	$\frac{107.095}{-0.021}$	$\frac{107.512}{-0.923}$	$\frac{107.768}{-0.923}$	$\frac{107.914}{-0.922}$
	116.274 - 0.521	116.496 - 0.525	116.770 - 0.520	117.045 - 0.522
$\tan \beta_C$	13.812	13.640	13.606	13.465
m_{T}/T_{T}	$\frac{116.726}{-1.010}$	$\frac{117.155}{-1.012}$	$\frac{117.403}{-1.012}$	$\frac{117.530}{-1.010}$
U_N / I_N	$\frac{115.585}{115.585} = 1.010$	$\frac{115.798}{115.798} = 1.012$	$\frac{116.068}{116.068} = 1.012$	$\frac{116.340}{116.340} = 1.010$
$\tan \beta_N$	13.684	13.503	13.462	13.317
$E_{\rm cb}/(4\pi v_0)$	5.623	5.633	5.646	5.659
$E_{\rm cb}/T_N$	150.386	150.379	150.369	150.360
$E_{\rm sph}/(4\pi v_0/g_2)$	1.7686	1.7695	1.7704	1.7711
$\mathcal{N}_{\mathrm{tr}}$	6.6522	6.6576	6.6623	6.6666
$\mathcal{N}_{ m rot}$	12.266	12.253	12.241	12.230
$v_N/T_N >$	1.345	1.344	1.344	1.343

Is MSSM BG dead?

It looks almost dead, but there might be a way out.

- ➤ T_N ⇒ onset of the PT. We should know a temperature at which the PT ends. The sphaleron decoupling condition should be imposed at such a temperature.
- Higher order (2-loop) contributions must be taken into account. [J.R. Espinosa, NPB475, ('06) 273]
- ⇒ The sphaleron decoupling cond. might be relaxed.
- The potential can be extended in such a way that stop also has a nontrivial VEV. (Color-Charge-Breaking vacuum)
 ⇒ MSSM BG is viable. [Canena et al, NPB812,('09) 243]
 [N.B.] EW vacuum: metastable, CCB vacuum: global minimum
 If the refined sphaleron decoupling cond. is used, is it still viable?

Summary

We have studied EW bayogenesis focusing on the EWPT.

In the SM, the PT is not 1st order for the viable Higgs mass. $m_H > 114.4 \text{ GeV}$

In the MSSM, the 1st order PT can be strengthen by the light stop. $m_{\tilde{t}_1} < m_t$

The However, it is found that the sphaleron process is not decoupled at both T_c and T_N .

More refined analysis is needed to reach a convincing conclusion for successful EWBG in the MSSM.

Review papers

A.G. Cohen, D.B. Kaplan, A.E. Nelson, hep-ph/9302210 M. Quiros, Helv.Phys.Acta 67 ('94) V.A. Rubakov, M.E. Shaposhnikov, hep-ph/9603208 K. Funakubo, hep-ph/9608358 M. Trodden, hep-ph/9803479 A. Riotto, hep-ph/9807454 W. Bernreuther, hep-ph/0205279