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Homogeneous isotropic cosmologies

Metric: gµν = diag (1,−e2a,−e2a,−e2a)
Christoffel symbols:

Γ0
11 = Γ0

22 = Γ0
33 = ȧ ε2a,

Γ1
01 = Γ2

02 = Γ3
03 = ȧ.

Ricci tensor:

R0
0 = −(3ä + 3ȧ2),

R1
1 = R2

2 = R3
3 = −(ä + 3ȧ2).



Energy-momentum

Energy-momentum: Tµν = (8πG)−1diag (ξ, η, η, η).

Einstein equations: Gµ
ν = Rµν − 1

2 Rgµν = Tµν

gives
3ȧ2 = ξ,

2ä + 3ȧ2 = η.

Solution: FRW Universe



Conservation of Stress-Energy

Covariant conservation of the stress-energy

ξ̇ + 3ȧ(ξ − η) = 0

is a direct consequence of Einstein’s Equations.



Data and the Evidence for a Departure from
Homogeneous Isotropic Cosmology

WMAP: The first year WMAP results contain some unusual
large-scale features. (astro-ph/0302207, 0302209, and 0302217).
Power Spectrum:

−suppression

suppression of power at large angular scales in
quadrupole C2 and octupole C3 (also seen in the COBE)

−alignment

quadrupole and octupole are aligned;
` = 2 and 3 power concentrated in a plane P;
P inclined 30◦ to Galactic plane;
powers mostly in m = ±` modes,
i.e., power along axis suppressed relative to orthogonal plane.



Planar symmetry

Metric: gµν = diag (1,−e2a,−e2a,−e2b)

Christoffel symbols:

Γ0
11 = Γ0

22 = ȧ ε2a, Γ0
33 = ḃ ε2b,

Γ1
01 = Γ2

02 = ȧ, Γ3
03 = ḃ,

Ricci tensor:

R0
0 = −(2ä + b̈ + 2ȧ2 + ḃ2),

R1
1 = R2

2 = −(ä + 2ȧ2 + ȧḃ),
R3

3 = −(b̈ + ḃ2 + 2ȧḃ).



Energy-momentum

Energy-momentum: Tµν = (8πG)−1diag (ξ, η, η, ζ).

Einstein equations:

ȧ2 + 2ȧḃ = ξ,

ä + b̈ + ȧ2 + ȧḃ + ḃ2 = η,

2ä + 3ȧ2 = ζ.



Conservation of the Stress-Energy

Covariant conservation of the stress-energy is a
direct consequence of Einstein’s Equations:

ξ̇ + 2ȧ(ξ − η) + ḃ(ξ − ζ) = 0.



Thermodynamics

Isotropic part of Tµν: λ, ρ, and p.
Ansotropic part of Tµν: Stresses and tensions from B-fields,

strings and walls.
Split components via:

ξ = λ + ρ + ξ̃,

η = λ − p + η̃,

ζ = λ − p + ζ̃,

where tildes are for anisotropic parts.



Thermodynamics

As in the isotropic case

T
dp
dT

= ρ + p

Entropy in a volume V is
S = (ρ + p)V/T.

Taking V = Vi e2a+b we find

Ṡ/S = 2ȧ + ḃ + ρ̇/(ρ + p).

Entropy in a comoving volume is conserved, so

ρ̇ + (2ȧ + ḃ)(ρ + p) = 0.



Thermodynamics

Integrate for equation of state p = wρ to find

ρ = ρi e−(1+w)(2a+b).

Isotropic part of Tµν is conserved locally.
Since total energy-momentum is conserved locally,
the anisotropic part is also conserved,

˙̃ξ + 2ȧ(ξ̃ − η̃) + ḃ(ξ̃ − ζ̃) = 0.

Key to finding our exact solutions.



Universes with planar symmetry

Table: The components of the energy momentum for various
contributions to the matter. Note Tµν is traceless for B-fields and
radiation.

ξ η η ζ

vacuum energy λ λ λ λ

radiation ρ −1
3ρ −

1
3ρ −

1
3ρ

matter (dust) ρ 0 0 0
magnetic field ε −ε −ε ε
strings ε 0 0 ε
walls ε ε ε 0



Solutions: Cosmological Constant plus B-Fields (ΛB)

Conservation of stress-energy gives:

ε̇ + 4ȧε = 0.

Solve for ȧ and plug into Einstein’s eqs. to find:

εε̈ − 11
8 ε̇

2 + 2ε2(λ + ε) = 0.

This has a general solution:

t − ti = 1
4

∫ εi

ε
dε

(
1
3λε

2 + 4
3ε

1
4
i ε

11
4 − ε3

)− 1
2

Invert to get ε(t), then solve for a(t) and b(t).



Eccentricity

Eccentricity: The eccentricity of an ellipse, with semi-major
axis A = ea, and semi-minor axis B = eb, is
es =

√

A2−B2

B =
√

e2(a−b) − 1. We are interested in
prolate and oblate spheroids. If a cross section
that is tangent to the symmetry axis of the
spheroid is an ellipse with axes A along the
symmetry axis and B normal to that axis, then
either one can be larger. An appropriate measure
for our purposes is the ratio ep = A

B = ea−b which
we will call the pseudo-eccentricity.



Expansion parameter a(t)

a(t) for (M, S and W) + Λ + w with λ = 1,
ρi = 10, εi = 200. Curves are for w from −1
to 1 with step 0.2 from top to bottom.



a(t) in a Universe with Λ + B-fields+ matter
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a(t) in a Universe with Λ + strings + matter
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a(t) in a Universe with Λ + walls + matter
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Expansion parameter b(t)

b(t) for (M, S and W) + Λ + w with λ = 1,
ρi = 10, εi = 200. Curves are for w from −1
to 1 with step 0.2 from top to bottom.



b(t) in a Universe with Λ + B-fields+ matter
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b(t) in a Universe with Λ + strings + matter
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b(t) in a Universe with Λ + walls + matter
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Matter density ρ(t)

ρ(t) for (M, S and W) + Λ + w with λ = 1,
ρi = 10, εi = 200. Curves are for w from −1
to 1 with step 0.2 from top to bottom.



ρ(t) in a Universe with Λ + B-fields + matter
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ρ(t) in a Universe with Λ + strings + matter
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ρ(t) in a Universe with Λ + walls + matter
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Energy density ε(t)

ε(t) for (M, S and W) + Λ + w with λ = 1,
ρi = 10, εi = 200. Curves are for w from −1
to 1 with step 0.2 from top to bottom.



ε(t) in a Universe with Λ + B-fields + matter
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ε(t) in a Universe with Λ + strings + matter
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ε(t) in a Universe with Λ + walls + matter
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Pseudo-eccentricity ea−b

ea−b for (M, S and W) + Λ + w with λ = 1,
ρi = 10, εi = 200. Curves are for w from
−1 to 1 with step 0.2 from top to bottom
for M and S and from bottom to top for
W.



Pseudo-eccentricity in a Universe with Λ + B-fields +
matter
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Pseudo-eccentricity in a Universe with Λ + strings +
matter
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Pseudo-eccentricity in a Universe with Λ + walls +
matter
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a vs. b

Expansion parameters a vs b for the case
(M, S and W) + Λ with λ = 1, ρi = 0. Curves are for
εi = 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 from top to
bottom for M and S and from top to bottom for W.



a(t) vs b(t) in a Universe with Λ + B-fields+ matter
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a(t) vs b(t) in a Universe with Λ + strings + matter
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a(t) vs b(t) in a Universe with Λ + walls + matter
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Asymptotic value of pseudo-eccentricity

Asymptotic value of the pseudo-eccentricity for the case
(M, S and W) + Λ + w with λ = 1 as a function of ρi and εi. Sets
of curves are for ea−b equal to 20, 15, 10, 5 from top to bottom;
the abscissa corresponds to εa−b = 1. Curves in each set are for
w equal to −0.5,−0.25, 0, 0.25, 0.5 from top to bottom.



ea−b for t→∞ in a Universe with Λ + B-fields + matter
as a function of ρi and εi
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ea−b for t→∞ in a Universe with Λ + strings + matter
as a function of ρi and εi
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ea−b for t→∞ in a Universe with Λ + walls+ matter as
a function of ρi and εi
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Asymptotic value of pseudo-eccentricity

Asymptotic value of the pseudo-eccentricity for the case
(M, S and W) + Λ + w with λ = 1 as a function of w and ρi for
εi = 200. Curves are for ea−b from 4 to 22 with step 2 from top
to bottom for M and S and from top to bottom for W.



ea−b for t→∞ in a Universe with Λ + B-fields + matter
as a function of w and εi
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ea−b for t→∞ in a Universe with Λ + strings + matter
as a function of w and εi
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ea−b for t→∞ in a Universe with Λ + walls + matter as
a function of w and εi
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Asymptotics: Planar Symmetry

For each choice of an anisotropic component, magnetic fields
(M), strings (S) or walls (W), matter with w = 0 or with
0 < w < 1 is included and cosmological constant is either
present (Λ) or absent. Only the leading terms in asymptotics
are given and t̃ = (λ/3)

1
2 t.



Asymptotics: Planar Symmetry

Table: Summary of large-time behavior for a Universe with
uniform B-Fields.

ε ρ ea eb ea−b

MΛw e−4t̃ e−3(1+w)t̃ et̃ et̃
≥ 1

MΛ0 e−4t̃ e−3t̃ et̃ et̃
≥ 1

Mw t−
8
3 t−2 t

2
3 t

2(1−2w)
3(1+w) t

2w
1+w

M0 t−
8
3 t−2 t

2
3 t

2
3 ≥ 1



Asymptotics: Planar Symmetry

Table: Summary of large-time behavior with Strings and Walls.

ε ρ ea eb ea−b

SΛw e−2t̃ e−3(1+w)t̃ et̃ et̃
≥ 1

SΛ0 e−2t̃ e−3t̃ et̃ et̃
≥ 1

Sw t−2 t−2 t t−
2w

1+w t
1+3w
1+w

S0 t−2 t−2 t t−2
≥ 1

WΛ0 e−t̃ e−3t̃ et̃ et̃
≤ 1

W0 t−2 t−
10
3 t

2
3 t2 t−

4
3



Density Perturbations: Planar Symmetry

Synchronous Gauge:

δg00 = 0, δgi0 = 0, δgi j = eai+a jhi j.

Variations of the Christoffel symbols:

δΓ
µ
00 = 0, δΓ0

i0 = 0,

δΓ0
i j = − 1

2 eai+a j
[
(ȧi + ȧ j)hi j + ḣi j

]
,

δΓi
j0 = 1

2 ea j−ai
[
(ȧ j − ȧi)hi j − ḣi j

]
,

δΓk
i j = 1

2

(
eai+a j−2akhi j,k − ea j−akhkj,i − eai−akhki, j

)
.



Density Perturbations: Planar Symmetry

Variations of the Ricci tensor:

δR00 =
∑

k

(
1
2 ḧkk + ȧkḣkk

)
,

δRi0 =
∑

k

{
1
2 ḣkk,i −

1
2 ȧi hkk,i + 1

2 ȧkhkk,i

+ 1
2 eai−ak

[
(ȧi − ȧk)hik,k − ḣik,k

]}
,



Density Perturbations: Planar Symmetry

Variations of the Ricci tensor δRi j:

δRi j = 1
2 eai+a j

−ḧi j − δi jȧiḣ − ḣi j

∑
k

ȧk

−hi j

äi + ä j − (ȧi − ȧ j)2 + (ȧi + ȧ j)
∑

k

ȧk




+1
2

∑
k

(
hkk,i j + eai+ak−2akhi j,kk − ea j−akh jk,ik − eai−akhik, jk

)
.



Density Perturbations: Planar Symmetry

Newtonian Approximation: Peculiar velocities are small–drop
time derivatives compared to space
derivatives (∂t = v∂x � ∂x since v� 1).

Variation of Einstein Equation in Newtonian Approximation:∑
k

(
ḧkk + 2ȧkḣkk

)
= δρ, (1)∑

k

{
ḣkk,i − ȧihkk,i + ȧkhkk,i + eai−ak

[
(ȧi − ȧk)hik,k − ḣik,k

]}
= 0, (2)∑

k

(
hkk,i j + eai+ak−2akhi j,kk − ea j−akh jk,ik − eai−akhik, jk

)
= 0. (3)



Density Perturbations: Isotropic Case

Newtonian Approximation: Again ∂t = v∂x � ∂x since v� 1.
Variations in Newtonian Approximation: Isotropic implies

a1 = a2 = a3 = ln R so that Ṙ
R = ȧi. With

the definition h = hkk we find

ḧ + 2
Ṙ
R

ḣ = δρ,

ḣ,i − ḣik,k = 0,
h,i j + hi j,kk − h jk,ik − hik, jk = 0.

Compare Padmanabhan, ”Structure
Formation in the Universe” p-224 (recall
we absorb a factor of 8πG into δρ.)



Density Perturbations: Isotropic Solutions

Solving for the Metric Variation hi j: spherical symmetry ansatz

hi j = −
1

4π
∂i∂ j

∫
d3x′

|x − x′|
ḣ, i, j = 1, 2, 3

Newtonian potential due to density contrast:

φ = −
1

4π
ρR2

∫
δ(x′, t)d3x′

|x − x′|

and since ρR3 is constant:

∂(φR)
∂t

= −
1

4π
ρR3

∫
δ̇(x′, t)d3x′

|x − x′|

γ = 1
2 (α + β).

With this relation, Eq. (2) leads to
F ≡ α̇ − 2ȧα = β̇ − 2ḃβ.



Density Perturbations: Isotropic Case

Sachs-Wolfe Effect: Further analysis needed to relate δρ to
temperature variations. Find

δT
T0

= n · (vob − vem) −
1
3

(φ0 − φem)

where vob and vem are the peculiar velocities
of the observer and emitting surface (last
scattering surface) and the last term is due
to the variations of the potential at the
observation point and at the source.



Density Perturbations: Planar Symmetry Solutions

Solving for the Metric Variation hi j: planar symmetry ansatz

hi j = ∂i∂ jα, i, j = 1, 2,
h33 = ∂3∂3β,

hi3 = ∂i∂3γ, i = 1, 2,

where α, β and γ are functions of space-time. Eq. (3) is satisfied by

γ = 1
2 (α + β).

With this relation, Eq. (2) leads to
F ≡ α̇ − 2ȧα = β̇ − 2ḃβ.



Density Perturbations: Planar Symmetry Solutions

From Eq. (1) we find [
e−2a(∂1∂1 + ∂2∂2) + e−2b∂3∂3

]
Ḟ = δρ.

Assuming δρ has an associated potential φ yields

4π
[
e−2a(∂1∂1 + ∂2∂2) + e−2b∂3∂3

]
φ = δρ.

Comparing gives
Ḟ = 4πφ.



Density Perturbations: Planar Symmetry Solutions

Sachs-Wolfe Effect: Further numerical analysis needed to relate
δρ to temperature variations and find(
δT
T0

)
θ

= fθ(n · (vob − vem)) + gθ((φ0 − φem)),

where vob and vem are the peculiar velocities
of the observer and emitting surface (last
scattering surface), and the last term is due
to the variations of the potential at the
observation point and at the source.


