

Inter-satellite Laser Interferometry for Space Science Missions

Hsien-Chi Yeh yexianji@mail.hust.edu.cn School of Physics Huazhong University of Science & Technology

10 March, 2011

Outline

Gravitational Waves Detection

1922

Basic Ideas of General Relativity

Matter tells space how to curve; space tells matter how to move.

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\kappa T_{\mu\nu}$$

What we feel as gravity arises from the curvature of spacetime. Mass causes spacetime to curve, and the curvature determines the paths of freely moving masses.

Predicted Effects of GR:

- > Orbit precession in the perihelion of planets
- > Deflection of light by solar gravity
- Redshift of spectral lines
- Frame dragging
- Gravitational radiation
 - (gravitational waves)

Indirect Evidence of GW

In 1974, PSR B1913+16 was discovered by R. A. Hulse and J. H. Taylor, Jr., of Princeton University

PSR B1913+16 is a pulsar in a binary star system, in orbit with another neutron star around a common center of mass.

Direct GW Detection using Laser Interferometers

Gravitational waves will change the light travel time of both arms (i.e. spatial strain) asymmetrically. Hence a phase shift between two beams could be measured.

LIGO – Laser Interferometer Gravitational-waves Observatory

LIGO Hanford Observatory

LIGO Livingston Observatory

Baseline: 4 km Strain sensitivity: 10⁻²³/Hz^{1/2} Sensing frequency: 40 ~ 1000Hz

LISA: Laser interferometer Space Antenna

Detection of GW with laser interferometry & drag-free control Sources:

- White dwarf binaries
- Binaries of super-massive black holes
- Extreme-mass-ratio spirals

Sensitivity $h < 4 \times 10^{-21}/\text{Hz}^{1/2}$ Freq. GW *f*: 10⁻⁴~0.1Hz

Scientific Goals of Space-based & Ground-based GW Detections

Gravitational Waves Detection around 0.1 Hz

Gravitational Wave Sources in the Deci-Hertz Window

Astrophysical:

- Intermediate-mass black holes (IMBH) binary coalescence
- NS-NS binaries, nonaxisymmetric neutron stars
- Supernovae, black hole-white dwarf, black hole-neutron star binaries in spiraling.
- Burst events parabolic or
 hyperbolic encounter of a black
 hole with a star.

Cosmological:

- Primordial Gravitational Wave
 Background
- Bursts from hypothetical cosmological structures like cosmic string and other topological defects in the early Universe

Missions under consideration around 0.1 Hz

- BBO: most sensitive at 1Hz, resolution: 10⁻²⁶
- DECIGO: most sensitive at 0.1Hz

	Frequency range (Hz)	Arm length	Displacement noise (pm/Hz ^{1/2})	Acceleration noise (ms ⁻² /Hz ^{1/2})
LISA	$10^{-4} \sim 10^{-1}$	5×10 ⁹ m	40	3×10 ⁻¹⁵
Adv. LISA	10 ⁻³ ~ 1	5×10 ⁸ m	0.13	5×10-14

Orbit

HCO: heliocentric orbit
L: 5 million km (5×10⁸ m)
L variance: 5×10⁵ m
Configuration: Equilateral Triangle
Configuration inclined against ecliptic by

Configuration inclined against ecliptic by 60° (thermal stabilization) Trailing the Earth by 20° (50 million km)

Heterodyne Laser Ranging System (transponder using heterodyne OPLL)

Heterodyne Laser Ranging System (transponder using homodyne OPLL)

Shot Noise of Phase Measurement

Telescope diameter *D*: 60cm Laser power P_0 : 12.5W Laser wavelength λ : 1064nm Optical efficiency *s*: 0.3

$$P_{r} = \varepsilon^{2} P_{0} \left(\frac{D^{2}}{L\lambda} \right)^{2} = 5 \times 10^{-7} W \quad \text{(power attenuation} \sim 4 \times 10^{-8})$$
$$\Delta x_{shot} = \left(\frac{1}{2\pi} \right) (hc)^{1/2} \left(\frac{\lambda}{P_{r}} \right)^{1/2} = 1 \times 10^{-13} \, m / \sqrt{Hz}$$

Error Sources of Optical Bench

Cyclic error: < 2 nm

Thermal drift:

n (glass) = 1.5 α_1 (thermal expansion coefficient) = 10⁻⁶ α_2 (thermal coefficient of refractive index) = 10⁻⁶ *d* (OPL in glass) ~ 10 cm $\Delta T = 1 \ \mu \text{K}/\sqrt{\text{Hz}}$

 $|\Delta x = (n-1) \times \alpha_1 \times d \times \Delta T + n \times \alpha_2 \times \Delta T \times d \approx 0.2 \, pm \, / \sqrt{Hz}$

It's better to use ultra-low expansion materials.

Ultra-Stable Optical Bench

Key technologies:

- Optical layout
- Fiber coupling
- ULE material machining ULE, Zerodur
 (α=10⁻⁷~10⁻⁸/K)
- Silicate bonding stress: 10kPa tilt angle: 10µrad position error: 10µm

Resolution of Phase-meter

 $\Delta x = 2.4 \times 10^{-14} \, m \, / \, \sqrt{Hz} \Rightarrow \Delta \phi = 1.4 \times 10^{-7} \, rad \, / \, \sqrt{Hz}$

FPGA-based digital phasemeter

 10^{-2}

Frequency [Hz]

 10^{-1}

10⁰

 10^{-3}

10-4

Pointing Offset and Jitter Errors

$$\Delta x_{\text{pointing}} \approx \delta \frac{\theta_{dc} \theta_{jitter}}{\theta_{div}^2} = \frac{\lambda}{10} \times \frac{\theta_{dc} \theta_{jitter}}{(\lambda / D)^2}$$
$$\theta_{dc} \theta_{jitter} \approx 10 \times \frac{\lambda \Delta x}{D^2} = 6 \times 10^{-19} \, rad^2 \, / \sqrt{Hz}$$

$$\theta_{dc} \sim 3 \times 10^{-9} rad$$

 $\theta_{jitter} \sim 2 \times 10^{-10} rad / \sqrt{Hz}$

- Z-axis range: 20µm
- Positioning precision: 0.1nm
- Pointing-angle range: 10⁻⁵rad
- Pointing-angle precision: 10⁻¹⁰rad

Laser Frequency Instability

- Three-stage system (two active one passive) to achieve overall suppression of ~10¹³
- Running pre-stabilization and arm-locking in series reduces gain (bandwidth) requirements on armlocking.

 $\delta x = \delta x_1 - \delta x_2 = L_1 \frac{\delta v}{v} - L_2 \frac{\delta v}{v} = \Delta x \frac{\delta v}{v} \qquad \delta x \sim 2 \text{ pm/Hz}^{1/2}$

Laser Frequency Stabilization: PDH Scheme

Key factors:

- EOM modulation depth and modulation frequency
- Mode matching of F-P cavity
- Stability of F-P cavity
- Environmental control

AEI experimental result

Comparison between LISA and Adv. LISA

	LISA	Advanced LISA
Laser power	1 W	12.5 W
Diameter of telescope	40 cm	60 cm
Unequal arm length $\Delta L/L$	1%	~ 0.1%
Phase measurement	$3 \times 10^{-5} \text{ rad/Hz}^{1/2}$	1.4×10 ⁻⁷ rad/Hz ^{1/2}
Static offset error in pointing	15 nrad	3 nrad
Pointing jitter	6 nrad/Hz ^{1/2}	0.2 nrad/Hz ^{1/2}
Laser frequency stability	$6 \times 10^{-7} Hz/Hz^{1/2}$	$1 \times 10^{-6} \text{Hz/Hz}^{1/2}$

Earth's Gravity Recovery Mission for Earth Science and Geophysics

GRACE: Overview

Satellite to satellite tracking (SST):

- Separation: 220 km
- Altitude: ~500 km (decline orbit)
- Measurement: microwaves in K-band (10µm) GPS (1mm)

GRACE, twin satellites launched in March 17, 2002. [2] GRACE Global Gravity Animation [2]

Greenland Ice Mass Change 2003-2008 [2]

Resolution of Gravity Anomalies

Challenge of Future Satellite Missions

Doppler Frequency Shift and Range-Rate Measurement

Homodyne OPLL: $\omega_S(t) = \omega_M(t - \tau_1) \times \left[1 - u(t - \tau_1)/c\right]$

$$\omega_{b}(t) = \omega_{M}(t) - \omega_{S}(t - \tau_{2}) \cdot [1 - u(t - \tau_{2})/c]$$

= $[\omega_{M}(t) - \omega_{M}(t - \tau_{2} - \tau_{1})] + \omega_{M}(t - \tau_{2} - \tau_{1}) \cdot [\frac{u(t - \tau_{2} - \tau_{1})}{c} + \frac{u(t - \tau_{2})}{c}]$

Phase Shift and Range Measurement

Slave
satellite
$$\phi_S(t) \approx \omega_M(t' - \tau_1) \cdot [1 - \frac{u(t' - \tau_1)}{c}] \cdot \tau_1 + \phi_M(t - \tau_1) + \phi_{OPLL}$$

Master
satellite
$$\phi_D(t) = \omega_S(t - \tau_2) \cdot [1 - \frac{u(t - \tau_2)}{c}] \cdot \tau_2 + \phi_S(t - \tau_2)$$

$$\phi_{D}(t) = \omega_{M}(t - \tau_{2} - \tau_{1}) \cdot (\tau_{2} + \tau_{1}) + \phi_{M}(t - \tau_{2} - \tau_{1}) + \phi_{OPLL}$$

$$-\omega_{M}(t - \tau_{2} - \tau_{1}) \cdot \frac{u(t - \tau_{2} - \tau_{1})}{c} \cdot (\tau_{1} + \tau_{2}) - \omega_{M}(t - \tau_{2} - \tau_{1}) \cdot \frac{u(t - \tau_{2})}{c} \cdot \tau_{2}$$

$$\Delta L = \left(\frac{c}{2\omega_{M}}\right) \left[\Delta \phi_{D}(t) - 2L \frac{\Delta \omega_{M}}{c} - \Delta \phi_{OPLL}\right]$$

Error Sources of Laser Ranging System

- Laser frequency noiseShot noise

 - Optical cyclic error
- **Optical bench** Thermal drift of optical bench
 - Photodetector noise
 - **Phase** Phase-meter resolution
- **measurement** OPLL residual noise
- **Pointing control** Laser beam pointing and jitter errors
 - Environment
- Refractive index fluctuation
- Ionosphere effect ullet

Experimental Conditions for Earth's Gravity Mapping

Inter-satellite distance L = 100 km Relative speed between satellites v = 10 m/s Laser beam divergence angle $\theta_{div} = 10^{-3}$ rad Laser beam pointing error $\theta_{dc} = 10^{-4}$ rad Laser power $P_0 = 1.0$ W Laser wavelength $\lambda = 1064$ nm ($f = 2.8 \times 10^{14}$ Hz) Temperature variation $\Delta T = 0.01$ K/ \sqrt{Hz}

Error Budget

Major Error Source	Estimated error
Pre-stabilized laser: $\Delta f < 20$ Hz/Hz ^{1/2}	7 nm/Hz ^{1/2}
Stable optical bench: (1) thermal control: $\Delta T = 0.001$ K (2) optical non-linearity (cyclic error)	2 nm/Hz ^{1/2} 2 nm
Divergence angle of laser beam: $\theta_{div} \sim 10^{-3} rad$ Pointing control: $\theta_{dc} \sim 5 \times 10^{-4} rad, \ \theta_{jit} \sim 10^{-4} rad/Hz^{1/2}$	6.5 nm/Hz ^{1/2}
Phasemeter resolution: 6×10 ⁻³ rad/Hz ^{1/2} @ 0.1Hz	1 nm/Hz ^{1/2}
Shot noise: $P_0 = 1$ W, $L = 100$ km	<1 pm/Hz ^{1/2}
(RSS) Total	10 nm/Hz ^{1/2}

Beam Pointing and Jitter Errors

$$\Delta x = \frac{4\pi^2}{32} \delta \frac{\theta_{dc} \theta_{jitter}}{\theta_{div}^2}$$

$$=\frac{4\pi^{2}}{32}\times\frac{\lambda}{10}\times\frac{5\times10^{-4}\,rad\times10^{-4}\,rad/\sqrt{Hz}}{(10^{-3}\,rad)^{2}}=6.5nm$$

- Z-axis range: 220µm
- Positioning precision: 0.2µm
- Pointing-angle range: 10⁻³rad
- Pointing-angle precision: 10⁻⁵rad

Heterodyne Laser Ranging System (transponder using homodyne OPLL)

Prototype of Laser Ranging System Installed at HUST

Preliminary Results of the Prototype of Laser Ranging System

Scope and Roadmap

Inter-Satellite Laser Interferometry

Roadmap

- Laser: $\Delta f \sim 1 Hz / \sqrt{Hz} @ 1mHz$ (space-qualified Nd:YAG)
- Phasemeter: $\phi_{res} \sim 1 \text{ pm } (6 \times 10^{-6} \text{ rad})$
- Optical phase locking: $\phi_{err} < 10^{-5}$ rad/ \sqrt{Hz}
- Optical bench:
 - nonlinearity < 1 pm
 - thermal drift < 10 nm/K
- Pointing control

2010

- $\theta_{dc} \sim 10^{-6}$ rad
- $\theta_{\text{iitter}} < 10^{-7} \text{ rad}/\sqrt{\text{Hz}}$
- Inertial sensor: $2 \times 10^{-12} \text{ m/s}^2 / \sqrt{\text{Hz}}$

2015

• Gradiometer: $6 \text{ mE}/\sqrt{\text{Hz}}$

- Laser: $\Delta f \sim 1 Hz / \sqrt{Hz@1mHz}$
- Phasemeter: $\phi_{res} \sim 10^{-7}$ rad
- Optical phase locking: $\phi_{err} < 10^{-7}$ rad/ \sqrt{Hz}
- Pointing control
 - $\theta_{dc} \sim 3 \text{ nrad}$
 - $\theta_{\text{jitter}} < 0.2 \text{ nrad}/\sqrt{\text{Hz}}$
- Inertial sensor: $5 \times 10^{-14} \text{ m/s}^2 / \sqrt{\text{Hz}}$
- Thermal control: $5 \times 10^{-7} \text{ K/}\sqrt{\text{Hz}}$
- ••••

2020

• Engineering model of Adv. LISA

2025

Conclusions

- GW detection (long-term goal), and Earths gravity recovery (short-term goal): We development all key technologies step by step.
- GW detection is a challenging mission that provides a strong driving force to develop the state-of-the-arts technologies. Many scientists and engineers will be well-trained during the whole developing stage.

Thank you for your attentions!