Dark Matter Search with sub-keV Germanium Detectors

Overview (Program; Facilities; Detectors)
Highlights : Direct WIMP searches
New Results [arXiv: 1303.0925]
Status & Plans

Lin, Shin-Ted / 9 May 2013 @NCTS-NTHU Hsin-Chu

TEXONO + CDEX Collaboration

PResearch Program: Low Energy Neutrino and Dark Matter Physics

TEXONO: Taiwan EXperiment On NeutrinO

[Since 1997]

- Taiwan (AS, INER, KSNPS, NTHU)
- + Turkey (DEU, METU)
- + India (BHU)

CDEX: China Dark Matter EXperiment

[birth 2009]

China (THU, SUC, IHEP, CIAE, NKU, EDHC)

Kuo Sheng Reactor Neutrino Laboratory

Powerful collaboration. Scientists from Taiwan and mainland China are studying neutrino emissions from this nuclear power plant outside Taipei.

- 28 m from core#1 @ 2.9 GW
- Shallow site : ~30 *mwe* overburden
- ~10 m below ground level

Kuo Sheng Reactor Neutrino Laboratory

Inner Target Volume

Front View (cosmic vetos, shieldings, control room)

Configuration: Modest yet Unique Flexible Design: Allows different detectors conf. for different physics

China Jin-Ping Underground Laboratory(CJPL)

- 2500 m rock overburden, drive-in road tunnel access
- ◎ 6X6X40 m [THU & EHDC]
- DM-Search: 20 g ULEGe & 1 kg PCGe

CJPL Excavation 2009/7— 2010/4

2010/01/27

2010/04/24

Current Research Theme: "sub-keV" Ge Detectors

⁸ Physics Goals for O[100 eV threhold⊕1 kg mass⊕1 cpkkd] detector : • vN coherent scattering • Low-mass WIMP searches • neutrino magnetic moments • Open & Explore new detector window & detection channel & physics parameter space

Spin-independent - update till March 2013

From Aprile et al.,+ Gondolo 2012

WIMP interpretation of DAMA data

The theoretical prejudice continued till 2003...

WIMP interpretation of DAMA data

The theoretical prejudice continued till 2003...

ST Lin et al, (TEXONO) PRD R(2009)

WIMP interpretation of DAMA data

The theoretical prejudice continued till 2003...

Kopp, Schwetz, Zupan 2011

Can it be compatible?

> Do not couple to Xe?

"isospin-violating" Dark Matter (Kurylov, Kamionkowski 2003; Giuliani 2005; Cotta et al 2009; Chang et al 2010; Kang et al 2010; Feng et al 2011)

Strong Dependence on astrophysics model?

Xe is heavier and only sensitive to the tails of

velocity (Fox, Lie, Weiner 1011.1915; Frandsen et al 1111.0292; Gondolo, Gelmini 1202.6359)

Calibration?

Efficiencies and energy resolution near threshold are essential (Collar 1106.0653v3) ;Quenching factor

Other models?

velocity-dependence form-factor; Inelastic Dark Matter, Axions, Leptophilic Dark Matter ...

Can it be compatible?

Do not couple to Xe?

"isospin-violating" Dark Matter (Kurylov, Kamionkowski 2003; Giuliani 2005; Cotta et al 2009; Chang et al 2010; Kang et al 2010; Feng et al 2011)

Strong Dependence on astrophysics model?

Xe is heavier and only sensitive to the tails of

velocity (Fox, Lie, Weiner 1011.1915; Frandsen et al 1111.0292; Gondolo, Gelmini 1202.6359)

Calibration?

Efficiencies and energy resolution near threshold are essential (Collar 1106.0653v3) Quenching factor

Other models?

velocity-dependence form-factor; Inelastic Dark Matter, Axions, Leptophilic Dark Matter ...

Conclusions : Confusion !

Special/Unique Features

- **✓** sub-keV sensitivities ⇒studies of low-mass WIMPs
- ✓ Anti-Compton detectors (+ cosmic-ray scintillators for KSNL) ⇒
 - **BOTH vetos & tags** \Rightarrow in situ (n, γ) calibration & diagnostics
- *I BOTH* shallow & deep sites ⇒ diagnostic tools
- *⊠* BOTH PPCGe & NPCGe ⇔ diagnostic tools
- ✓ Matured technology & compact solid detectors ⇒ stable operation ⇒ modulation studies (@ CJPL)
- ✓ Sensitive to gamma-absorption and electron recoils ⇒ studies of other interaction channels (e.g. axions)
- ✓ Good resolution ⇒ studies of structures (peaks, end-point .. etc) down to sub-keV range ⇒ background diagnostics, probe different DM-models and interaction channels.
- ✓ Quenching factor (conversion of nuclear recoil energy to ionization yields) in germanium is better known, down to sub-keVee

Analysis : Event Selection CRV, ACV Cut

Candidate events : survive Anti-Compton (ACV) and Cosmic-Ray (CRV) vetos

--- Efficiency evaluated by Random trigger events.

Suppress Electronic Noise

PSD for Surface Vs Bulk Events @ PCGe

n+ "inactive layer" is not totally dead; signals finite but slower rise time ACV+CRT events (neutron rich) samples do not show surface band Understand/Measure Efficiencies and Suppression Factors

New Results [arXiv:1303.0925]

Configurations:

*** 39.5 kg-days of data @ KSNL**

***** Baseline design with NaI(TI) AC & active CR vetos

*** PPCGe , 840 g fiducial mass**

* Analysis above electronic noise edge of 500-eV

Basic (Previously Used) Selection Criteria:

- ightarrow Physics Vs Electronics Noise (PN) :
 - pedestal tails, microphonics, preamp-reset induced
 - Via pulse shape analysis & timing
 - WIMP-eff ~ survival of doubly-tagged ACT+CRT events
- **Anti-Compton vetos (ACV) :** Nal(TI) anti-coincidence
 - WIMP-eff ~ survival of random trigger (RT) events
- **Cosmic-Ray vetos (CRV)** :
 - WIMP-eff ~ survival of RT
 - CR-rejection eff : survival of reference samples with NaI(TI)>20 MeV

Bulk Vs Surface (BS) Events Selection & Efficiencies

Valid scheme should produce physics rates insensitive to location

"Calibration" = measure energy-dependent signal-retaining (ε_{BS}) & background-suppressing (λ_{BS}) efficiencies, such that [B,S=real; B'S'=measured]

$$B' = \epsilon_{\rm BS} \cdot B + (1 - \lambda_{\rm BS}) \cdot S$$
$$S' = (1 - \epsilon_{\rm BS}) \cdot B + \lambda_{\rm BS} \cdot S$$

Approach: Identify *at least* two calibration data where (B,S) are known & (B',S') measured \bigoplus solve coupled equation for $(\varepsilon_{BS}, \lambda_{BS}) \Rightarrow$ correct physics (B'S') to get (B,S)

Three complementary [different depth distributions] calibration data:

- ✓ Very Surface-rich low-energy γ (²⁴¹Am, 60 keV) ; B=simulation
- Surface-rich high-energy γ (¹³⁷Cs, 660 keV); B=simulation
- Bulk-rich cosmic-induced high energy neutrons by ACV+CRT tagging ; B=same tag from NPCGe

Recoil Spectrum

"Candidate Events" = ACV+CRV+B

- > ACV+CRV+B' + (ε_{BS} , λ_{BS}) correction
- insensitive to exact BS-cut location
- Subtract flat γ background & L-X-ray

residual spectrum for placing WIMP constraints

➡ ∃ not-yet-accounted-for sub-keV events

Status & Plans

2012+: 1-kg class single module PPCGe & NPCGe @ KSNL & CJPL, with baseline design 10-kg range PCGe array , with Liquid Argon Anti-Compton ; Acquisition of Ge and LAr detector technology ; Electronics Improvement R&D ₽ 2015 & Beyond: explore 100 kg−1 ton scale experiment ; addition of Double Beta Decay ; CJPL Extensions (10+ space) 2010+: characterize background at CJPL ; set up low background material screening facilities >>> When background & threshold adequately improved $\Rightarrow \Psi vN$ coherent scattering @ KSNL

Design of CDEX-10 : with LAr Anti-Compton

