# Non-perturbative study of the Higgs-Yukawa model using lattice field theory

Work in progress and Adv. High Energy Phys. 2013 (2013) 875612

C.-J. David Lin

National Chiao-Tung University, Taiwan

NTHU

16/05/2013

#### Collaborators

- John Bulava (CERN Trinity College Dublin)
- Philipp Gerhold (Humboldt U. Industry)
- Prasad Hegde (National Taiwan U.)
- George W.-S. Hou (National Taiwan U.)
- Karl Jansen (DESY Zeuthen)
- Jim Kallarackal (Humboldt U. Industry)
- Bastian Knippschild (National Taiwan U. Bonn U.)
- Kei-Ichi Nagai (Nagoya U.)
- Attila Nagy (Humboldt U.)
- Kenji Ogawa (Chung-Yuan Christian U., Taiwan)
- Brian Smigielski (National Taiwan U. College teacher)

# Outline

- Motivation.
- Do Higgs and Yukawa live close to a critical point?
   --- ideas and strategy (non-chiral example).
- Preliminary results (chiral theory) from our ongoing study.
- Outlook.

#### Motivation



P. Gerhold and K. Jansen, 2011

\* Constraints on the masses of extra-generation fermions from the 125 GeV scalar.

# The I25 GeV scalar

• It may be a dilaton in a strongly-coupled theory:

Does it have to be walking technicolour?
 HY model exhibits quasi scale inavariance?

P.Q. Hung and C. Xiong, 2009

• It may be the Standard Model Higgs:

Evade the hierarchy problem w/o SUSY?

• Both require non-perturbative studies:

Second-order non-thermal phase transitions.

Hierarchy and triviality problem: perturbation theory (misleading)

- Scalar mass operator is of dimension 2 and is not protected by chiral symmetry.
- The one-loop beta-functions for the scalar and Yukawa coupling are positive.
- Perturbation theory over-simplifies the problem and may lead to misleading statements.

# The scalar field theory as a spin model Scalar theory on the lattice (a=1),

$$S_{\varphi} = -\sum_{x,\mu} \varphi_x^{\alpha} \varphi_{x+\hat{\mu}}^{\alpha} + \sum_x \left[ \frac{1}{2} (2d+m_0^2) \varphi_x^{\alpha} \varphi_x^{\alpha} + \frac{1}{4} \lambda_0 (\varphi_x^{\alpha} \varphi_x^{\alpha})^2 \right]$$

• Perform the change of variables,

$$\Phi^{\alpha} = \sqrt{2\kappa}\phi^{\alpha}, \quad \lambda_0 = \frac{\hat{\lambda}}{\kappa^2}, \quad \bar{m}_0^2 = \frac{1 - 2\hat{\lambda} - 8\kappa}{\kappa}$$

Bulk phase structure of the resulting spin model,

$$Z_{\phi} = \int \prod_{x,\alpha} d\phi_x^{\alpha} \exp(-S_{\phi}) = \int \prod_{x,\alpha} d\mu(\phi_x^{\alpha}) \exp\left(2\kappa \sum_{x,\mu} \phi_x^{\alpha} \phi_{x+\hat{\mu}}^{\alpha}\right),$$
  
$$d\mu(\phi_x^{\alpha}) = d\phi_x^{\alpha} \exp\left[-\phi_x^{\alpha} \phi_x^{\alpha} - \hat{\lambda}(\phi_x^{\alpha} \phi_x^{\alpha} - 1)^2\right].$$

#### Fermions

- The overlap fermion (exact chiral symmetry).
- The lattice Yukawa operator takes the same form as its continuum counterpart.
- Extremely computationally demanding.

#### What is it like with the Yukawa coupling



\* Question: Is the theory non-trivial in 4D?

#### At stronger bare Yukawa coupling



# The bulk phase structure (3D)



Only the Gfp remains in 4D scalar sector.... \*The hierarchy problem is a consequence of triviality in 4D

#### The 4D bulk phase structure



Evidence for a tri-critical point? If so, is the Yukawa coupling non-trivial there?

### Our target

- Study the chiral theory.
- Investigate the phase structure in detail.
- Make contact with phenomenology.

# Finite-size scaling (a'la M. Fisher)

- Renormalisation Group near fixed points.
- Central statement: "Universal" function

$$\frac{P_L(t)}{P_{\infty}(t)} = f\left(\frac{L}{\xi_{\infty}(t)}\right) \text{, with observable P.}$$

Magnetic susceptibility and Binder's cumulant:

$$\chi_m(t,L) \cdot L_s^{-\gamma/\nu} = g\left(\hat{t}L_s^{1/\nu}\right), \text{ with } \hat{t} = \left[T/\left(T_c^{(L=\infty)} - C \cdot L_s^{-b}\right) - 1\right]$$
$$Q_L = g_{Q_L}\left(tL^{1/\nu}\right)$$

γ and ν are the critical exponents.
 How different are they from the mean-field values?

#### 4D scaling test, susceptibility



|                 | $T_c^{(L=\infty)}$ | u         | $\gamma$  | C        | b        | fit interval  |
|-----------------|--------------------|-----------|-----------|----------|----------|---------------|
| $\kappa = 0.06$ | 18.119(67)         | 0.576(28) | 1.038(30) | 4.7(1.6) | 1.95(18) | 17.5, 20.0    |
| $\kappa = 0.00$ | 16.676(15)         | 0.541(22) | 0.996(15) | 10(2)    | 2.42(10) | 15.0, 19.0    |
| O(4)            | 0.304268(27)       | 0.499(12) | 1.086(19) | N/A      | N/A      | 0.300,  0.308 |



#### Concluding remarks and outlook

- Evidence for novel FP in the HY model.
- Complication in 4d (work in progress)

Gaussian FP in the scalar sector.
 Does it remain in the HY model?
 Logarithmic corrections to FSS.

• Spectrum calculation (on-going work).