Searching for a flavor changing decay t \rightarrow c h at the LHC

Masaya Kohda (National Taiwan Univ.) 甲田 昌也

Based on:

K.-F. Chen, W.-S. Hou, C. Kao, and MK, arXiv:1304.8037

June 13, 2013 @ NCTS/NTHU Thursday HEP seminar

Historical discovery of a new boson with mass ~126 GeV at LHC in 2012

Pool photo by Denis Balibouse

So far, consistent with the SM Higgs boson

• ATLAS & CMS results with 7 TeV & 8 TeV data

But, not the end of the story

 The 126 GeV boson is the genuine Higgs boson of the standard model?

 Any other Higgs bosons, like repetition of quarks and leptons?

This talk: Two Higgs Doublet Model

Two Higgs Doublet Model with general Yukawa interactions (Type-III 2HDM)

- Flavor-Changing-Neutral-Higgs (FCNH) interactions (tree level) e.g., $\lambda_{ds}h\bar{ds} = \lambda_{ct}h\bar{c}t$
 - FCNH in d-type sector is severely constrained by flavor phys.
 - In usual Type-II 2HDM, absent due to discrete symmetry S.L. Glashow and S. Weinberg (1977)
- A way to control FCNH in 2HDM-III: Cheng-Sher ansatz

 $\lambda_{ij} \sim \frac{\sqrt{m_i m_j}}{v} \, {\rm x \, (mixing \, angle)} \, {\rm T.P. \, Cheng \, and \, M. \, Sher \, (1987)}$

suppressed d-type FCNH, but allow *large* h-t-c coupling!

- **Our approach**: consider large h-t-c coupling, but not assume CS
 - \succ FCNH couplings are free parameters \leftarrow constrained by data
 - > also motivated by BaBar anomaly in B $\rightarrow D^{(*)}\tau v$ decay (discussed later)

$t \rightarrow c h decay$

 Immediate consequence of large h-t-c coupling & 126 GeV (SM-like) Higgs boson (h) is t → c h decay

$$\frac{\Gamma(t \to ch)}{\Gamma(t \to bW)} \simeq 0.57 |\lambda_{ct}|^2 \qquad \begin{array}{l} \Gamma(t \to ch): \ \mathrm{LO} \\ \Gamma(t \to bW): \ \mathrm{NLO} \end{array}$$

- In SM, loop-induced t ightarrow c h is highly suppressed by GIM & CKM $\mathcal{B}(t \to ch) \simeq 3 imes 10^{-15}$ J.A. Aguilar-Saavedra (2004)
- So, t \rightarrow c h is a good place to see New Physics

Plan of this talk

- Introduction
- Type-III Two Higgs Doublet Model (2HDM-III)
- Flavor Physics in 2HDM-III

> BaBar anomaly in B \rightarrow D^(*) $\tau \nu$

- $t \rightarrow c h$ search at the LHC
- Summary and discussion

Type-III Two Higgs Doublet Model

Following, Mahmoudi and Stal, PRD (2010)

• introduce two Higgs doublets Φ_1, Φ_2 with VEVs:

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v_1/\sqrt{2} \end{pmatrix} \qquad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v_2/\sqrt{2} \end{pmatrix}$$

most general Yukawa interaction terms (quark sector)

$$\mathcal{L}_Y = -\overline{Q'_L}(\eta_1^d \Phi_1 + \eta_2^d \Phi_2)d'_R - \overline{Q'_L}(\eta_1^u \tilde{\Phi}_1 + \eta_2^u \tilde{\Phi}_2)u'_R + \text{H.c.}$$

• can choose other basis for Φ_1 , Φ_2 via a rotation in "Higgs space" $\begin{pmatrix} \Phi'_1 \\ \Phi'_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$

> $\tan\beta = v_2/v_1$ depends on basis, thus, not physical parameter > This rotation is not allowed in 2HDM-II due to Z₂-symmetry

Yukawa terms in Higgs basis

• it is useful to move to "Higgs basis" by the rotation by angle β

$$\langle \Phi_1^H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \quad \langle \Phi_2^H \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v = \sqrt{v_1^2 + v_2^2} \simeq 246 \text{ GeV}$$

then, Yukawa terms become

 $\mathcal{L}_Y = -\overline{Q'_L} (\kappa_0^d \Phi_1^H + \rho_0^d \Phi_2^H) d'_R - \overline{Q'_L} (\kappa_0^u \tilde{\Phi}_1^H + \rho_0^u \tilde{\Phi}_2^H) u'_R + \text{H.c.}$

> new Yukawa matrices (f = u, d)

$$\kappa_0^f \equiv \eta_1^f \cos \beta + \eta_2^f \sin \beta, \quad \rho_0^f \equiv -\eta_1^f \sin \beta + \eta_2^f \cos \beta$$

Yukawa terms in Higgs basis

• it is useful to move to "Higgs basis" by the rotation by angle β

$$\langle \Phi_1^H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \quad \langle \Phi_2^H \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v = \sqrt{v_1^2 + v_2^2} \simeq 246 \text{ GeV}$$

then, Yukawa terms become

$$\mathcal{L}_{Y} = -\overline{Q'_{L}} (\kappa_{0}^{d} \Phi_{1}^{H} + \rho_{0}^{d} \Phi_{2}^{H}) d'_{R} - \overline{Q'_{L}} (\kappa_{0}^{u} \tilde{\Phi}_{1}^{H} + \rho_{0}^{u} \tilde{\Phi}_{2}^{H}) u'_{R} + \text{H.c.}$$
mass matrices

> new Yukawa matrices (f = u, d) $\kappa_0^f \equiv \eta_1^f \cos\beta + \eta_2^f \sin\beta, \quad \rho_0^f \equiv -\eta_1^f \sin\beta + \eta_2^f \cos\beta$

Yukawa terms in Higgs basis

• it is useful to move to "Higgs basis" by the rotation by angle β

$$\langle \Phi_1^H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \quad \langle \Phi_2^H \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v = \sqrt{v_1^2 + v_2^2} \simeq 246 \text{ GeV}$$

then, Yukawa terms become

 $\mathcal{L}_{Y} = -\overline{Q'_{L}} (\kappa_{0}^{d} \Phi_{1}^{H} + (\rho_{0}^{d} \Phi_{2}^{H}) d'_{R} - \overline{Q'_{L}} (\kappa_{0}^{u} \tilde{\Phi}_{1}^{H} + (\rho_{0}^{u} \tilde{\Phi}_{2}^{H}) u'_{R} + \text{H.c.}$ mass matrices
free parameters
(non-diagonal in general)
mass matrices (f = u, d)

$$\kappa_0^f \equiv \eta_1^f \cos\beta + \eta_2^f \sin\beta, \quad \rho_0^f \equiv -\eta_1^f \sin\beta + \eta_2^f \cos\beta$$

Yukawa terms in mass eigenstate basis

 $\mathcal{L}_Y^{\mathrm{phys}} =$

$$-\frac{1}{\sqrt{2}}\bar{d}\left(\kappa^{d}s_{\beta-\alpha}+\rho^{d}c_{\beta-\alpha}\right)dh-\frac{1}{\sqrt{2}}\bar{d}\left(\kappa^{d}c_{\beta-\alpha}-\rho^{d}s_{\beta-\alpha}\right)dH-\frac{i}{\sqrt{2}}\bar{d}\rho^{d}\gamma_{5}dA$$
$$-\frac{1}{\sqrt{2}}\bar{u}\left(\kappa^{u}s_{\beta-\alpha}+\rho^{u}c_{\beta-\alpha}\right)uh-\frac{1}{\sqrt{2}}\bar{u}\left(\kappa^{u}c_{\beta-\alpha}-\rho^{u}s_{\beta-\alpha}\right)uH+\frac{i}{\sqrt{2}}\bar{u}\rho^{u}\gamma_{5}uA$$

$$-\left[\bar{u}\left(V\rho^d P_R - \rho^u V P_L\right)dH^+ + \text{H.c.}\right]$$

- assume CP-conservation in Higgs potential
 CP-even Higgs: h, H CP-odd Higgs: A Charged Higgs: H⁺
- assume h is the 126 GeV boson
- physical mixing parameter (keep Type-II notation) $s_{\beta-\alpha} \equiv \sin(\beta-\alpha)$ $c_{\beta-\alpha} \equiv \cos(\beta-\alpha)$

• assume
$$(\rho^f)^\dagger = \rho^f$$
 (f = u, d)

Yukawa terms in mass eigenstate hasis

- assume CP-conservation in Higgs potential
 CP-even Higgs: h, H CP-odd Higgs: A Charged Higgs: H⁺
- assume h is the 126 GeV boson
- physical mixing parameter (keep Type-II notation) $s_{\beta-\alpha} \equiv \sin(\beta-\alpha)$ $c_{\beta-\alpha} \equiv \cos(\beta-\alpha)$

• assume
$$(\rho^f)^\dagger = \rho^f$$
 (f = u, d)

Decoupling limit

Gunion and Haber, PRD (2003)

• decoupling limit:

 $s_{\beta-\alpha} \equiv \sin(\beta-\alpha) \rightarrow \mathbf{1} \qquad c_{\beta-\alpha} \equiv \cos(\beta-\alpha) \rightarrow \mathbf{0}$ $\mathcal{L}_{Y}^{\text{phys}} = -\frac{1}{\sqrt{2}} \bar{d} \left(\kappa^{d} s_{\beta-\alpha} + \rho^{d} s_{\beta-\alpha}\right) dh - \frac{1}{\sqrt{2}} \bar{d} \left(\kappa^{d} s_{\beta-\alpha} - \rho^{d} s_{\beta-\alpha}\right) dH - \frac{i}{\sqrt{2}} \bar{d} \rho^{d} \gamma_{5} dA$ $-\frac{1}{\sqrt{2}} \bar{u} \left(\kappa^{u} s_{\beta-\alpha} + \rho^{u} s_{\beta-\alpha}\right) uh - \frac{1}{\sqrt{2}} \bar{u} \left(\kappa^{u} s_{\beta-\alpha} - \rho^{u} s_{\beta-\alpha}\right) uH + \frac{i}{\sqrt{2}} \bar{u} \rho^{u} \gamma_{5} uA$ $- \left[\bar{u} \left(V \rho^{d} P_{R} - \rho^{u} V P_{L} \right) dH^{+} + \text{H.c.} \right]$

- No FCNH coupling for "SM Higgs boson" h
- Only extra scalars, H, A, H⁺ have FCNH coupligs

• We keep finite
$$c_{\beta-lpha}$$
 to study t $ightarrow$ ch

$B(t \rightarrow c h)$ in 2HDM-III

$B(t \rightarrow c h)$ in 2HDM-III

Flavor Physics in 2HDM-III

BaBar anomaly in B \rightarrow D^(*) $\tau \nu$

BaBar, PRL (2012)

measured quantities

$$\mathcal{R}(D) = \frac{\Gamma(B \to D\tau^- \bar{\nu})}{\Gamma(\bar{B} \to D\ell^- \bar{\nu})} \qquad \mathcal{R}(D^*) = \frac{\Gamma(\bar{B} \to D^* \tau^- \bar{\nu})}{\Gamma(\bar{B} \to D^* \ell^- \bar{\nu})} \qquad \ell = e \text{ or } \mu$$

both R(D) and R(D*) deviate from SM prediction

	R(D)	R(D*)
BABAR	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

combo: 3.4 σ deviation from SM

Implication for Type-II 2HDM

however, the combination of R(D) and R(D*) excludes
 2HDM-II with 99.8% C.L.! [assuming m_{H+} > 10 GeV]

$$\begin{array}{c|c} (V\rho^d)_{cb}P_R & -(\rho^u V)_{cb}P_L \\ \hline \simeq V_{cb}\rho_{bb} & << & \simeq V_{tb}\rho_{ct} \\ b & & & c \\ \hline H^{-} & & & c \\ \hline & & & & \rho_{\tau\tau} & & \\ & & & & v_{\tau} \end{array}$$

$$\begin{array}{c|c} (V\rho^d)_{cb}P_R & -(\rho^u V)_{cb}P_L \\ \hline \simeq V_{cb}\rho_{bb} & << & \simeq V_{tb}\rho_{ct} \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ H^- & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

- absent in Type-II
 - driving force to explain
 BaBar anomaly

More general allowed region

Chen, Hou, Kao and MK, arXiv:1304.8037

bound from h $\rightarrow \tau \tau$ (VBF) data (within a factor of 2 from SM at 95%CL) ATLAS-CONF-2012-160

More general allowed region

 $\rho_{\rm ct} \sim 10 \rightarrow$ nonperturbative!

Chen, Hou, Kao and MK, arXiv:1304.8037

ATLAS-CONF-2012-160

More general allowed region 304.8037 $\rho_{\rm ct} \sim 10 \rightarrow$ nonperturbative! **Detach from BaBar anomaly** 10 $\cos(\beta - \alpha) = 0.2$ 5 $\mathcal{R}(D)$ $\mathcal{R}(D^*)$ $m_{H^+} = 700 \text{ GeV}$ ho_{ct} 1 σ allowed region $h \rightarrow \tau \tau$ -5 $h \rightarrow \tau \tau$ -10-0.20.2 -0.3-0.10.00.3 0.1 $\rho_{\tau\tau}$

bound from h $\rightarrow \tau \tau$ (VBF) data (within a factor of 2 from SM at 95%CL) ATLAS-CONF-2012-160

b \rightarrow s γ bound with ρ_{ct} = 1

Notation follows, Ciuchini et al., NPB (1998)

 ρ_{tt}

$t \rightarrow c h$ search at the LHC

Search for t \rightarrow c h in top-anti-top events

• tt(bar) production cross section is large $\sigma_{t\bar{t}} = 220 \text{ pb}$ [LHC8] Czakon and Mitov, JHEP (2013)

•
$$pp \rightarrow t\bar{t} \rightarrow bWch \rightarrow h + 4jets / h + 2jets + I + MET$$

 $\sigma(pp \rightarrow t\bar{t} \rightarrow bWch) \sim 9 \text{ pb} \times \left[\frac{\mathcal{B}(t \rightarrow ch)}{0.02}\right]$ [LHC8]
vs. $\sigma_{gg \rightarrow h} \sim 19 \text{ pb}$ [LHC8]

• may show up in current LHC data if $B(t \rightarrow ch) \sim 2\%$

Any extra jets in $h \rightarrow ZZ^* \rightarrow 4l$ events?

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002TWiki

Use of other Higgs decay modes

• h \rightarrow WW* & $\tau\tau$ Craig et al., PRD (2012)

> study of multi-lepton final states using CMS 7TeV data:
 B(t→ch) < 2.7% ... can be updated w/ latest data

- $h \rightarrow bb$ C. Kao, H.-Y. Cheng, W.-S. Hou and J. Sayre, PLB (2012)
 - > Signal: $pp \rightarrow t\bar{t} \rightarrow bWch \rightarrow bbb + c + \ell\nu$
 - With full LHC8 data, 5 σ discovery is possible for B(t→ch) > 0.3% [for SM-like B(h→bb)]
- h $\rightarrow \gamma \gamma$
 - Our method may be applied, but not so clean?

Discussions

- Properties of the light Higgs h can be modified in 2HDM-III
- Need simultaneous study of t \rightarrow c h and Higgs properties (not done in our study)
- Light Higgs properties when $\rho_{ct} \sim 1$ with small finite $\cos(\beta \alpha)$

	$\mathcal{B}^{ ext{SM}}$	$\Gamma^{\mathbf{SM}}[N]$	leV] Γ	Comment
WW^*	21.5%	0.98	hard to change	$\sin(\beta - \alpha) \simeq 1$
ZZ^*	2.7%	0.12	hard to change	$\sin(\beta - \alpha) \simeq 1$
$\gamma\gamma$	0.24%	0.011	hard to change	W-loop dom.
bb	59.4%	2.70	hard to change	$b \to s\gamma$
au au	5.7%	0.26	within fac. 2	direct
cc	2.6%	0.12	up to $\sim \Gamma_{b\bar{b}}$	not measured
				$(\rho_{cc} \lesssim 0.2) \leftarrow$
gg	7.7%	0.35	up to fac. 2	$\rho_{tt} \sim 1$

Crivellin et al., arXiv:1303.5877

Summary

- It is of great interest to search for the link between the top quark (t) and the Higgs boson (h)
- Large t-c-h coupling has great impact on flavor physics
- Existing LHC data can already probe B(t → ch) at 1% level by various methods
- Actual experimental studies will provide important information for the FCNH couplings
- A discovery of t → ch with present data would suggest the existence of an extended Higgs sector beyond the usual 2HDM-II implied by MSSM