Anomaly in pion-induced **Drell-Yan processes** Hsiang-nan Li (李湘楠) Academia Sinica Presented at NTHU Mar. 14, 2013

Outlines

- Introduction
- Violation of Lam-Tung relation
- Resolutions in the literature
- More relevant observations
- Pion-induced Drell-Yan processes
- Summary

Introduction

- Drell-Yan is one of most intensively studied processes in QCD
- Data have been used to extract various PDF, TMD (unpolarized and polarized)
- But anomaly still exists since 80's:
- Lam-Tung relation, supposed to be obeyed by lepton angular distributions, is violated in pion-induced Drell-Yan

Violation of Lam-Tung relation

Lepton pair angular distribution

Lam-Tung Relation

 $\frac{d\sigma}{d\Omega} \propto [W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi]$

 $\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi)$

qq annihilation parton model: $O(\alpha_s^0) \lambda = 1, \mu = \nu = 0; W_T = 1, W_L = 0$ pQCD: $O(\alpha_s^1), W_L = 2W_{\Delta\Delta}; 1 - \lambda - 2\nu = 0$

Lam and Tung (PRD 18, 2447, 1978)

LT relation holds in pp, pd DY

E866 (PRL 99, 082301, 2007; PRL 102, 182001, 2009)

Pion-induced DY

Fig. 3a-c. Parameters λ , μ , and ν as a function of P_T in the CS frame. a 140 GeV/c; b 194 GeV/c; c 286 GeV/c. The error bars correspond to the statistical uncertainties only. The horizontal bars give the size of each interval. The dashed curves are the predictions of perturbative QCD [3]

```
NA10 (Z. Phys. C 37, 545, 1988)
```

8

LT violation in pion-induced DY

140 GeV/c

NA10 (Z. Phys. C 37, 545, 1988)

Resolutions in the literature

Vacuum effect; Boer-Mulders function D. Boer

Angular asymmetries in Drell-Yan in theory

Dashed lines: $\mathcal{O}(\alpha_s)$; Solid lines: $\mathcal{O}(\alpha_s^2)$; Q = 8 GeVBrandenburg, Nachtmann & Mirkes, ZPC 60 (1993) 697

need nonperturbative dynamics

Miniworkshop on Dihadron Fragmentation Functions (DiFF), Pavia, Sept 7, 2011

4

Collinear factorization

Collinear quarks ($p_{quark} = xP_{hadron}$) inside unpolarized hadrons are unpolarized too

$$ho^{(q,\bar{q})} = rac{1}{4} \{ {f 1} \otimes {f 1} \}$$

transversely polarized photon, structure WT only

Miniworkshop on Dihadron Fragmentation Functions (DiFF), Pavia, Sept 7, 2011

D. Boer

Angular asymmetry requires helicity flip

The $\cos 2\phi$ asymmetry arises from an interference between +1 and -1 photon helicities $\nu \neq 0$

This requires transversely polarized quark-antiquark annihilation

then parton transverse d.o.f comes in to play sine term appears, which breaks LT relation

D. Boer

Explanation as a QCD vacuum effect

The QCD vacuum can induce a spin correlation between an annihilating $q\,\bar{q}$

Chromo-magnetic Sokolov-Ternov effect: spin-flip gluon synchrotron emission leading to a correlated polarization of q and qbar.

The spin density matrix becomes:

$$\rho^{(q,\bar{q})} = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \otimes \mathbf{1} + G_j \, \mathbf{1} \otimes \boldsymbol{\sigma}_j + H_{ij} \, \boldsymbol{\sigma}_i \otimes \boldsymbol{\sigma}_j \}$$

Lam-Tung relation could be violated

$$1 - \lambda - 2\nu = -4\kappa = -4\frac{H_{22} - H_{11}}{1 + H_{33}}$$

8

Resolution via vacuum Effect

parameterize the effect and fit to data

$$\kappa = \kappa_0 \frac{|q_T|^4}{|q_T|^4 + m_T^4},$$

$$\kappa_0 = 0.17, m_T = 1.5 GeV$$

Brandenburg, et. al (Z. Phy. C60,697, 1993)

Resolution via BM Effect

• h_1^{\perp} represents a correlation between quark's k_T and hadron mass transverse spin in an unpolarized hadron

Remarks

- Vacuum effect is flavor blind, how to differentiate pion-proton and proton-proton DY? The pp DY obeys LT relation.
- BM can explain pp DY by arguing that sea quark is involved, and sea quark BM function is small

More relevant observations

Clue 1: k_{T} factorization

k_T factorization

- Collinear and k_T factorizations are fundamental tools in PQCD
- k_T factorization applies to small x (high energy), to final-state spectra at low q_T , to exclusive process with end-point $xP^+ \approx k_T$, singularity (heavy-quark decays) $q_T \approx k_T$
- Keep parton k_T in hard kernel, and k_T is not integrated out in PDF-> TMD
- k_T factorization appropriate for studying low q_T spectra in Drell-Yan processes

Clue 2: kT factorization breakdown

Collins, Qiu 07 Vogelsang, Yuan 07 Collins 0708.4410

Hadron hadroproduction

- k_{T} factorization holds for simple processes like DIS, but breaks down for complicated ones like hadron production $H_1(p_1) + H_2(p_2) \rightarrow H_3(p_3) + H_4(p_4) + X$
- Can lower TMD be factorized from the full process? for illustration,

consider scalar particles from collinear

eikonal line approximation

NLO factorization

 The first two diagrams do not contribute to lower TMD, k_T factorization holds at NLO

Canceled by gluons on RHS. Cross section must be real.

Define lower PDF

anomalous

• Two gluons on the same side

Glauber gluons in Drell-Yan

for finite q_T

 k_T factorization broken by Glauber gluons in processes involving at least 3 hadrons

Clue 3: Glauber phase at low q_T

Glauber-gluon factorization

- Eikonal approximation holds at low q_T
- Glauber gluons factorize

- TMD maintains its universality Chang, Li 2011
- Generalized k_T factorization applies to Drell-Yan at low q_{T}

Clue 4: Other pion-involved puzzles

Puzzles in B decays

- $B(\pi^0\pi^0), B(\pi^0\rho^0)$ much larger than predictions
 - $$\begin{split} B(\pi^0\pi^0) &= 1.55 \pm 0.19, \quad [(0.29^{+0.50}_{-0.20})] & \text{data [theory]} \\ B(\pi^0\rho^0) &= 2.0 \pm 0.5, \quad [\approx 0.7] \quad ~1.91 \text{ X 10E-6} \\ B(\rho^0\rho^0) &= 0.74^{+0.30}_{-0.27}, \quad [(0.92^{+1.10}_{-0.56})], \end{split}$$
- $A_{CP}(\pi^0 K^{\pm})$ much different from $A_{CP}(\pi^{\pm} K^{\pm})$
- New physics or QCD effect?
- If new physics, how about $B(\pi^0\pi^0), B(\pi^0\rho^0)$
- If QCD, but $B(\rho^0 \rho^0)$ is normal

Puzzles in D decays

	Mode	Representation	quark amplitudes	$\mathcal{B}_{\mathrm{exp}}$	$\mathcal{B}_{ ext{theory}}$		
			· ·	$(\times 10^{-3})$	$(\times 10^{-3})$		
D^0	$\pi^+\pi^-$	$\lambda_p[(T+E)\delta_{pd} + $	$P^p + PE + PA$]	1.400 ± 0.026	2.24 ± 0.10		
	$\pi^0\pi^0$	$\frac{1}{\sqrt{2}}\lambda_p[(-C+E)\delta_p]$	$_{pd} + P^p + PE + PA)]$	0.80 ± 0.05	1.35 ± 0.05		
	$\pi^0\eta$	$\lambda_p [-E\delta_{pd}\cos\phi -$	$\frac{1}{\sqrt{2}}C\delta_{ps}\sin\phi + (P^p + PE)\cos\phi]$	0.68 ± 0.07	0.75 ± 0.02		
	$\pi^0 \eta'$	$\lambda_p [-E\delta_{pd}\sin\phi +$	$\frac{1}{\sqrt{2}}C\delta_{ps}\cos\phi + (P^p + PE)\sin\phi$]	0.89 ± 0.14	0.74 ± 0.02		
	$\eta\eta$	$\frac{1}{\sqrt{2}}\lambda_p\{[(C+E)\delta_p$	$d_d + P^p + PE + PA] \cos^2 \phi$	1.67 ± 0.20	1.44 ± 0.08		
		$+(-\frac{1}{\sqrt{2}}C\sin)$	$2\phi + 2E\sin^2\phi)\delta_{ps}\}$				
	$\eta\eta'$	$\lambda_p \{ \frac{1}{2} [(C+E) \delta_{pd} \}$	$+ P^p + PE + PA] \sin 2\phi$	1.05 ± 0.26	1.19 ± 0.07		
		$+(\frac{1}{\sqrt{2}}C\cos 2$	$\phi - E\sin 2\phi)\delta_{ps}\}$				
Ν	Note discrepancy in pi pi						

Even including symmetry breaking, pi pi puzzle persists.

See C.D. Lu's talk Cheng, Chiang 2012

Pion hadroproduction

Bylinkin, Rostovtsev 1112.5734

- Charged particle production in hadron collisions at RHIC and LHC
- Spectrum shape parametrization

 $\frac{d\sigma}{P_T dP_T} = A_e \exp\left(-E_{Tkin}/T_e\right) + \frac{A}{(1 + \frac{P_T^2}{T^2 \cdot n})^n}$

$$\bar{E_{Tkin}} = \sqrt{P_T^2 + M^2} - M$$

M: hadron mass

 A_e, A, T_e, T and "n" are free parameters

Fit to kaon and proton data

Negligible exponential term

Fit to pion data-sizable exp term

UA1, Phys. Lett. B366, 434 (1996)

FIG. 1. Pion spectrum [9] fitted with a modified Tsallis function (1): the red (dashed) line shows the exponential term and the green (solid) one - the power law.

In terms of ratio R

but not these data fewer hadrons involved

ratio of power-law contribution with p_T integrated over

$$R = \frac{AnT}{AnT + A_e(2MT_e + 2T_e^2)(n-1)}$$

Common features

- All anomalous processes demand k_T factorization (end-point singularity in heavy-flavor decays, and p_T spectra)
- All anomalous processes involve at least three hadrons
- The above are necessary conditions for Glauber divergences to appear
- All anomalous processes involve pions
- Do we really understand pion?

Clue 5: Nambu-Goldstone boson

Unique role of pion

- Due to confinement, ordinary hadron as quark bound state must have finite mass
- No contradiction
- If massless Nambu-Goldstone boson is elementary, no contradiction
- Pion is Nambu-Goldstone boson
- But pion is also $q\overline{q}$ bound state with confinement, which must have finite mass
- How could it be possible?

Reconciliation?

- Use different Fock states to meet different roles of pion
- Leading Fock state $q\overline{q}$ is tight to lower confinement potential, higher Fock state gives soft cloud (Lepage, Brodsky 79; Nussinov, Shrock 08; Duraisamy, Kagan 08)
- But parton model is under approximation of neglect confinement...?
- Anyway, pion is unique.
- Strong Glauber effect from this soft cloud? Are those puzzles due to Glauber phase?

Clue 6: Resolutions of puzzles with Glauber phase of pion

Spectator diagrams involve 3 hadrons

pi K puzzle in B decays

- Treat Glauber phase $exp(iS_e)$ as a constant
- pi K puzzle resolved for Se ~ -0.5

D decay BRs with Se=-0.5 Li, Lu, Yu, 2011

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \to \pi^+ \pi^-$	1.59	$2.24 {\pm} 0.10$	2.2 ± 0.5	$1.45 {\pm} 0.05$	1.43 📛
$D^0 \to K^+ K^-$	4.56	$1.92{\pm}0.08$	3.0 ± 0.8	$4.07 {\pm} 0.10$	4.19
$D^0 \to K^0 \overline{K}^0$	0.93	0	0.3 ± 0.1	$0.320 {\pm} 0.038$	0.36
$D^0 \to \pi^0 \pi^0$	1.16	$1.35 {\pm} 0.05$	0.8 ± 0.2	$0.81 {\pm} 0.05$	0.57
$D^0 \to \pi^0 \eta$	0.58	$0.75 {\pm} 0.02$	1.1 ± 0.3	$0.68 {\pm} 0.07$	0.94
$D^0 \to \pi^0 \eta'$	1.7	$0.74 {\pm} 0.02$	0.6 ± 0.2	$0.91 {\pm} 0.13$	0.65
$D^0 \to \eta \eta$	1.0	$1.44 {\pm} 0.08$	1.3 ± 0.4	$1.67 {\pm} 0.18$	1.48
$D^0 \to \eta \eta'$	2.2	$1.19 {\pm} 0.07$	1.1 ± 0.1	$1.05 {\pm} 0.26$	1.54
$D^+ \to \pi^+ \pi^0$	1.7	$0.88 {\pm} 0.10$	1.0 ± 0.5	$1.18 {\pm} 0.07$	0.89
$D^+ \to K^+ \overline{K}^0$	8.6	$5.46 {\pm} 0.53$	8.4 ± 1.6	6.12 ± 0.22	5.95
$D^+ \to \pi^+ \eta$	3.6	$1.48 {\pm} 0.26$	1.6 ± 1.0	$3.54{\pm}0.21$	3.39 📛
$D^+ \to \pi^+ \eta'$	7.9	$3.70 {\pm} 0.37$	5.5 ± 0.8	$4.68 {\pm} 0.29$	4.58
$D_S^+ \to \pi^0 K^+$	1.6	$0.86 {\pm} 0.09$	0.5 ± 0.2	$0.62 {\pm} 0.23$	0.67
$D_S^+ \to \pi^+ K^0$	4.3	$2.73 {\pm} 0.26$	2.8 ± 0.6	2.52 ± 0.27	2.21
$D_S^+ \to K^+ \eta$	2.7	$0.78 {\pm} 0.09$	0.8 ± 0.5	$1.76 {\pm} 0.36$	1.00
$D_S^+ \to K^+ \eta'$	5.2	$1.07 {\pm} 0.17$	1.4 ± 0.4	1.8 ± 0.5	1.92

Pion-induced Drell-Yan processes

Put all clues together...

Collins-Soper frame

- q_T : lepton-pair transverse momentum
- Q: lepton-pair invariant mass
- θ₁: related to boost of Collins-Soper frame

LO diagrams for finite q_T

Glauber gluons

 Sum over Glauber-gluon attachments to ladder diagrams

one more collinear gluon is needed next-to-leading logarithm

Glauber phase

 Assign exp(iSe) and exp(-iSe) to first two diagrams, coefficient of each angular term

$$\begin{split} \hat{\sigma}_{0} &= \left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right) \left(1 + \frac{1}{2}s_{1}^{2}\right) + \underline{(c_{e} - 1)} & c_{e} \equiv \cos S_{e} \\ &\times \left\{2\left[\frac{E_{1}E_{2}}{k^{2}}c_{1}^{2} + \frac{k}{E_{1}} + \frac{k}{E_{2}} - \frac{1}{2}\left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right) - 2\right] \\ &- \left[\frac{E_{1}E_{2}}{k^{2}}c_{1}^{2} - \frac{1}{2}\left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right)\right]s_{1}^{2}\right\}, \quad (3) \\ \hat{\sigma}_{1} &= \left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right) \left(c_{1}^{2} - \frac{1}{2}s_{1}^{2}\right) + (c_{e} - 1) \\ &\times \left\{\left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}} - 2\right)c_{1}^{2} + \frac{E_{2}}{E_{1}}\right)\right]s_{1}^{2}\right\} & \text{E1: hadron 1 energy} \\ &+ \left[\frac{E_{1}E_{2}}{k^{2}}c_{1}^{2} - \frac{1}{2}\left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right)\right]s_{1}^{2}\right\} \end{split}$$

More formulas

$$\begin{aligned} \hat{\sigma}_{2} &= \left(\frac{E_{1}}{E_{2}} - \frac{E_{2}}{E_{1}}\right) c_{1}s_{1} + (c_{e} - 1) \\ &\times \left(\frac{E_{2} - E_{1}}{k} + \frac{E_{1}}{E_{2}} - \frac{E_{2}}{E_{1}}\right) c_{1}s_{1} \\ \hat{\sigma}_{3} &= \left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right) s_{1}^{2} - (c_{e} - 1) \\ &\times 2 \left[\frac{E_{1}E_{2}}{k^{2}}c_{1}^{2} - \frac{1}{2}\left(\frac{E_{1}}{E_{2}} + \frac{E_{2}}{E_{1}}\right)\right] s_{1}^{2}, \end{aligned}$$

$$\sin^2 \theta_1 = \frac{q_T^2}{Q^2 + q_T^2}$$

corresponding to boost in Collins-Soper frame

$$\lambda \sim \hat{\sigma}_1 / \hat{\sigma}_0 \quad \mu \sim \hat{\sigma}_2 / \hat{\sigma}_0 \quad \nu \sim \hat{\sigma}_3 / \hat{\sigma}_0$$

• As Se->0 $\lambda = \frac{c_1^2 - \frac{1}{2}s_1^2}{1 + \frac{1}{2}s_1^2}, \ \mu = \frac{\frac{E_1}{E_2} - \frac{E_2}{E_1}}{\frac{E_1}{E_2} + \frac{E_2}{E_1}} \frac{c_1s_1}{1 + \frac{1}{2}s_1^2}, \ \nu = \frac{s_1^2}{1 + \frac{1}{2}s_1^2}$

obey Lam-Tung relation

Numerical results

q_T dependence

Comparison

- Like vacuum effect, Glauber gluon causes fact. breakdown (but from soft cloud)
- Vacuum effect is flavor blind, but Glauber effect is strong only from pion
- Compared to BM function, parton transverse d.o.f introduced by small q_T
- Glauber gluon: Nambu-Goldstone nature
- BM or Nambu-Goldstone nature? Discriminated by measuring $\overline{p}p$ Drell-Yan (valence anti-quark from \overline{p})

CDF $\overline{p}p$ data

- Lam-Tung relation is respected: $A_0 = A_2$
- at large Q=mZ, consistent with LT
- p_T/Q not small, support Glauber gluons

Summary

- Violation of Lam-Tung relation is one of pion-involved anomalous data
- Glauber-gluon effect leads to phase factor in k_T factorization, which could resolve several pion-involved puzzles
- Propose to measure anti-proton-proton
 Drell-Yan process to discriminate the BM or Nambu-Goldstone nature
- Next target: can pion hadroproduction be resolved by Glauber gluons?

Back-up slides

Total NNLO

Two gluons on opposite sides

$$\begin{split} I_1(k_T) &= \frac{\lambda^2 g_1^2 g_2(g_2 + g_1)}{(2\pi)^{12}} x p^+ \int dk^- \, d^4 l_1 \, d^4 l_2 \frac{[2(p^+ - k^+) + l_1^+] \, [2(p^+ - k^+) + l_2^+]}{(l_1^2 - m_g^2) \, (l_2^2 - m_g^2) \, [(k - l_1) - m_q^2 + i\epsilon] \, [(k - l_2) - m_q^2 + i\epsilon]} \\ &\times \frac{(2\pi)^2 \delta(l_1^+) \delta(l_2^+) \, 2\pi \delta\left((p - k)^2 - m_q^2\right)}{[(p - k + l_2) - m_q^2 + i\epsilon]} \\ &= \frac{\lambda^2 g_1^2 g_2(g_2 + g_1) x(1 - x)}{256\pi^7} \int d^2 l_{1T} \, d^2 l_{2T} \prod_{j=1,2} \frac{1}{(l_{jT}^2 + m_g^2) \, [(k_T - l_{jT})^2 + m_q^2]}. \end{split}$$

Two gluons on the same sides

$$I_2(k_T) = \frac{-\lambda^2 g_1^2 g_2(g_2 + g_1) x(1 - x)}{256\pi^7} \int d^2 l_{1T} \, d^2 l_{2T} \, \frac{1}{(l_{1T}^2 + m_g^2) \left(l_{2T}^2 + m_g^2\right) \left[(k_T - l_{1T} - l_{2T})^2 + m_q^2\right] \left(k_T^2 + m_q^2\right)}$$

 No cancellation. Lower TMD is not universal. k_T fact. fails. Integrated over k_T, they cancel. Collinear factorization holds.

Glauber region

- Collinear region (I⁺, I⁻, I_T) ~ (E, m²/E, m)
- Soft region ~ (m,m,m)
- Breakdown appears in Glauber region (0, m²/E, m) due to δ(I+), I² = - I_T²
- Consider spectator propagator $(p_1-k_1+l)^2=2(p_1-k_1)+l^2+(k_{1T}+l_T)^2$
- Two terms are of the same order of m²
 - \Rightarrow (k_{1T} + I_T)² is not negligible
 - \Rightarrow Eikonal approximation does not hold
- IR gluons usually not factorized in Glauber region. Universality of TMD is lost

- I- is of order m²/E and m, respectively
- For latter, $2(p_1 k_1)^+ l^- >> (k_{1T} + l_T)^2$

Reconciliation?

- As r decreases, interaction decreases, m decreases, but quarks not allowed to move freely
- To reconcile pion's role, need to create state "no interaction, no free motion"
- Namely, short distance, low mass
- As r decreases, k_T must be frozen
- Pion has large soft cloud in this sense, $k_T <<1/r$
- Violation of uncertainty principle?

Large soft cloud in pion

• Model of Brodsky et al. (1980)

$$\phi_p(x,k_T) = \frac{4\pi m_p^2}{[m_p^2 + k_T^2/x + k_T^2/(1-x)]^2}$$

- m_p: meson mass carried by quark
- Distribution in b space carried by anti-quark

Clue 6: Glauber phase from pion

Color-suppressed tree

• $B(\pi^0\pi^0), B(\rho^0\rho^0)$ both depend on colorsuppressed tree amplitude C

 C is an important but least understood quantity in B decays

Glauber phase factor

- Glauber factor is factorized and universal. How is it different between π , ρ ?
- Though Glauber gluons are factorized, loop momentum $I_{\rm T}$ flows through mesons
- If mesons have different intrinsic k_T dependence, Glauber effects are different
- Consider Glauber factor

$$G_2(l_T) = \int d^2b' \exp(il_T \cdot b') \exp[iS(b')]$$

parametrization $S(b) = \alpha b^2$

Convolution in k_T space

• Consider intrinsic k_T dependence

.

$$\int \frac{d^2 k_T}{(2\pi)^2} \frac{d^2 k_{1T}}{(2\pi)^2} \frac{d^2 k_{2T}}{(2\pi)^2} \int \frac{d^2 l_T}{(2\pi)^2} \phi_B(k_T) \phi_1(k_{1T})$$

Glauber effect

 Resum Glauber divergence to all orders, like summing collinear divergence into meson wave function

Numerical results

depend on T

• With $\alpha = -0.42$ for all following

Mode	Data [1]	NLO $[4]$	NLO (this work)
$B^0 \to \pi^+ \pi^-$	5.11 ± 0.22	$6.5^{+}_{-3.8(-1.8)}$	$6.58^{+2.21}_{-1.62}(\omega_B)^{+0.24}_{-0.19}(a_2^{\pi})$
$B^+ \to \pi^+ \pi^0$	$5.48^{+0.35}_{-0.34}$	$4.0^{+}_{-1.9(-1.2)}$	$5.60^{+0.00}_{-1.90}(\omega_B)^{+0.00}_{-2.39}(a_2^{\pi})$
$B^0 \to \pi^0 \pi^0$	$1.91\substack{+0.22\\-0.23}$	$0.29^{+0.50(+0.13)}_{-0.20(-0.08)}$	$1.10^{+0.00}_{-0.88}(\omega_B)^{+0.00}_{-0.65}(a_2^{\pi}) \Leftarrow$
$B^0 o ho^0 ho^0$	$0.73\substack{+0.27 \\ -0.28}$	$0.92^{+1.10(+0.64)}_{-0.56(-0.40)}$	$0.61^{+1.02}_{-0.00}(\omega_B)^{+0.15}_{-0.06}(a_2^{\rho})$

Li, Liu, Xiao, to appear

 Pion indeed shows stronger Glauber effect than rho

Pion multiplicity in e+e- anni.

Hadron productions at Z pole

BM, vacuum effect, and Glauber gluons

	$h_1^{\perp} \neq 0$	QCD vacuum effect	Blauber gluon
$ ho^{(q,ar q)}$	$ ho^{(q)}\otimes ho^{(ar q)}$	possibly entangled pos	sibly entangled
Q dependence	$\kappa \sim 1/Q$?	1/Q ²
large Q_T limit	$\kappa \to 0$	need not disappear ($\kappa ightarrow \kappa_0$) should disappear
flavor dependence	yes	flavor blind	yes
x dependence	yes	if yes, then not hadron bline	_d yes

D.B., Brandenburg, Nachtmann & Utermann, EPJC 40 (2005) 55

Different experiments ($\pi^{\pm}, p, \bar{p}, \ldots$ beams) are needed in different kinematical regimes

CDF data at Q=mZ, consistent with LT, may not discriminate BM or Glauber gluons (1103.5699)