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X-ray tomography is performed to acquire 3D images of crumpled aluminum foils. We develop an

algorithm to trace out the labyrinthian paths in the three perpendicular cross sections of the data matrices.

The tangent-tangent correlation function along each path is found to decay exponentially with an effective

persistence length that shortens as the crumpled ball becomes more compact. In the meantime, we

observed ordered domains near the crust, similar to the lamellae phase mixed by the amorphous portion in

lyotropic liquid crystals. The size and density of these domains grow with further compaction, and their

orientation favors either perpendicular or parallel to the radial direction. Ordering is also identified near

the core with an arbitrary orientation, exemplary of the spontaneous symmetry breaking.
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Crumpling is capable of producing a highly rigid struc-
ture with a record minimum of material. Every child knows
how to make a baseball out of a crumpled newspaper. Even
with the assistance of a dutiful parent, its interior shall
remain roughly 80% vacant [1]. In addition to this appli-
cation, equally fascinating and puzzling phenomena re-
lated to crumpling abound in a wide range of length
scales, for instance, how DNA is packed in the tiny capsule
of viruses [2] or the practical challenge for the auto in-
dustry to come up with a better design to protect the safety
of drivers during car accidents [3].

The enormous resistance of a crumpled ball can be
attributed to the geometrical constraint and the self-
avoidance. The former refers to the inevitable development
of D cones due to the unstretchability of a thin sheet [4,5].
However, beyond the geometric and mechanical properties
of a single and two-cone interaction [6], collective behav-
ior of the microstructures such like ridges and vertices
remains unexplored. Previous simulations [7] have identi-
fied the phantom and self-avoiding sheets as belonging to
different universality classes because the universal expo-
nent � of their force-size relation is different. To clarify the
effect of self-avoidance, x-ray tomography becomes highly
desired because it enables us to study the evolution of the
internal structure systematically and perform calculations
with its data [8,9].

It is known [4] that the macroscopic properties are
shaped more by the collective behavior rather than indi-
vidual ridges and vertices. This is because these singular-
ities are linked by not just the tensile force and bending
rigidity, but also correlated by the strong hard core inter-
action [7,10]. When a flat sheet is subject to a gentle force,
the first deformation due to the buckling is of a conical
shape [11]. As the compaction progresses, the single cone
deformation is followed by a large number of ridges and
vertices [1], while the facets they encircle also begin to
align. In this Letter, we present the first systematic analysis
of the local and global structural ordering inside the

crumpled aluminum ball. An algorithm is developed to
trace out the curves in x-ray tomography and reconstruct
the cross-section view without destroying the sample.
Through the buckling and ordering, we study how they
accumulate and affect the final configuration in this highly
non-Markov process.
Nine sheets of aluminum foil with different diameter

(R0½mm� ¼ 3, 4, 5, 6, 6.5, 7, 8, 9, 10) are randomly folded
by hand first and then squeezed by the flat tip tweezer
at different directions [12] into balls of the same final
radius R ¼ 1:5 mm. To determine whether they still be-
long to the thin sheet regime, we calculate their Foppl–
von Kármán number [4], ðR2

0=h
2Þ½12� ð1� �2Þ� where

� ¼ 0:35 is the Poisson ratio and h ¼ 16 �m is the thick-
ness of the foil. Ranging from 2:4� 104 to 2:6� 105, they
turn out to be of the same order as in previous work
[1,7,10,11].
A special version of microtomography is employed,

based on the high intensity x-ray from synchrotron [13].
It provides a standard resolution between 1–2 �m which
shows clear reconstructed images for our analysis. The
experiment is performed at the 01A beamline of National
Synchrotron Radiation Research Center in Taiwan. The
beamline provides unmonochromatic x-rays whose energy
distribution is 8–15 keV. Image acquisition time per pro-
jection is about 10 ms, which is captured by a CCD with
2� optical lens focused on a CdWO4 single crystal scin-
tillator. The resulted reconstruction consists of a data ma-
trix of 1200� 1200� 1200 pixels of size 3 �m.
To study the packing configuration quantitatively, it is

necessary to vectorize the data points. This segmentation
method is complex and case dependent [14]. The most
challenging part in tracing the crumpled surface is to
distinguish two contact planes. According to previous
work [15] which concluded that cross sections through
different angles share the same statistics, we are assured
that each of these cross sections is representative of the
bulk configuration. Therefore, we can focus on the devel-

PRL 103, 263902 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2009

0031-9007=09=103(26)=263902(4) 263902-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.263902


opment of 2D tracing algorithm and present its result as a
precursor for a full 3D construction from these images.

After all the images have been reconstructed into 3D
data matrices, we resample three perpendicular cross sec-
tions which are X-Y, Y-Z, Z-X planes of the sample.
Briefly, the procedures of tracing algorithm are mainly
divided into three parts: random seeding, identifying solu-
tions, and labeling traced points. We start with a circle
around the seed point with an radius of 24 pixels, and then
find all crossing points between its perimeter and the paths.
Since many paths can be close to each other, multiple
solutions frequently occur. When this happens, we select
the point that is joined to the seed point from all candidate
solutions. The traced points are marked immediately to
avoid double tracing with the forest-fire simulation. After
all the points have been vectorized, we perform a high
order Beizer fitting to resample the segmented points to
reduce irregularities and increase the sampling rate, see
Fig. 1. A more detailed description of the tracing algorithm
and segmented images can be found in the online supple-
mental document [14].

We start by calculating the tangent-tangent correla-
tion function which is a basic statistical property related
to the buckling [16] of sheets. This function is defined
as Cðs; s0Þ � hðuðsÞ � huðsÞiÞ � ðuðs0Þ � huðs0ÞiÞi, where
uðsÞ ¼ dR=ds is the tangent vector at arc length s in the
curvilinear coordinate and RðsÞ is the position vector. It
can be simplified to Cðjs� s0jÞ ¼ Cð�sÞ if the system
exhibits translational invariance. This assumption was
checked quantitatively to hold except at the end points
where the fluctuations become large.

The function Cð�sÞ is found to decay exponentially in
Fig. 2 with an effective persistence length lp. This decay

form can be derived from the random packing of facets.
Borrowing the concept of tube model for polymers [17],
one can think of the sheet as moving inside two walls
which model the confinement due to the hard core inter-
action from its neighboring portions of sheet. When we cut
perpendicularly through the walls, the cross section will
reveal a wiggling path with a static configuration similar to
that of a polymer in the tube model. However, it should be

noted that their dynamics are different because the path is,
after all, a projection of a 2D sheet. The movement of each
segment needs to coordinate with the rest of the sheet,
unlike the reptation model in which the polymer is con-
fined in all sidewise directions by a static tube. The spacer
width apparently decreases as we increase the crumpling
force. Dividing this width by the segment length a of the
path gives the maximum angle � between neighboring
segments. Roughly, we can imagine the configuration as
being mapped out by a random walk with a fixed stride a
but only two choices of angular deviations, ��. Then the
probability of finding the relative angle between the nth
and zeroth segments equaling m� obeys the Gaussian
distribution for a random walk after n � ðs0 � sÞ=a steps:
Pðm; nÞ ’ expð�m2=2nÞ. The function Cð�sÞ ¼
hcosðm�Þi can be explicitly evaluated:
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�

;

where lp ¼ 2a=�2. The inset of Fig. 2 shows that lp short-

ens as R=R0 decreases, which implies the crumpled struc-
ture becomes more disordered along the curvilinear
direction. This observation also requires that the segment
length a not only depends on the bending rigidity of the
material, but can be cut short by the compact packing.
The concept of an effective persistence length is similar

to that in polymers [17] and the de Gennes coherence
length in membranes [18]. However, different from the
latter two cases, our crumpled ball is so macroscopic
[19] that the thermal temperature becomes irrelevant.
Instead, it is the noise from the random folding that allows
the sheet to appear rumpled. This zero-temperature ran-
domizing effect also exists in the granular systems [20].
After calculating the order along the curvilinear coor-

dinate, we turn to the cartesian plane. Note that locally
ordered structures can be identified in Fig. 1. The paths in
the plane, which cut through the facets in the 3D sample,

FIG. 1 (color online). Panel (a) shows a slice of raw images
reconstructed from 1000 projections for R=R0 ¼ 0:167. The
glisterns and rings are experimental artifacts [8] that can be
reduced by the fill tracing method. As a contrast, the segmented
configuration is shown on panel (b) by linking the traced points.

FIG. 2 (color online). Tangent-tangent correlations Cð�sÞ are
plotted for three different compactions R=R0. Although the data
fluctuate in the tail, which is likely an artifact of too few
samplings of long paths, an exponential decay and a persistence
length can be extracted. Thick lines illustrate the experimental
data, and thin lines are the fitting curves. The inset highlights the
decrease of persistence length as the ball shrinks.
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show a tendency to align and form lamellalike phase. We
can separate the ordered portion from the disordered one to
define crystalline and amorphous regions. This classifica-
tion is aided by the vectorized data. In Fig. 3, all paths are
denoted by different colors and brightnesses in gray scale
to indicate different orientation to the (1, 0) direction. The
neighboring facets with the same orientation are marked
with the same color, and can be easily recognized as a
lamella. To extract the domain boundaries, the Laplacian
of the color brightness was first calculated with the local
maxima signalizing the location of the divisions. Although
the distribution of lamellae can in principle be derived by
this method, manual identifications are still required when
the color gradient is too noisy. Therefore, we use the
quadrangles to label all lamellae with the reference of
Laplacian field to obtain the data with a coherent format.

Using the data averaged over three perpendicular cross
sections for each sample, we calculate four essential prop-
erties of the lamellae: their number, ratio of total area and
mass they covered in the cross section, their size, and the
mass encompassed in each lamella. We checked that the
product of data in panels (a) and (c) equaled the area ratio
in (b) times the cross section area,�R2. Figure 4 shows that
they all increase as R=R0 decreases. Panel (a) indicates the
number of lamellae is inversely proportional to R=R0. Two
features are worth noting in (b): Firstly, the reason why the
two lines are not plainly proportional is that the total mass
grows as we fix R and increase R0 to achieve lower R=R0.
In contrast, total area �R2 is unchanged. Furthermore, the
alignment allows for more efficient packing inside the
domain which explains why the mass ratio is larger.
Secondly, both ratios never exceed 0.5. This is similar to
supercooled liquid where the extent of ordering is hindered
from being complete [21]. One may wonder how a struc-
ture with so much amorphous region can be so hard. A
possible explanation is that these ordered domains near the
boundary interlock and act like a hard crust. Each domain
consists of many aligned layers which greatly enhance the
bending rigidity and make them more resistant to buckling.

In the previous work [22] that demonstrates a sponta-
neous patterning in vibrated rods, a wall-rod correlation
function GðrÞ � hcosð2�Þi was defined to extract the size
of the core or bulk area, where hi denotes averaging over ’
and � is the angle between the tangent vectors at point (r,
’) and the boundary in the ’þ �=2 direction. We repeat
the same definition to study the packing configuration near
the core and plot the results in the inset of Fig. 5. Since the
external force acts from outside, it is natural that the
correlation with the boundary decreases as we enter the
core. The division between the bulk and shell regions is
marked by the first vanishing of GðrÞ. Again, following the
notation of [22], an order parameter S ¼ hcosð2�Þi is de-
fined for the bulk where � is the angle between the tangent
vector and lamella direction of the bulk. We are surprised
to find a spontaneous bulk ordering in Fig. 5 where corre-
lations with the boundary layer have considerably weak-
ened. As R=R0 decreases, the bulk order increases. The
ordered phase induced by high concentration is similar to
that happened in [22] and lyotropic liquid crystals.
According to Onsager [23], although parallel arrangements
of anisotropic objects lead to a decrease in orientation
entropy, there is a gain in positional entropy. Thus, a
positional order is expected to become entropically favor-
able at sufficient rod concentrations.
Given that the deformations in aluminum are plastic and

irreversible, crumpling can be viewed as a series of
quenching process since not all configurations are acces-
sible, nor equally probable. The noise introduced by the
random folding still enables the sheet to slightly adjust its
configuration to seek a local potential minimum [24]. This
random process plays the role of vibration in the sponta-
neous patterning of vibrated rods [22] and slow shearing in

FIG. 3 (color online). We trace out trajectories and define dif-
ferent domains marked by quadrangles for R=R0 ¼ 0:15. Differ-
ent color or gray level signalizes different orientations. The
domain formation caused by the hard core interaction and high
density of paths is similar to that of lyotropic liquid crystals [27].

FIG. 4. Four properties of the lamellalike phase are calculated
as a function of R=R0. They include the number of lamellae in
panel (a), ratio of total area and mass covered by the lamellae in
(b), size of each lamella in (c), and mass or total length
encompassed in each lamella in (d). Data in (a) and (d) can be
fit by 1:57ðR=R0Þ�1:05 and 105 expð�7:04R=R0Þ.
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granular systems [20,25]. Since this large amount of facets
are not only correlated by the sheet but also interact
strongly via the bending potential, the geometrical con-
straint forbids our crumpled sheet from reaching the true
ground state [26]. Consequently, the bulk order parameter
of our compact sample is still much lower than that of
vibrated rods [22].

In conclusion, we performed x-ray tomography to quan-
titatively study the inner structure of aluminum foils at
different compactions. All paths in the three perpendicular
cross sections are traced out and vectorized before calcu-
lating the statistical properties of their packing configura-
tion. The tangent-tangent correlation of the path reveals an
effective persistence length that decays with the compac-
tion. A second length scale associated with the size of
domains that emerges near the crust and mimics the la-
mella phase in lyotropic liquid crystals. Number of these
domains and their area and mass grow monotonically with
the compaction, and their orientation favors either perpen-
dicular or parallel to the radial direction. We also identified
an ordered domain near the core of the crumpled ball with
an arbitrary orientation, exemplary of the spontaneous
symmetry breaking.
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FIG. 5. The bulk order S is shown to grow when the sample
becomes more compact. The solid line is a guide to the eyes to
emphasize the trend that the ordering increases as the ball
becomes more compact. The R0ðmmÞ ¼ 3, 4, and 5 data are
not included because they no longer exhibit a shell region and
also their error bars are too large due to insufficient samplings.
The inset shows the wall-rod correlation functions GðrÞ for
R=R0 ¼ 0:25 and 0.19.
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