Get to The Point

Birth of Information Age

Yiping Lin

Department of Physics, National Tsing Hua University

The Most Important Invention

in 20th Century

Transistor

- Amplification
- · Voltage stabilization
- Signal modulation
- Switching
- · & many others!

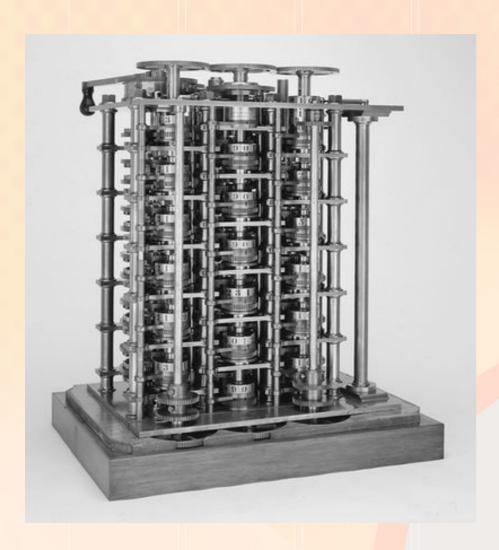
Analog circuit

Digital circuit

Key active component in all modern electronics!

The Inventors: William Shockley, John Bardeen, Walter Brattain

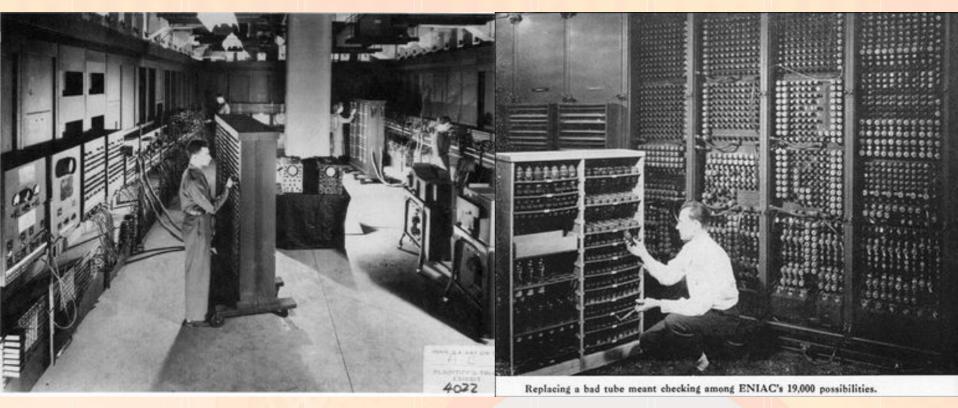
1910-1989



1908-1991

1902-1987

The First Computer



- •The Babbage Difference Engine(1832)
 - 2,500 parts
 - 6 years to build
 - Cost: £17,470 ~ NT\$ 1 million

Idea: Newton's method of difference $p(x) = 2x^2 - 3x + 2$

p(0)=2.0		
	2.0-1.72=0.28	
p(0.1)=1.72		0.28-0.24=0.04
	1.72-1.48=0.24	
p(0.2)=1.48		0.24-0.20=0.04
	1.48-1.28=0.20	
p(0.3)=1.28		0.20-0.16=0.04
	1.28-1.12=0.16	
p(0.4)=1.12		

First Electronic Computer

1946
Built by John W. Mauchly (computer architecture)
J. Presper Eckert (circuit engineering)
, Moore School of E. E., U. Penn.

Named "Electrical Numerical Integrator And Calculator"

A "Monster"

17,468 vacuum tubes, 7200 crystal diodes; Weighed 27t, 167m² and ate up 150kW

UNIVAC

Univac, the electronic computer which will be used by the Columbia Broadcasting System in its te vision coverage of the November 4 elections, gets a test run under the supervision of (from lef Harold Sweeney, chief operator; J. Prespar Eckert, one of the machine's inventors, and CBS comentator Walter Gronkite, at the Eckert-Mauchly Computer Corn. 521f Ridge as

Stevenson

Continued From First Page and ruthlessly on misconduct wher-

CBS to Use Electronic Robot To Forecast Election Results

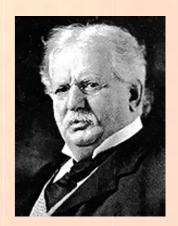
- Process each digit serially
- Add two 10-digit numbers at a rate of 100,000 addition per sec

Operate at a clock freq. of 2.25 MHz

First Transistorized Computer

1955 TRAnisitor Digital Computer

- Built by Bell Lab for U.S. Air Force
- Consisted of 700 point-contact transistors and 10,000 germanium diodes
- Compact & reliable; Light enough to be installed in a B-52 Stratofortress



Vail.. We Have a Problem

How can we flight for competition due to the expiration of Bell's patent?

Bring on transcontinental phone sevice

1907

1900

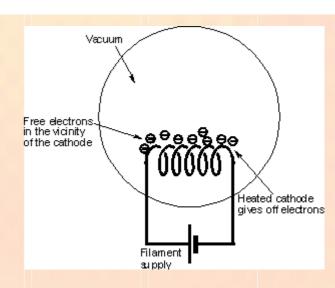
1906: Lee De Forest developed a triode in a vacuum tube that can amplify the signal

1907: AT&T bought De Forest's patent and improved the device.

Can talk across any distance as long as amplifiers are along the way!

Some Like It Hot

- Thermonic emission
 - First reported by Gruthrie in 1873
 - Rediscovered by Edison in 1880
 - "Edison Effect"; Patented in 1883; No use
 - "Heat engine"
 - Heat ⇒ Electrical energy
- Richardson's Law (1901)

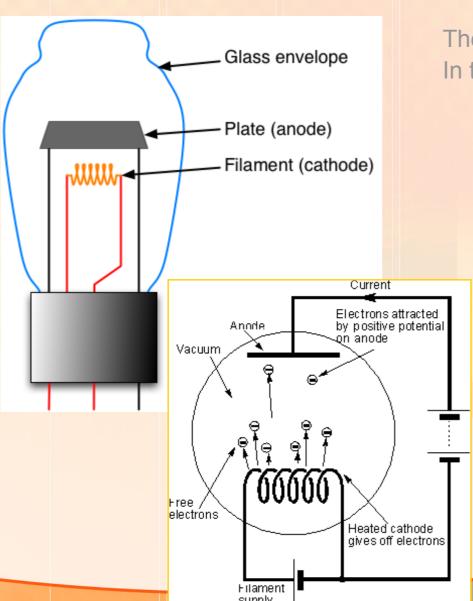

Received Nobel prize in Physics in 1928

$$J = AT^2 e^{\frac{-W}{kT}}$$

$$A = \frac{4\pi mk^2 e}{h^3}$$

Corrected for Shockley Effect

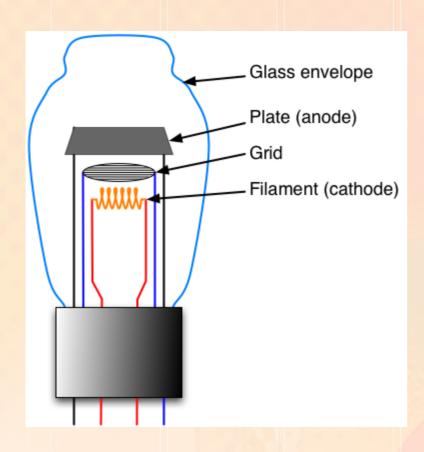
W: work function



Field-enhanced

$$J(E_s, T, W) = AT^2 e^{\frac{-(W - \Delta W)}{kT}}$$

Vaccum Tube - Diode


Thermionic emmision ⇒ Space charges In the anode:

- With + V: Current flows
 - *I* increases as *V* till the space charges are neutralized
 - Need to increase *T* for more energetic electrons
- •With -V: No current flows
 - Repel electrons leaving the cathode
 - No emission from anode for it's not hot

⇒ Enable the current rectification "oscillation valve" or kenotron (invented by Fleming in 1904)

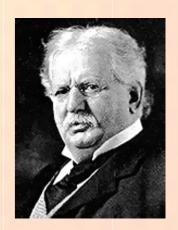
...............................

Vacuum Tube - Triode

Q: How can we control the amount of current flow?

A: Apply another potential between cathode & anode

Place a "grid" electrode:


- Change the voltage at grid,
 so does the amount of electrons flowing
- ⇒ Electrostatically "control" the plate current
- ⇒ A sensitive amplifier of voltage
 - ⇒ Electrostatically "control" the plate current
 - "Audion" (now known Triode)
 - invented by De Forest in 1906
 - patented in 1907 for use in radio communication.

Vail.. We Have a Problem

How can we flight for competition due to the expiration of Bell's patent?

Bring on transcontinental phone sevice

1907

1900

1906: Lee De Forest developed a triode in a vacuum tube that can amplify the signal

1907: AT&T bought De Forest's patent and improved the device.

Can talk across any distance as long as amplifiers are along the way!

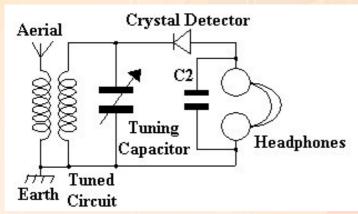
Well, not a fully solution yet.

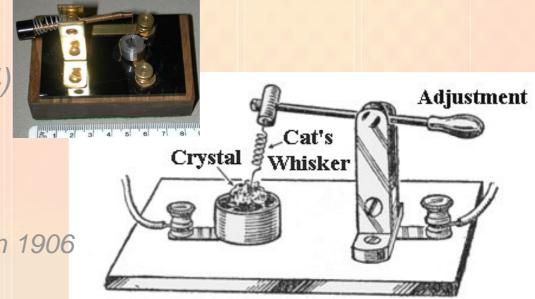
Drawbacks of vacuum tube:

- Was unreliable
- Needed too much power
- Produce too much heat

⇒ A better solution needed (1930s)
Hope?

Semiconductors!




03/28/06

Crystal Detector - Cat's Whisker

- Principle of operation discovered by Brau (1874)
 - Patented in 1899
- Used in radio receiver by Pickard
 - Patented for a Si detector in 1906
 - "Cat's Whisker"

Simple crystal set

Drawbacks of crystal detector:

- · Needed fine tune
- · Was unreliable

Suppressed by vacuum tube

But, it's the basic concept of transistor!

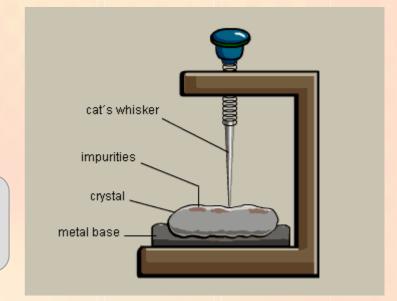
03/28/06

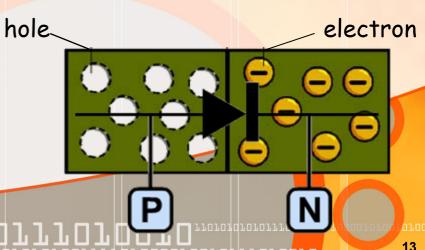
How Does A Crystal Diode Work

"Magic spot"

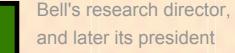
When the whisker was over a "magic spot", an electrical signal traveled down the metal wire & through the crystal

Crystal: often galena (PbS), iron pyrite (FeS₂), zincite


(ZnO); sometimes Si and Ge


Point contact: Phosphor bronze wire, or gold

Because of the *impurities* in crystal, i.e. a property of the *semiconductor* the crystal was made of


- Rectifier ⇒ Diode (1919) coined by Eccles
- Used (still) as
 - Detector in TV or radio receiver
 - Converter of AC to DC in power supply

Set Up Stage for the Invention

- Crystal dectecor
 - Provided inexpensive radio receivers
 - Helped win over WWII
 - Helped set the stage for the transistor
- Problem in crystals
 - Slow response & burnt our often
 - Searched for the best crystal
 - Germanium (Benzer, Purdue)
 - Better growth and dopping techniques

To keep AT&T strong is to have a top-notch basic research program

Marvin Kelly

⇒ Solid State Physics Group

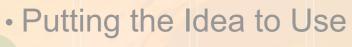
Why Solid State?

For their phone system

Better amplifier

- sturdier & efficient

For future customer


e.g. the US military

Especially, Shockley's semiconductor group

03/28/06 THE TRANSPORT OF THE PROPERTY OF THE

Miracle Month - Nov. 17-Dec. 23, 1947

- Getting Wet
 - •11/17: <u>Brattain</u> dumped the Si device into water
 - ⇒ the largest amplification so far!
 - Blocking on surface was cancelled out by water

•11/21: When <u>Bardeen</u> was told, he got an idea

Brattain, push a metal point to Si surrounding by DI water but not touch the water.

• It worked! – but very small.

Big Amplification

• 12/08: <u>Bardeen</u> suggested:

Let's try Ge!

Got a big jump – about 330 times
 But in the opposite direction
 It's hole moving!

Not For All

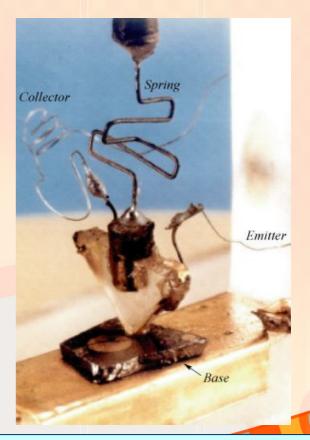
- Big jump only work for very low freq.
- Culprit: Water? Try GeO₂
- 12/12: Brattain did

But nothing happened!

Miracle Month - Nov. 17-Dec. 23, 1947

- Brattain's Mistake
 - Washed GeO₂ off by accident

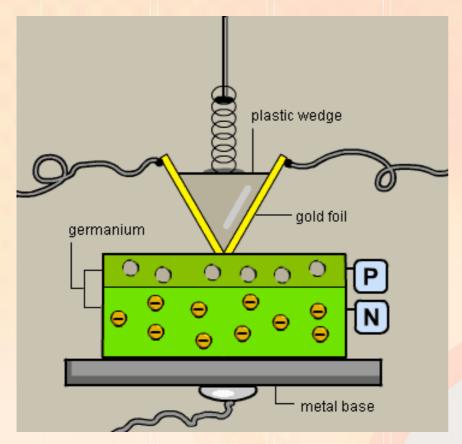
Mad at himself

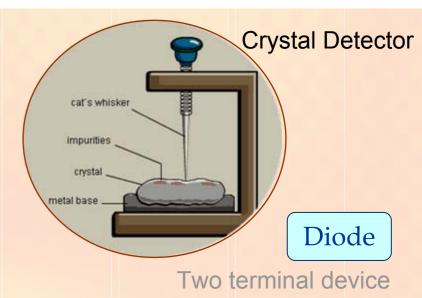

 Fiddled with the point contact anyway

And got voltage amplification for all frequencies

- Bring It All Together
 - Large amplification at some freq.;
 small amplification for all freq.
 - Key components:
 - A Ge slab & two gold point contacts closely placed

- Showing off
 - 12/23: by Brattain & Bardeen




The 1st point-contact transistor was born!

03/28/06

Point-contact Transistor

- A Close Look

- Considered as a crystal detector with two whiskers
- Three-terminal device
 Two on gold foil & one on metal base

Side Note

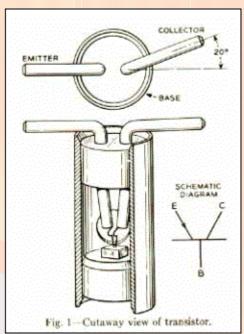
Naming the big thing (05/48)

Ballot

Semiconductor Triode
Solid Triode
Surface States Triode
Crystal Triode
Iotatron
Transistor

coined by John R. Pierce

Combination of transconductance, transfer, resistor


- Telling the Military
 - Bell's concern: classification
 - 06/23/48: Presented for the Military officers

Type-A transistor

Mass-product version of point-

contact ones

rroroydrororrro<mark>roooo</mark>

First one (Ge) sold in 1949

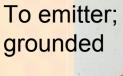
Shockley's Invention 1948-1951

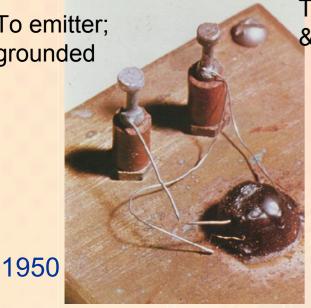
- Unhappy Shockley
- - New Year 1948: Thought how to improve B&B's transistor Semiconductor "sandwich"
 - Rejected as a co-author in patent Wanted to build his own
 - 1/23/48: Idea came together

N N

Act like a faucet

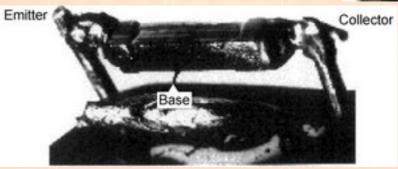
Very different idea from point-contact transistor

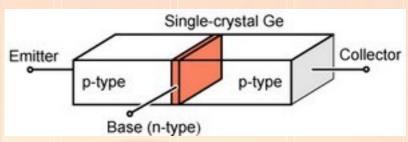

Current passes through semiconductors, not the surface


No idea whether it works

- Eureka Moment
 - 02/18/48: It can work Told others about his idea
- More works on
 - How current transports Bardeen's theory: only on surface Richard Haynes's exp on Ge (1948)
 - ⇒ Need very thin & pure middle layer
 - How crystal affects Old cut vs Single Gordon Teal's growth technique (1949)

Junction Transistor





To based & collector

> Re-creation Actual size: 0.5" tall

Another version

Also called Bipolar Junction Transistor

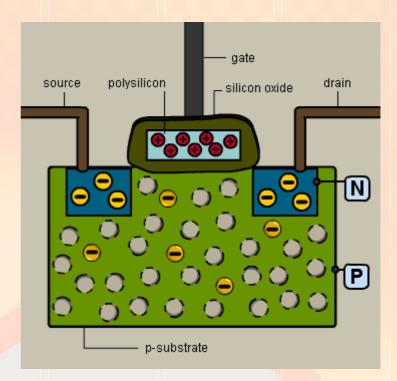
1956-1958: Made it flat

Bell's "mesa" transistor

Fairchild's "planar" transistor

1958: 1st Si transistor (Teal)

Ge transistors broke down at high temperature

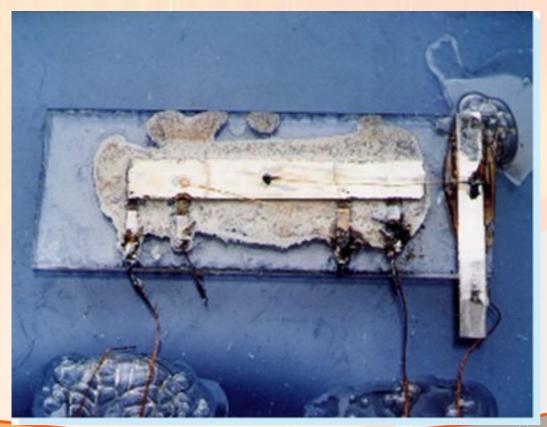

Field-Effect Transistor

- "Unipolar transistor"
 - Need only one type of carriers
 - Relying on an electric field to control the conductance of a "channel"

Types:

- Junction FET
- Metal-Semiconductor FET
- Metal-Oxide-Semiconductor
 FET
- High Electron Mobility
 Transistor (HEMT)

Metal-Oxide Semiconductor Field-Effect Transistor



n-channel transistor

Invention of Integrated Circuit

Why not use semiconductor to make capacitor & resistor and put them all together?

09/12/1958
Jack Kilby built a model
02/06/1959
TI filed a patent

01/1959

Robert Noyce got the same idea
Fairchild filed a patent after TI

References

- Books
 - Crystal Fire

 By Michael Riordan & Lillian

 Hoddeson

 W.W. Norton & Company,

 Inc (1997)

 Chinese edition "孙晶之火"
 - The Conquest of the Microchip
 By Hans Queisser
 Harvard Univ. Press
 - The Chip
 By T. R. Reid
 Random House

- Video
 - Transistorized!
 PBS TV (1999)
- Web Resources
 - The Transistor
 Nobelprize.org
 - Wikipedia
 - Images by Googling