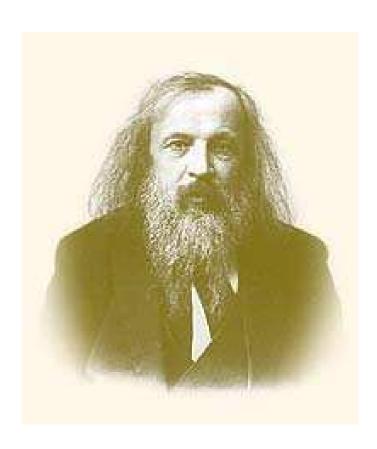
# What is the world made of?

We-Fu Chang NTHU Nov. 22, 2006 NTHU

- A thousand years old question: What is our world made of?
- In ancient Greek, philosopher believed the building blocks are the "4 elements":

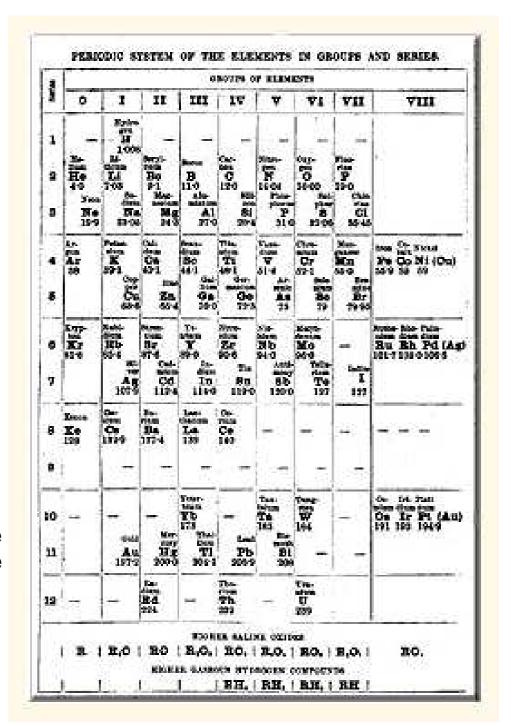
| season | element | humour      | body fluid    | location  |
|--------|---------|-------------|---------------|-----------|
| Spring | air     | sanguine    | blood         | heart     |
| Summer | fire    | choleric    | "yellow bile" | liver     |
| Autumn | earth   | melancholic | "black bile"  | spleen    |
| Winter | water   | phlegmatic  | phlegm        | (various) |




No, that's not enough!








Dalton's symbols for chemical elements. Some of these are now known to be compounds, not elements.



Mendeleev first trained as a teacher in the Pedagogic Institute of St. Petersbug before earing his MS in 1856.

Textbook written between 1868-1870



- At that time, the experimentally determined atomic masses were not always accurate. Mendeleev reordered elements despite their accepted masses. For example, he changed the weight of Beryllium from 14 to 9. In all, he found 17 elements had to be moved to new positions.
- Even so, there are many elements missing at some positions.
   From the gap, he predicted the existence and properties of unknown elements.
- Gallium (by a French, Gallia is Latin for France), Scandium (by a Scandinavian), and Germanium (by a German) were found later to fit his prediction quite well.
- In all Medeleev predicted the existence of 10 new elements, of which seven were eventually discovered.
- After electron, proton, neutron and Quantum Mechanics were known, the periodic table can be easily understood.

Periodic table of the elements

#### Modern Periodic Table

Table 4.1. Revised 2004 by C.G. Wohl (LBNL). Adapted from the Commission of Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements 1995," Pure and Applied Chemistry 68, 2339 (1996), and G. Audi and A.H. Wapstra, "The 1993 Mass Evaluation," Nucl. Phys. A565, 1 (1993). The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundances in the Earth's surface. For a new determination of atomic masses, not weighted by abundances, see G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003). Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Errors range from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived isotope of that element—no stable isotope exists. However, although Th, Pa, and U have no stable isotopes, they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110 and 111, the numbers of nucleons A of confirmed isotopes are given.

| 1            |              |           |             |            |            |             |                       |            |            |                       |         |           |         |           |              |              | 18           |
|--------------|--------------|-----------|-------------|------------|------------|-------------|-----------------------|------------|------------|-----------------------|---------|-----------|---------|-----------|--------------|--------------|--------------|
| IA           |              |           |             |            |            |             |                       |            |            |                       |         |           |         |           |              |              | VIIIA        |
| 1 H          |              |           |             |            |            |             |                       |            |            |                       |         |           |         |           |              |              | 2 He         |
| Hydrogen     | 2            |           |             |            |            |             |                       |            |            |                       |         | 13        | 14      | 15        | 16           | 17           | Helium       |
| 1.00794      | IIA          |           |             |            |            |             |                       |            |            |                       |         | IIIA      | IVA     | VA        | VIA          | VIIA         | 4.002602     |
| 3 Li         | 4 Be         |           | DDD:        |            |            |             |                       |            |            |                       |         | 5 B       | 6 C     | 7 N       | 8 O          | 9 F          | 10 Ne        |
| Lithium      | Beryllium    |           | PER.        | IODIC      | TABL       | E OF        | THEE                  | LEME       | INTS       |                       |         | Boron     | Carbon  | Nitrogen  | Oxygen       | Fluorine     | Neon         |
| 6.941        | 9.012182     |           |             |            |            |             |                       |            |            |                       |         | 10.811    | 12.0107 | 14.00674  | 15.9994      | 18.9984032   | 20.1797      |
| 11 Na        | 12 Mg        |           |             |            |            |             |                       |            |            |                       |         | 13 Al     | 14 Si   | 15 P      | 16 S         | 17 CI        | 18 Ar        |
| Sodium       | Magnesium    | 3         | 4           | 5          | 6          | 7           | 8                     | 9          | 10         | 11                    | 12      | Aluminum  | Silicon | Phosph.   | Sulfur       | Chlorine     | Argon        |
| 22.989770    | 24.3050      | IIIB      | IVB         | VB         | VIB        | VIIB        | _                     | VIII       |            | IB                    | IIB     | 26.981538 | 28.0855 | 30.973761 | 32.066       | 35.4527      | 39.948       |
| 19 K         | 20 Ca        | 21 Sc     | 22 Ti       | 23 V       | 24 Cr      | 25 Mn       | 26 Fe                 | 27 Co      | 28 Ni      | 29 Cu                 | 30 Zn   | 31 Ga     | 32 Ge   | 33 As     | 34 Se        | 35 Br        | 36 Kr        |
| Potassium    | Calcium      | Scandium  | Titanium    | Vanadium   | Chromium   | Manganese   | Iron                  | Cobalt     | Nickel     | Copper                | Zinc    | Gallium   | German. | Arsenic   | Selenium     | Bromine      | Krypton      |
| 39.0983      | 40.078       | 44.955910 | 47.867      | 50.9415    | 51.9961    | 54.938049   | 55.845                | 58.933200  | 58.6934    | 63.546                | 65.39   | 69.723    | 72.61   | 74.92160  | 78.96        | 79.904       | 83.80        |
| 37 Rb        | 38 Sr        | 39 Y      | 40 Zr       | 41 Nb      | 42 Mo      | 43 Tc       | 44 Ru                 | 45 Rh      | 46 Pd      | 47 Ag                 | 48 Cd   | 49 In     | 50 Sn   | 51 Sb     | 52 Te        | 53 I         | 54 Xe        |
| Rubidium     | Strontium    | Yttrium   | Zirconium   | Niobium    | Molybd.    | Technet.    | Ruthen.               | Rhodium    | Palladium  | Silver                | Cadmium | Indium    | Tin     | Antimony  | Tellurium    | Iodine       | Xenon        |
| 85.4678      | 87.62        | 88.90585  | 91.224      | 92.90638   | 95.94      | (97.907215) | 101.07                | 102.90550  | 106.42     | 107.8682              | 112.411 | 114.818   | 118.710 | 121.760   | 127.60       | 126.90447    | 131.29       |
| 55 Cs        | 56 Ba        | 57-71     | 72 Hf       | 73 Ta      | 74 W       | 75 Re       | 76 Os                 | 77 Ir      | 78 Pt      | 79 Au                 | 80 Hg   | 81 T      | 82 Pb   | 83 Bi     | 84 Po        | 85 At        | 86 Rn        |
| Cesium       | Barium       | Lantha-   | Hafnium     | Tantalum   | Tungsten   | Rhenium     | Osmium                | Iridium    | Platinum   | $\operatorname{Gold}$ | Mercury | Thallium  | Lead    | Bismuth   | Polonium     | Astatine     | Radon        |
| 132.90545    | 137.327      | nides     | 178.49      | 180.9479   | 183.84     | 186.207     | 190.23                | 192.217    | 195.078    | 196.96655             | 200.59  | 204.3833  | 207.2   | 208.98038 | (208.982415) | (209.987131) | (222.017570) |
| 87 Fr        | 88 Ra        | 89-103    | 104 Rf      | 105 Db     | 106 Sg     | 107 Bh      | 108 Hs                | 109 Mt     | 110 Ds     | 111                   |         |           |         |           |              |              |              |
| Francium     | Radium       | Actinides | Rutherford. | Dubnium    | Seaborg.   | Bohrium     | $_{\mathrm{Hassium}}$ | Meitner.   | Darmstadt. |                       |         |           |         |           |              |              |              |
| (223.019731) | (226.025402) |           | (261.1089)  | (262.1144) | (263.1186) | (262.1231)  | (265.1306)            | (266.1378) | [269,271]  | [272]                 |         |           |         |           |              |              |              |

Lanthanide series

Tm 58 Ce 59 60 Nd 61 Рm 62 Sm 63 Fυ 64  $\mathsf{Gd}$ 65 Tb 66 Dν 67 Ho 68 Er | 69 70 Υb Pr 71 La Lu Lanthan. Cerium Praseodym. Neodym. Prometh. Samarium Europium Gadolin. Terbium Dyspros. Holmium Erbium Thulium Ytterbium Lutetium 151.964 138.9055 140.116 140.90765 144.24 (144.912745) 150.36 157.25 158.92534 162.50 164.93032 167.26 168.93421 173.04 174.967 90 Τh 91 Pa 93 Νp Pu 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Μd 102 103 Lr Аc 95 Am No

Curium

Americ.

Berkelium

(243.061372)|(247.070346)|(247.070298)|(251.079579)

Californ.

Einstein.

(252.08297)

Fermium

(257.095096

Mendelev.

(258.098427)

Nobelium

(259.1011)

(262.1098)

Actinide series

Thorium

232.0381

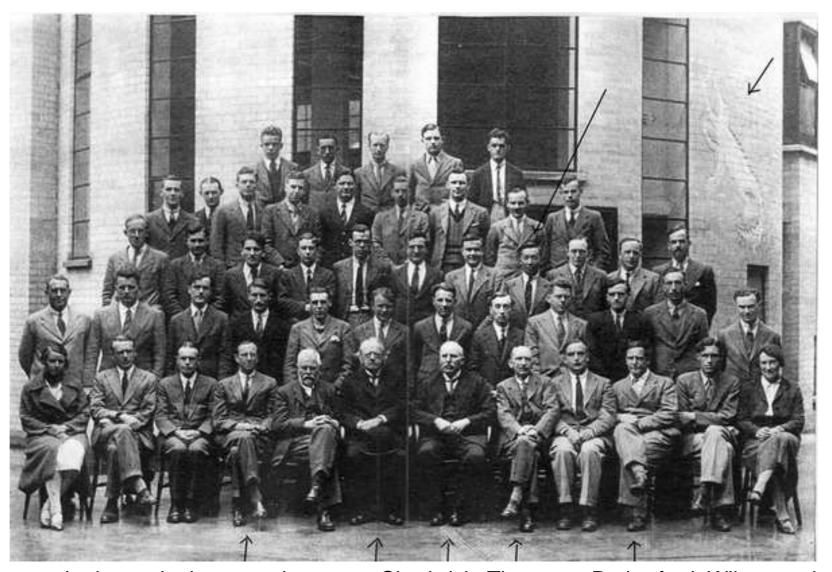
Actinium

(227.027747

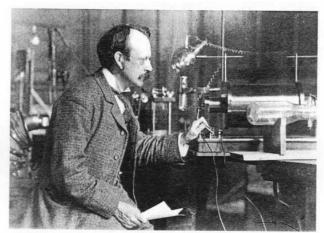
Protactin.

231.03588

Uranium


238.0289

Neptunium Plutonium


(244.064197)

(237.048166)

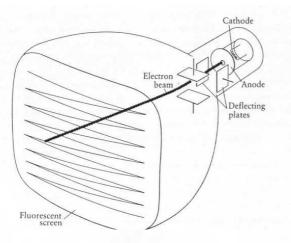
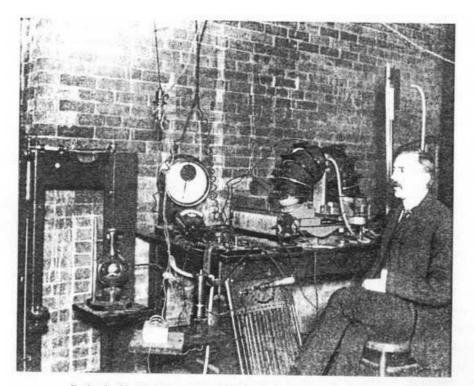
# Cavendish Laboratory

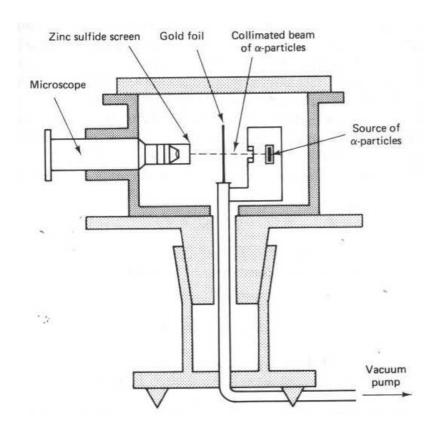


The marked ones in the seated row are: Chadwick, Thomson, Rutherford, Wilson, and Kapitza. You my also notice the crocodile and a Chinese gentleman, P.C. Ho.

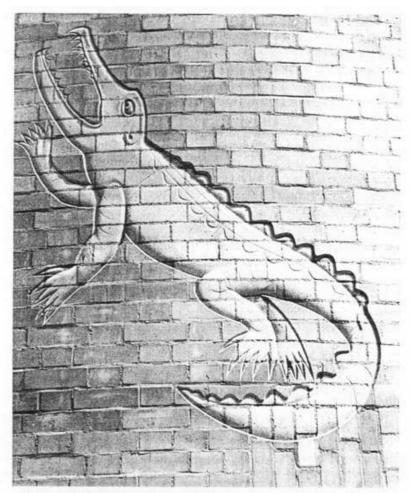




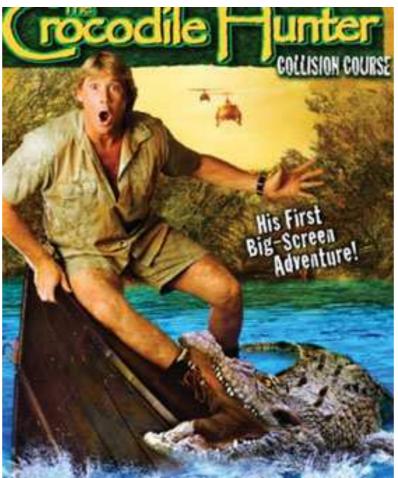





Table 2.1. Results of Thomson's experiments on electric and magnetic deflection of cathode rays.

| Gas in cathode-ray tube | Material of cathode | Electric field (N/C) | Electric<br>deflection<br>(m) | Magnetic field (N/amp m) | Magnetic<br>deflection<br>(m) | Deduced velocity<br>of ray<br>particles (m/sec) | Deduced ratio<br>of particle mass to<br>charge (kg/C) |
|-------------------------|---------------------|----------------------|-------------------------------|--------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Air                     | Aluminum            | $1.5 \times 10^{4}$  | 0.08                          | 5.5 × 10 <sup>-4</sup>   | 0.08                          | $2.7 \times 10^{7}$                             | $1.4 \times 10^{-11}$                                 |
| Air                     | Aluminum            | $1.5 \times 10^{4}$  | 0.095                         | $5.4 \times 10^{-4}$     | 0.095                         | $2.8 \times 10^{7}$                             | $1.1 \times 10^{-11}$                                 |
| Air                     | Aluminum            | $1.5 \times 10^{4}$  | 0.13                          | $6.6 \times 10^{-4}$     | 0.13                          | $2.2 \times 10^{7}$                             | $1.2 \times 10^{-11}$                                 |
| Hydrogen                | Aluminum            | $1.5 \times 10^{4}$  | 0.09                          | $6.3 \times 10^{-4}$     | 0.09                          | $2.4 \times 10^{7}$                             | $1.6 \times 10^{-11}$                                 |
| Carbon dioxide          | Aluminum            | $1.5 \times 10^{4}$  | 0.11                          | $6.9 \times 10^{-4}$     | 0.11                          | $2.2 \times 10^{7}$                             | $1.6 \times 10^{-11}$                                 |
| Air                     | Platinum            | $1.8 \times 10^{4}$  | 0.06                          | $5.0 \times 10^{-4}$     | 0.06                          | $3.6 \times 10^{7}$                             | $1.3 \times 10^{-11}$                                 |
| Air                     | Platinum            | $1.0 \times 10^{4}$  | 0.07                          | $3.6 \times 10^{-4}$     | 0.07                          | $2.8 \times 10^{7}$                             | $1.0 \times 10^{-11}$                                 |


The electric deflections vary even for entries with the same electric field, because of differing cathode-ray velocities in the different cases. The magnetic deflections are the same here as the electric deflections, because in each case Thomson adjusted the magnetic field to give the same deflection as the electric field. I have calculated the results given in the last two columns from the data published by Thomson. Some of them differ by one unit in the last decimal place from the calculated values given by Thomson. I presume this is because the experimental data published by Thomson were rounded off from his actual data, and it was his actual data that Thomson used in his calculations.




Rutherford in his laboratory at McGill University, Montreal, in 1905.



$$\frac{d\sigma}{d\Omega} = \left(\frac{q_1 q_2}{4E \sin^2 \frac{\theta}{2}}\right)^2$$









J Thomson electron, 1906

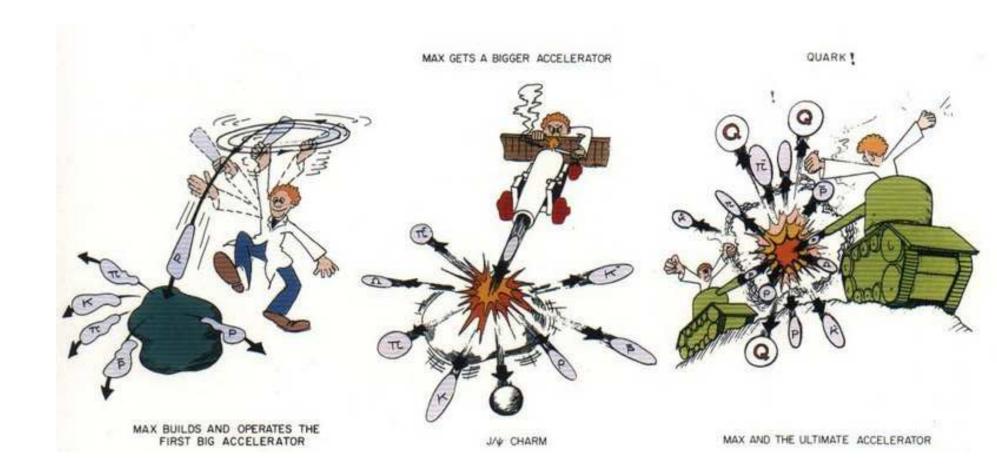


Rutherford proton, 1908 (chem)



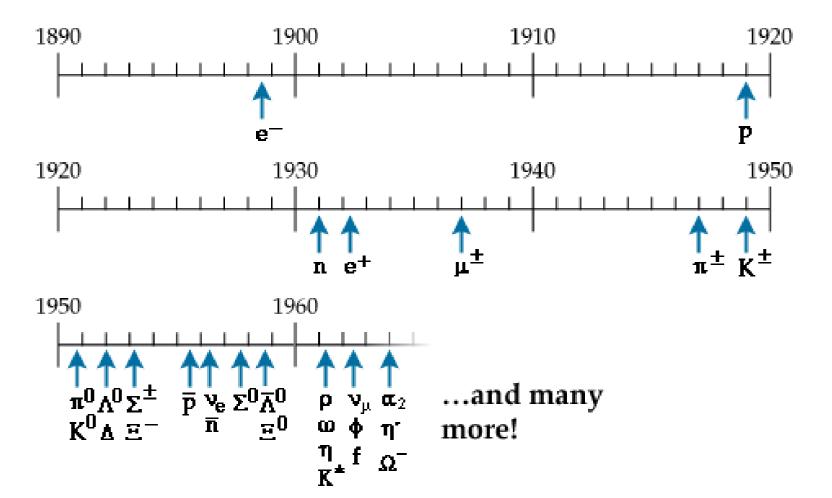
J. Chadwick neutron, 1935

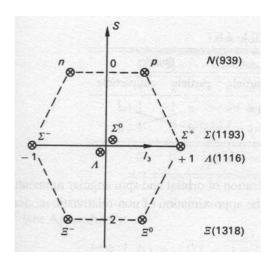



C Anderson positron, 1936




Yukawa pion theory, 1949

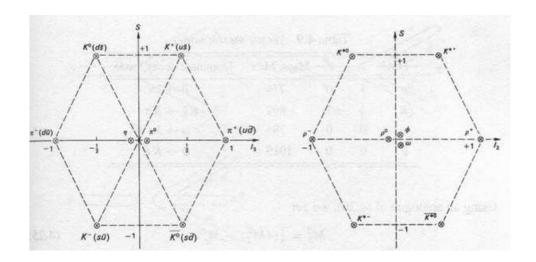




C. Powell pion, 1950









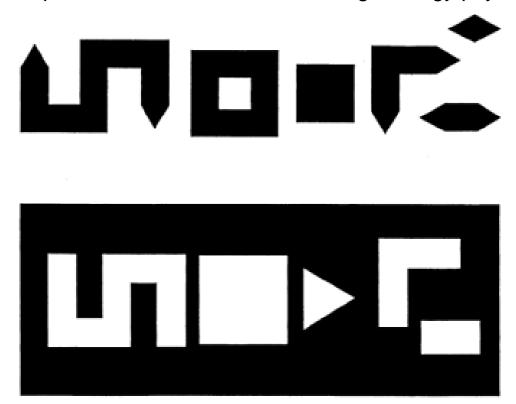



 $I = \frac{3}{2} - 2 \otimes A^{-} \otimes A^{0} - 2 \otimes A^{0} \otimes A^{+} \otimes A^{++} \otimes A^{++} \otimes A^{0} \otimes A^{+} \otimes A^{++} \otimes A^{0} \otimes A^{++} \otimes A^{0} \otimes A^{++} \otimes A^{0} \otimes A$ 

**Baryon Octet** 

Baryon decuplet




pseudoscalar meson octet and vector meson nonet



In 1964, Murray Gell-Mann and George Zweig tentatively put forth the idea of quarks. They suggested that mesons and baryons are composites of three quarks or antiquarks, called up, down, or strange (u, d, s) with spin 1/2 and electric charges 2/3, -1/3, -1/3, respectively (it turns out that this theory is not completely accurate). Since the charges had never been observed, the introduction of quarks was treated more as a mathematical explanation of flavor patterns of particle masses than as a postulate of actual physical object. Later theoretical and experimental developments allow us to now regard the quarks as real physical objects, even though they cannot be isolated.

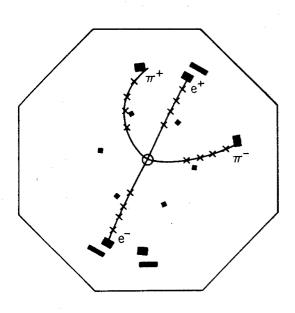
#### A challenge

Following is a famous puzzle which mimics what the high energy physicists' work are:

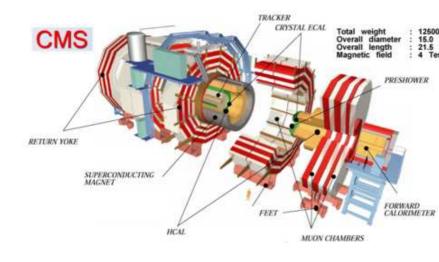


Imagining that we are living in a 2-dimensional world. The first row shows some of the observed 2-dimension "Atoms". The shapes in white in the second row are those never been seen ever. Try to find out what are the fundamental particles and to decipher the physics rules for the 2-D world.

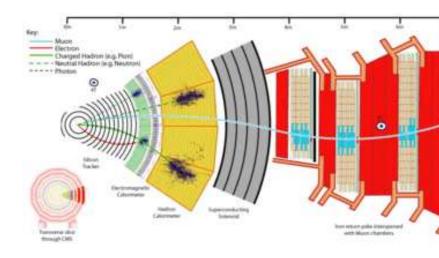
# November Revolution in Physics

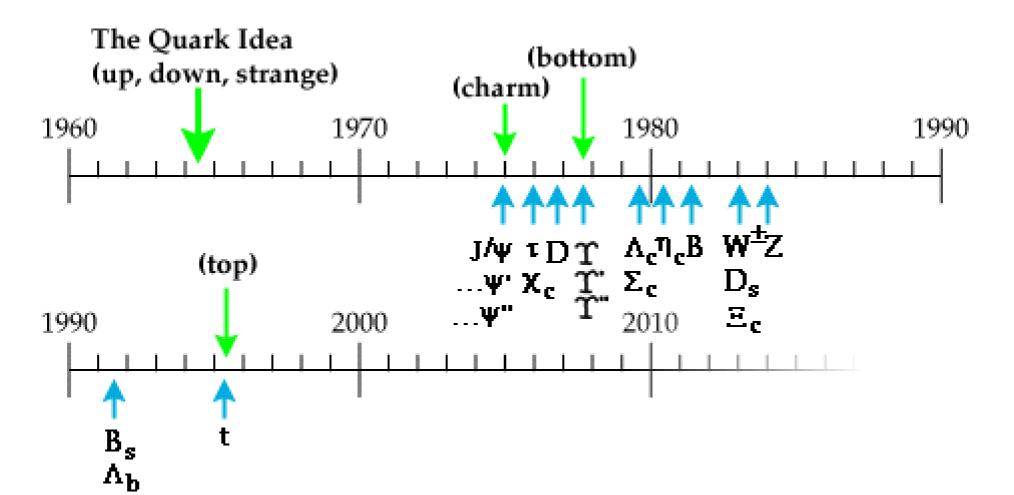

The world of physics was dazzled in November 1974 when two separate experiments at SLAC and at Brookhaven independently discovered the first of a new set of particle states, the J/Psi particle.

Burton Richter of the SLAC collaboration, and Sam Ting, of the Brookhaven group, received the 1976 Nobel Prize in Physics


"for their pioneering work in the discovery of a heavy elementary particle of a new kind."
















#### Standard Model

 Standard Model(SM) is the most successful theoretical understanding of the Mother Nature in human history ( with only 19 free parameters. )

$$SM = \mbox{Quantum Mechanics} + \mbox{Special Relativity} + \mbox{Field theory} + \mbox{Gauge Symmetry} \ [\equiv SU(3)_c \times SU(2)_L \times U(1)] + \mbox{Matter Content} \ [quarks, leptons] + \mbox{Higgs Mechanism}.$$

• Predicts that weak interaction is mediated by exchange of  $W^\pm$  and  $Z^0$  bosons.



S. Glashow



Abdus Salam



Steven Weinberg

# Baryons qqq and Antibaryons q̄q̄q̄

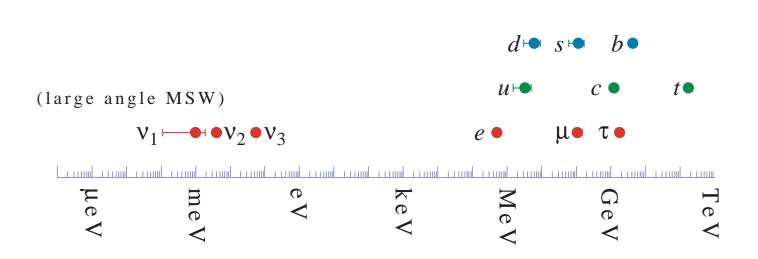
Baryons are fermionic hadrons.

These are a few of the many types of baryons.

| Symbol | Name       | Quark content | Electric charge | Mass<br>GeV/c <sup>2</sup> | Spin |
|--------|------------|---------------|-----------------|----------------------------|------|
| р      | proton     | uud           | 1               | 0.938                      | 1/2  |
| p      | antiproton | ūūd           | -1              | 0.938                      | 1/2  |
| n      | neutron    | udd           | 0               | 0.940                      | 1/2  |
| Λ      | lambda     | uds           | 0               | 1.116                      | 1/2  |
| Ω-     | omega      | SSS           | -1              | 1.672                      | 3/2  |

# Mesons qq

# Mesons are bosonic hadrons These are a few of the many types of mesons.

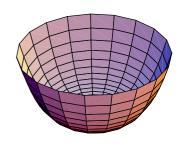

| Symbol         | Name   | Quark content | Electric charge | Mass<br>GeV/c <sup>2</sup> | Spin |
|----------------|--------|---------------|-----------------|----------------------------|------|
| π+             | pion   | ud            | +1              | 0.140                      | 0    |
| K-             | kaon   | sū            | -1              | 0.494                      | 0    |
| ρ+             | rho    | ud            | +1              | 0.776                      | 1    |
| $\mathbf{B}^0$ | B-zero | d̄b           | 0               | 5.279                      | 0    |
| $\eta_{c}$     | eta-c  | cc            | 0               | 2.980                      | 0    |

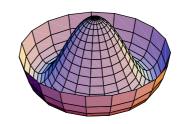
The subtle periodic table in the modern particle physics:

| FERMIONS matter constituents spin = 1/2, 3/2, 5/2, |                               |                    |                 |                                       |                    |  |  |  |  |
|----------------------------------------------------|-------------------------------|--------------------|-----------------|---------------------------------------|--------------------|--|--|--|--|
| Lep                                                | =1/2                          |                    |                 |                                       |                    |  |  |  |  |
| Flavor                                             | Mass<br>GeV/c <sup>2</sup>    | Electric<br>charge | Flavor          | Approx.<br>Mass<br>GeV/c <sup>2</sup> | Electric<br>charge |  |  |  |  |
| ν <sub>L</sub> lightest neutrino*                  | (0-0.13)×10 <sup>-9</sup>     | 0                  | <b>u</b> up     | 0.002                                 | 2/3                |  |  |  |  |
| e electron                                         | 0.000511                      | -1                 | d down          | 0.005                                 | -1/3               |  |  |  |  |
| ν <sub>M</sub> middle neutrino*                    | (0.009-0.13)×10 <sup>-9</sup> | 0                  | C charm         | 1.3                                   | 2/3                |  |  |  |  |
| $\mu$ muon                                         | 0.106                         | -1                 | S strange       | 0.1                                   | -1/3               |  |  |  |  |
| V <sub>H</sub> heaviest neutrino*                  | (0.04-0.14)×10 <sup>-9</sup>  | 0                  | t top           | 173                                   | 2/3                |  |  |  |  |
| ₹ tau                                              | 1.777                         | -1                 | <b>b</b> bottom | 4.2                                   | -1/3               |  |  |  |  |

#### Fermion masses

Fermion masses in log scale



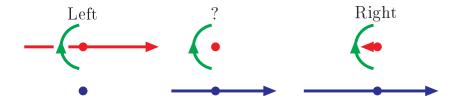


fermion masses

• Where comes the mass?

## Masses and the Higgs field

 The left-handed and right-handed fermions are coupled by Higgs boson and get their mass through nonzero VEV.






Mathematically, the fermion mass term can be expressed as

$$\mathcal{L}_{Yukawa} = f_{ij}\overline{\psi_{Li}}\psi_{Rj}H + H.c.$$

A thought experiment:
 If a left-handed fermion has mass, we can move fast enough to pass and find a right-handed partner.

Since we observe no right-handed neutrino ⇒ neutrinos are massless in Standard Model.



# Fermion Mixing

 We have learnt that: the mixing among neutrinos are "Bi-LARGE" and only few mass matrix patterns can explain the data.

$$U_{MNS} = \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & e^{-i\delta+i\phi_2} & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\theta_{12}\sim 33^{\circ}, \theta_{23}\sim 45^{\circ}, \, \theta_{13}<13^{\circ}; \, \delta,\phi_1,\phi_2 \text{ are still unknown.}$ 

Compared to the SM quark sector:

$$V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & e^{-i\delta} & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\theta_{12} \sim 13^{\circ}, \, \theta_{23} \sim 2^{\circ}, \, \theta_{13} \sim 0.2^{\circ}; \, \delta \sim 65^{\circ}.$$

Puzzles!!

#### Let's look back.

- Too many elements
  - → Periodic Table
  - → Atoms consist of electrons and nuclei
- Too many isotopes
  - → nuclei is made of protons and neutrons
- Too many hadrons
  - $\implies$  quarks,  $SU(3)_F$ , and  $SU(3)_c$
- Too many redundant generations
  - → Preon and Hypercolor??

#### Preon doesn't work!

In the 1980s, the preon was a very popular research topic. But it doesn't look promising anymore:

- No direct experimental evidence or hints of the existence of substructure of quarks or lepton.
  - Contact interaction search at LEP

$$\Longrightarrow \Lambda_p > \mathsf{TeV}$$

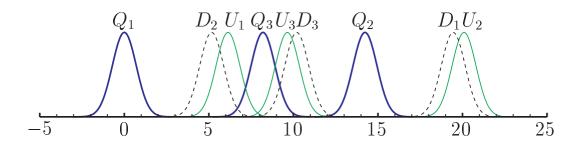
- The theory is difficult.
  - Must be another Yang-Mills:
     Which group? Which representation? How to calculate?
  - Why are quarks and leptons so light? Natural expectation is mass $\sim \Lambda_p >$  TeV. Chiral symmetry is the only known symmetry to protect large mass, no one knows how to make it work here.
  - How to get the SM quantum number?
  - Some generic bad predictions: exotic boson, quarks, and leptons..

#### Other tries.

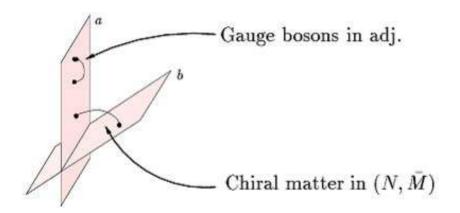
Bigger symmetry group?

$$SU(5) \to SU(8) \,, \, SO(10) \to SO(10+4k) \,, \, E6 \to E8$$

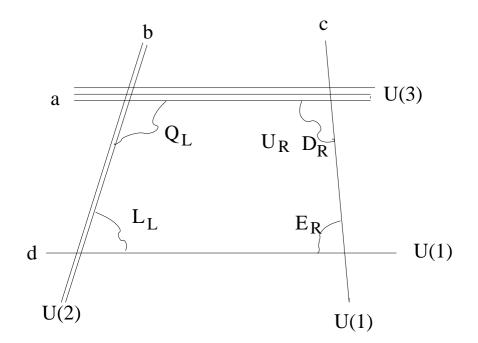
However, familion problem, predicts  $K^+ \to \pi^+ + f$ 


- Symmetry, or extra quantum number in the Yukawa sector:
   Structure Zeros, Froggatt-Nielsen, or the hybrid.
- Statistics: Anarchy, Landscape..

## Geometry in extra Dimension?


• 5D fermion localizes at different position,  $z_i$ , in extra dimension  $y \in [-\pi R, \pi R]$ ,  $\psi_i(x,y) = g(z_i,y)\psi(x)$ ,

$$g(z_i, y) = \frac{1}{(\pi \sigma^2)^{1/4}} \exp\left[-\frac{(y - z_i)^2}{2\sigma^2}\right]$$
$$g(z_1, y)g(z_2, y) = \exp\left[-\frac{(z_1 - z_2)^2}{4\sigma^2}\right] g\left(\frac{z_1 + z_2}{2}, y\right)$$


- Exponential Yukawa hierarchy becomes linear displacement between left-handed and right-handed fermions in the fifth dimension.
- The following map can reproduce all quarks' masses and CKM mixings



# Intersecting brane?

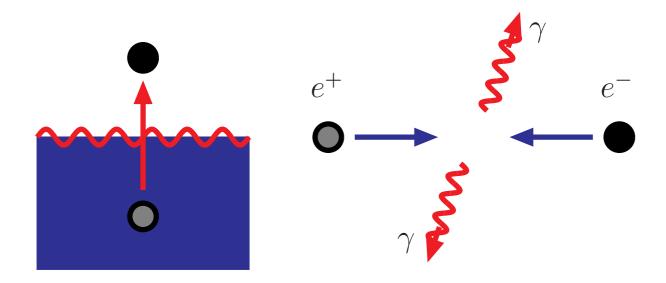


It may provide a topological reason why we have 3 generations.

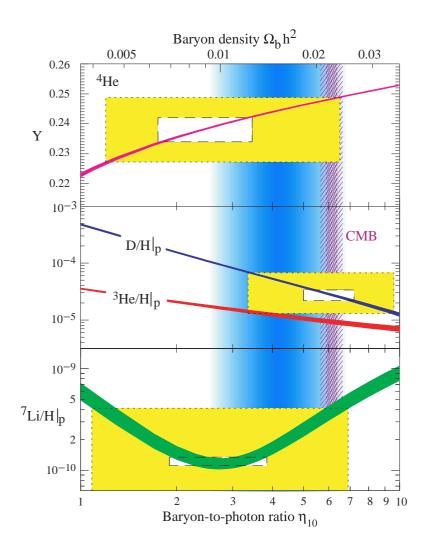


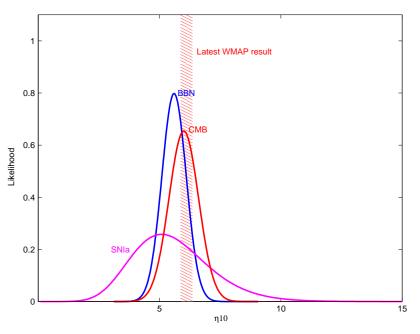
# LHC is coming soon




length = 26.7 km,  $\sqrt{s} = 14$  TeV.

Maybe LHC will reveal more secretes of flavor physics and how the symmetry is broken to us.





# Have you noticed an everyday mystery?

- Every single second, we witness one of Nature's great mysteries.
- How can we be here sound (and sleeping?)
  Where goes the antimatter?



# Baryon Asymmetry of the Universe

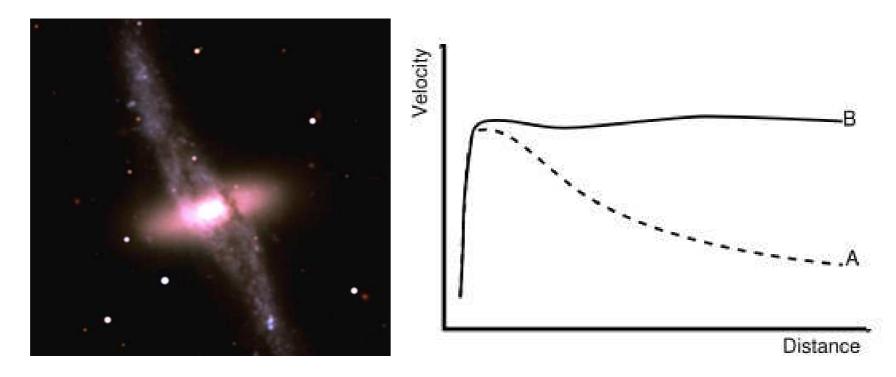




$$\eta_B \sim 5.6 \times 10^{-10}$$

$$\left(Y_B \sim \frac{\eta}{7}\right)$$

#### Sakharov's 3 condictions




It was first realized by A. Sakharov in 1967 that to generate the matter anti-matter asymmetry from the initially symmetrical phase, the following three necessary conditions must be satisfied.

- Baryon ( or Lepton) number violation
  - Because at the very beginning,  $n_B n_{\bar{B}} = 0$ .
- C and CP violation
  - C violation is for distinguishing baryon from anti baryon.
  - CP violation is to mark a special reaction rate direction in the thermal soup.
- Out of equilibrium
  - Since CPT predicts  $m_P = m_{\bar{P}}$ , if it is in thermal equilibrium,

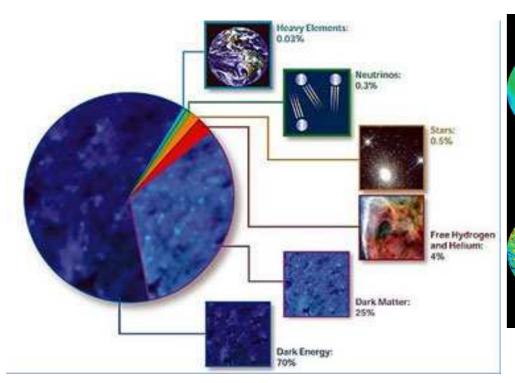
$$n_P = \int \frac{d^3k}{e^{-\beta\sqrt{k^2 + m_P^2}} + 1} = n_{\bar{P}}$$

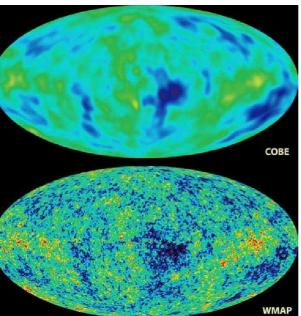
# Dark matter



NGC4650

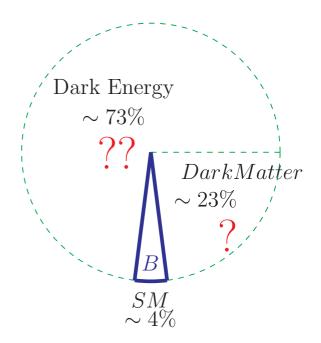
$$mv^2/r = \frac{GmM(r)}{r^2}$$


or


$$v = \sqrt{\frac{GM(r)}{r}}$$

# Beyond SM

Standard Model is an extremely successful and profound theory which describes our world. But we strongly believe there must be something beyond it.


- Neutrino Physics
- Stability of the Higgs sector
- Flavor Physics
- SM is even more embarrassing after WMAP





# **Summary**

- Human being has been working hard and long to find out the ultimate constituent around us.
- So far, we know that the most fundamental building blocks of our world are mainly quarks, leptons, and gauge bosons.
- However, we don't really understand their pattern. Also, we don't really know where go their antiparticles.
- We also know that  $\sim 25\%$  of the universe weight is consisted of dark matter. We are not sure what it is yet.
- Even worst, recently, we are very sure that there are  $\sim 70\%$  of universe weight is made of yet unknown thing, called dark energy.



An exciting era!