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Ultracold atoms as an emergent field....

Atomic, Molecular, and Optical Physics Condensed matter Physics

Nucleus Electron

Paired Electrons

Systems of ultracold atoms can be understood as a many-body
system of atoms, which are strongly affected by the fruitful
internal degrees of freedom of each single atom.
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How cold is an “ultracold system” ?
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Why low temperature ?

Ans: To see the quantum effects !

Uncertainty principle: JAVIAV2=S/)
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Why strong interaction ?

P. Anderson: “Many 1s not more”

Because interaction can make
“many”’ to be “different” !

Example: 1D interacting electrons

—> crystalization and no fermionic excitation



How to make interaction stronger ?

1. U(x) becomes stronger

2. E, ~ k,T becomes smaller or m becomes smaller

3. V(x) changes to make lower dimension

4. N becomes larger (for short interaction);

smaller for long range interaction



How to reach ultracold temperature ?

1. Laser cooling !
(few K-> mK)
Use red detune laser
+ Doppler effect

See also: Prof. Yu’s talk

1997 Nobel Price

Claude Cohen-Tannoudji i Williams D. Phillips




How to reach ultracold temperature ?

1 . Laser COOllng ' II _Principle of Laser Cooling & Trapping
(1997 Nobel Price) 1) Doppler Cooling

Use red detune laser . M et s
+ Doppler effect S—
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How to reach ultracold temperature ?

2. Evaporative coohng '

Reduce potential barrial M\_
+thermal equilibrium




Typical experimental environment
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How to do measurement ?

Trapping and cooling

BEC

(2001 Nobel Price)



What is Bose-Einstein
condensation ?

Y(x,x,)=x%¥(x,,x), + for boson and - for fermion

Therefore, for fermion we have W(x, x) =0,
1.e. fermions like to be far away,

but bosons do like to be close !

When 7'1s small enough,

noninteracting bosons

like to stay in the lowest

energy state, i.e. BEC Bosons Fermions




How about fermions in T=0 ?

When T-> 0, noninteracting
fermions form a compact
distribution in energy level.

Bosons Fermions




BEC and Superfluidity of bosons

(after Science, 293, 843 (°01))

BEC # superfluidity

repulsion

condensate

mmsp  Superfluid

uncondensate

-

TN Ny — N —

ormal fluid




Phonons and interference in BEC

Phonon=density fluctuation Interference
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(after Science 275, 637 (’97))

Matter waves ?



Vortices in condensate

Vortex = toﬁologi¢al disorder

(after Science 292,476 (01)  [ONMERONVI SRSV IR M W

Vortices melting, quantum Hall regime ?
(after PRL 87, 190401 (*01))



Spinor condensation in optical trap

(see for example, cond-mat/0005001)
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Boson-fermion mixtures

Fermions are noninteracting !

Bosons Fermions phonon
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Feshbach Resonance

(1) Typical scattering:

A

(11) Resonant scattering: a J




Molecule and pair condensate

Before B ramp After B ramp

After dissociation (MIT group, PRL

92, 120403 (*04))

40K
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(Innsbruck, after Science 305, 1128 (°04))



First evidence of superfluidity of fermion pairing

Magnetic field (G)
833

0
Injeraction parameter, 1/k.a




Optical lattice
1D lattice

3D lattice
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Lattice depth




Mott-Insulator transition

Bose-Hubbard model

H =—t¢ Zal.*aj + UZ a’a(a a —1)— ,UZ a’a

i

superfluid

(after Nature 415, 39 (°02))



Fermions in optical lattice

Fermi Hubbard model

H = —tZa N +U2n Ry

<i,j>

Superfluidity of fermion pairing in lattice 1s also realized.



Transport in 1D waveguide

wave guide
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P Interference ?

SRy Finite temperature
+ semiconductor technique



Cold dipolar atoms/molecules

(1) Heteronuclear molecules (2) Atoms with large
magnetic moment

(a) Direct molecules
~1-5D

(b) But difficult to be cooled | But it is now ready to go !

(Doyle, Meijer, DeMille etc.) (Stuhler etc.)

p~1D, U, ~10uK, u=1u,, U, ~1nK



Condensate (superfluid)

pure“ Cr-BEC H = 7

i £ /
pry ey pry - )
[ & @ @

~ 10° atoms

optical density

_400  -400

A. Griesmaier et al., PRL 94, 160401 (2005) 7.~7(00 nK



(KRb, JILA, ETH, etc.)

But not in ground state
weak dipole moment
short life time
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(RbCs, Yale, etc.)
Now 1n ground state
But number of atoms
are still small

(J. Sage, et. al., PRL, 94, 2030
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Gallery of pictures

Magnetic field (G)
833




