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It is a great pleasure to talk to you about some old ideas and
perhaps a few new ones, some of which have to do with precise measurement
of gravitational fields. However, most of what I have to say will be
more about ideas than about measurements.

Just a few hundred years ago, gravitation was not understood at all.
Instead, people believed that objects had natural places; heavy objects
had a lower place, lighter objects a higher place. This is the more
remarkable because the idea that the earth is approximately a sphere is
quite old.

Two thousand years ago, people living along the River Nile, knew
that when the sun came up to its highest point in the sky in the summer,
it shone straight down in a certain area of the Nile valley. If one
went farther south down the Nile or at an angle farther up north, the
rays were not perpendicular. From that information, the size of the
earth was correctly calculated.

I would love to know whether anyone in Chinese history had the idea
that the earth does not stand still but rotates on its axis and describes
an approximate circle around the sun.* The first person I know credited
with this idea lived about 200 years before Christ, more than 2000 years
ago. Aristarchos was a Greek from the island Samos, and he made this
enlightened guess that it was the sun that stood still, and the earth
moved around it while rotating around its axis. The Greek scientists,
who called themselves philosophers, did not believe him. They did the
worst thing to him that one can do to a scientist--they forgot about his
proposal. However, there was at this time another very clever Greek who
did not live in Greece either, but in Sicily. Archimedes, one of the
greatest mathematicians, learned of Aristarchos' strange idea and found
it so odd that he mentioned it in one of his books.

We don't know how Aristarchos came up with his peculiar idea. But
it is possible to guess. He could make the explanation of planetary
motion much simpler by saying that the planets moved on circles around
the sun, and the earth while rotating around its axis also moved on a

Editor's note: 1In Chou dynasty (1122BC to 225BC) in the Chinese
history, some people had the ideas that the earth is round and moving
and/or rotating but none, to my knowledge, had the idea that the earth
is going around the sun. Please see ®phsf ¥ ¢ [ ERELL 2 # 7 |
(The Study of Ancient Astronomy) (EFPEAGPHLAZ » 1971 3

for more details.
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circle around the sun. If you look up at the sky, most of the stars

seem to move on circles. Howeyer, the planets move in a more complicated
manner. To describe their motion, the Greeks assumed that they move in
circles whose centers move on circles, and whose centers move in turn on
circles--epicycles. When measurements became more accurate, the final
Greek word on it came from Ptolemy. He proposed epicycles of the fifth
order--circles whose centers moved on circles, whose centers moved on
circles, whose centers moved on circles, whose centers finally moved on
circles.

Aristarchos' theory necessitated an epicycle of the third order--a
circle whose center moved on a circle, whose center moved on a circle.
But this simplified description was probably not his only reason for his
unusual proposal. Another possibility seems more important to me.

The Greeks at that time knew the approximate distance of the moon
from the earth. This had been determined by the use of parallax. Paral-
lax results from observing an object from two points of view. If I look
first through one eye and then through the other, a nearby object seems
to move on the background of more distant objects. When one looks at
the moon from two points on the earth, the moon appears to be covering
different stars. In this way one could obtain the distance of the moon
from the earth.

However, parallax could not be used to find the distance of the sun
from the earth. The sun was not only so far away that the parallax would
be very small, but when the sun was up one couldn't see any stars. Ari-
starchos devised a very clever method of making this measurement. His
idea was correct, but his execution of it contained considerable error.

The phases of the moon include two times when just half the moon is
illuminated. If the sun is infinitely far away, then the point when the
moon is half illuminated on my right and the point when it is again half
illuminated on my left will divide the moon's orbit exactly in half.

But if the sun is closer, then the situation is different. The moon will
be half illuminated when the sun's rays strike exactly at right angles
both when it is to the right and to the left (so to speak) of the earth.
However, these points will not occur exactly halfway through the moon's
orbit. If the distance of the moon is known (which it was), one could
estimate the distance of the sun by comparing the two arcs of the moon's
orbit.

The idea is ingenious and right. The two points when the moon is
just half illuminated are almost but not quite opposite. To measure
the difference was very difficult, the more so because the moon's surface
is not smooth which makes it difficult to find when just half of the
moon's surface is illuminated. The result was that Aristarchos believed
that the sun was only one-sixth as far away as it is, not 400 times as
far as the moon, but maybe 65 times as far as the moon. Aristarchos'
execution of his correct idea was wrong. The remarkable thing is that
this mistaken calculation was believed for many centuries. Even in the
1600s Galileo believed it.

If the sun is 60 or 70 times as far away as the moon, it must be
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much bigger than the earth. The origin of Aristarchos' heliocentric
theory may have been, "Let's not say that the tail wags the dog, let's
say the dog wags the tail.'" That which is lighter should move, that
which is heavier should remain fixed. I believe that must have been in
his mind. And if so, Aristarchos had the beginning of the ideas that
make up physics today. Remarkably enough, if you translate his name, the
work Aristarchos means 'the best beginning."

Many centuries later, Aristarchos was forgotten, and Copernicus in
Poland had been asked by the Pope to correct the calendar. The sun and
the moon and the stars were not behaving as they should have according
to the ancient Greeks' calculations. Copernicus read Archimedes' book
and noticed the reference to Aristarchos' idea. Copernicus played with
the idea and came to the conclusion that it was much easier to rewrite
the calendar and get a good one if you assumed that the sun was at rest
and the earth and the other planets moved around it.

He hesitated. Everybody believed otherwise. The Bible said other-
wise. At the very end of his life, when he was on his deathbed, he
allowed his book to be published. Even then, he insisted on an introduc-
tion which said. '""Dear reader, if I say that the earth moves around the
sun, don't believe a word. This is not real, this is a trick to make
mathematics easier. And mathematics is for the mathematicians. The rest
of you, don't wprru/" But people did.

During this period, there was a great astronomer in Denmark, Tycho

Brahe. He said, "If Copernicus is right, and if the earth is moving on

a big circle, then I should see the distant stars from a different angle
in winter and in summer. And I should notice it." But he had no teles-
cope and only the crudest of instruments. The effect for which Tycho
Brahe looked 400 years ago was observed only in 1838, because the stars
are so far away that even the nearest of them will appear to move only a
little bit on the background of the others. He could not see this stellar
parallax, and so he did not believe that Copernicus was really right.

Still, there were other astronomers: a man whom I consider one of
the greatest scientists who ever lived was among them. Johannes Kepler
was only half a scientist--he was also half an astrologer. He read the
fates of human events in the stars.

Yet Kepler considered the stars and the planets and the solar system
as the creation of God. And he had an urge. (Our strongest urges, our
strongest likes and dislikes, are difficult to explain; they are just
there.) Kepler had the urge to understand how God put the solar system
together. To gain this end, he stole Tycho Brahe's observations when
Brahe died, for these were very accurate observations. Without computing
machines, with just a goose feather and ink to put down his thoughts,
Kepler worked and worked. In many a chapter he said, "In the last
chapter I was a fool. I made a mistake. Now I will do it better."

He had almost explained the behavior of the most eccentric of the
known planets, the most complicatedly moving planet, Mars. He almost
explained it with an epicycle of the fifth order. It almost checked,
but it did not fit completely.
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What would you do? I am lazy. 1In his place I would have invented
an epicycle, using not five but six circles. Then it would have been
easy. But not Kepler, because he was a real scientist, who had under-
stood that making a scientific explanation more complicated is worth
nothing. If he had put in a sixth circle, then there would not have been
one possible explanation but many. He could have chosen an easy way, but
he would not have decided the question but only found a possibility. And
he believed that God had to have had a simple way of doing it. I am not
talking to you about religion. I am using the word of God only as Kepler
used it -- with a deep conviction that for whatever reason the explanation
must be simple.

Kepler discovered that Copernicus was right; and furthermore, the
planets do not move on circules--they move in ellipses. Then he wrote a
book with an introduction that was very different from Copernicus' intro-
duction, because he said, "I have written this book, and I believe that
nobody will read it for a hundred years." He was right--few if any did.
But then he said, "I can wait. God Himself waited for almost 6000 years
(which was at that time believed to be the age of the universe). He
waited for almost 6000 years before anybody understood what He had been
doing." And in a hundred years the man who really understood gravitation,
Isaac Newton, did read Kepler, and did understand and explain Kepler's
work,

Everybcdy knows that Newton explained Kepler's laws in terms of the
idea that there is an attractive force between heavy bodies, a force
that varies with the distance between them, as l/rz, as 1 divided by the
distance of the two objects squared.

There is a strange story about Newton's work that may not be familiar.
Edmund Halley, a contemporary Englishman, was very much interested in
comets. Comets were supposed to be bodies that came from infinity, went
around the sun, and vanished again into infinity. But Halley looked up
the record, and he found that some comets seemed to return. If one
returned in a hundred years, and then in another hundred years, there it
was again in a record. And he noticed this regularity with one particular
comet which he had never seen. He predicted its periodicity. Today it
is called Halley's comet. It visited when I was four years old and I
didn't see it. I hope it will visit again before I die.

Newton, when he was a yound man, studied at Cambridge in England.
But there was an epidemic, and he had to go home to his village, Woolst-
horpe, where he had nothing to do. He did what few people do--he started
to think. That is when the figurative apple fell on his head. That is
when he understood gravitation. But it was a complicated subject, one
which many people were discussing. And Newton did not like controversy.
He did not write his ideas down. He seemed to forget about them. Then
many years later, Halley came to him and said,"I don't think the comets
move on parabolae which come from infinity and go to infinity. I suspect
that they move on very elongated ellipses which almost look like para-
bolae. Tell me, can you prove Kepler's laws from your law of 1/r?"

Newton said, '"Yes, I proved this in Woolsthorpe some 20 years ago."
Halley asked, "Could you show me the proof?" But Newton couldn't repro-
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duce it. There seems to be another law of nature, less well-known, that
the older a person gets, the more stupid he becomes. Newton was no
longer as clever as he was when he was twenty. That, you can well
imagine, annoyed him. So he started to work and continued for two weeks
before he could find the proof that he had easily found as a yound man.

Then he said, "Now this nonsense must stop. I will write down every-
thing so that it will never be forgotten again." And he wrote his famous
book Philosophiae Naturalis Principia Mathematica, The Mathematical
Principles of Natural Philosophy. I want to say only one thing about
that book, The Greeks, Kepler, even Galileo, all believed that there
were two kinds of laws: the laws which are valid on earth and the laws
that were valid in the heavens. Apart from the mathematics he developed
to a remarkable extent, Newton made one other tremendous discovery, and
it was contained in this book. Newton discovered that, at least in phy-
sics, there is only one set of laws. The same laws apply on earth and
in the heavens, the law which describes the falling of an apple or my
dropping a piece of chalk also describes the motion of the moon and the
motion of the earth and the motion of anything in the skies.

Newton had the remarkable gift of seeing things as they were, even
of seeing himself as he was. At one point he said, "I don't know what I
may appear to the world, but to myself I seem to have only been like a
boy playing on the seashore and diverting myself in now and then finding
a smoother pebble or a prettier shell than ordinary while the great ocean
of truth lay all undiscovered before me."

It is time to discuss a little mathematics. Newton had problems
which he resolved in a complex manner. We know now that they can be
resolved in a simpler manner. Why does the force change as 1 divided by
the distance squared? Why did newton's calculations come out right when
he assumed that the mass of the earth was concentrated at the center of
the earth even though in fact it is spread out in a sphere? Newton solved
this question by assuming the 1/r? law for each part of the earth and
adding all the effects, which was a really wearisome problem of integra-
tion.

Michael Faraday, a chemist, who explained most of electricity and
magnetism, introduced a new idea, a mathematical tool, from which the
1/r? law as applied to an extended spherical body followed more simply.
He said, "If I have an electrically charged point, forces are radiating
outward in all directions. I assume that the direction of the actual
force will be given by the direction of the radiating arrows, but the
strength will be given by the density of these lines of force. The more
lines per unit surface, the stronger the force. "If instead of a charged
point, I have a charged sphere, then the force has no choice but to go
out radially. And since the number of the lines that originate is pro-
portional to the total charge that is in the body, the effect is the same
as though the body were concentrated in the center." The situation is
the same for electricity and for gravitation. This kind of argumentation
has been carried out by a theorists, Clerk Maxwell, who systematized what
Faraday found and formulated in pictures.

The basic idea is that no lines of force originate (or end) in any
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region in which there is no electric charge. The same holds for gra-
vitation in the absence of mass. But if mass is present, a surplus of
lines of force will leave a region which is proportional to the mass
contained in the region.

A further element of this formalism is the potential (electrical or
gravitationai). The direction of a line of force is the direction in
which this potential changes most rapidly. The density of the lines of
force (i.e., the strength of the field) is proportional to the rapidity
of that change,

Consider a cube. Six faces. How many more lines will leave than
will enter? That is found by subtracting the number of lines that leave
one face from the number of lines that enter the opposite face. This
must be done for all three pairs of faces. The result is one of Maxwell's
equations:

Here ¢ is the density of matter or electricity. The sign of proportiona-
lity (=) has been used instead of the sign of equality (=) to avoid a
numerical discussion which for our purpose is irrelevant. The symbol
Bzw/ax2 stands for the rate with which the force 9y/3x is changing while
the force itself is determined by the rate with which the potential  is
changing. T have, of course, sneaked into this discussion a partial dif-
ferential, that is a rate of change along the x direction while the two
other coordinates, y and z, are fixed. The three terms on the right hand
side correspond to the three pairs of faces which enclose the original
cube,

All of this is merely a prelude to something remarkable which
happened two hundred years after Newton--the great discoveries of
Einstein. I have to start with an absurdity. Einstein said that if you
and Tsay that two events occur simultaneously, we may have to disagree.
If we move at different velocities, what is simultaneous for you is not
simultaneous for me. This idea was completely new, not only to Newton,
but to all of Einstein's contemporaries. It was an idea which was dif-
ficult to accept, but which was true.

What does this idea have to do with gravitation? Out of the ideas
of Einstein, there grew not only special relativity but also a kind of
relativity which Einstein called general relativity. It would be better
called the theory of gravitation. In this theory of gravitation,
Einstein did something that Newton did not dare to do. When asked why
the 1/r® law was so, Newton said, '"Just because. I won't make hypotheses.
I see that it is so and it explains the motion of the planets." However,
Einstein explained Newton's law.

What I am going to tell you is in all the textbooks, but it is
hidden under tons of mathematics. And yet, when you think about it
carefully, Einstein's explanation of the 1/r? law becomes a matter that
is not really difficult. But first we need to review Einstein's ideas
on special relativity. .
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We used to think that time passes in the exact same way for each of
us. To know that this is not true is not enough. One must also ask,
'""What is the quantity which appears the same to all observers?'" Einstein
gave the answer. There is a relatively simple formula: Multiply the
time difference (between two observed events) t, by the light velocity c,
which is the distance that light could cover in the time t. Now square
this quantity, ct, and subtract from it r®, the square of the distance
at which these two events are observed. This quantity, (ct)?2- r2, is an
invariant. It remains the same for all observers.

One consequence of this statement is very important: Take two
events for which this invariant is 0, Then (ct)2= rz, and ct = .,
Therefore, the velocity at which light can move is c¢. This is a more
peculier statement than it seems to be. It means that the velocity of
light is indeed the same for all observers.

If I want to catch up with a light beam, it will continue to move
ahead of me with velocity, c. I can never catch it. This argument
suggests, and indeed can be shown explicitly from, Einstein's formalism
that nothing can move faster than light, and that no material substance
can ever move as fast as light although it may approach light velocity.
But, and this peculiarity should be repeated for emphasis, no mater how
closely I approach the velocity of light, light will still appear to
move ahead of me with the same old velocity, c.

Now I want to discuss one of my desires: 1 want to visit the
Andromeda Nebula. The Andromeda Nebula is a collection of a hundred
million stars just as our own Milky Way system is. 1It's about 2 million
light years away. According to Einstein, I cannot travel faster than
light. Therefore, it would take me two million years to get there. My
physician tells me that having already reached 75 years, I won't live
two million years longer, so I should give up all hope of ever getting to
Andromeda.,

But Einstein is not so pessimistic. He says, '"You can do it if you
just move fast enough.'" For you who stay at home, if I move with almost
light velocity, the journey takes a little more than two million years.
The quantity ct is 2 million light years or a little more because my
speed was a little slower. The quantity r is two million light years.
But the difference (ct)?- r? can be very small. If I am at the controls
of the rocket at the beginning and at the end, for me r is 0. For you
who stayed at home, (ct)?- r? is quite small. For me it must be the
same. If r=0, then ct is small.

I can do it. I need not run out of time. If there are engineers
here, they might tell you that to get a rocket to move at almost light
velocity is not quite easy. So I don't really think that I can get to
Andromeda. But it is the engineers who are at fault, not Einstein.

Now there is a difficult question: what will happen when I return?
I take a short time to get to Andromeda; I look around, I make observa-
tions, I write them down; I come back in a short time; and I hope to be
a hero in the United States and Taiwan. But of course, 4 million years
have passed on earth. All people, American and Chinese, will be re-



PMGE THE STORY OF GRAVITATION 43

placed by something very different--quite horrible! The more horrible
because they will imagine that they are better, that they have evolved.

I think they will be better. They will look at me as an antedeluvian
animal and will put me in a zoo, I hope, with a swimming pool. And since
my English is better than my Chinese, with a few volumes of Shakespeare
rather than Confucius. And in time they will find out what they can find
out from me because they will be quite clever.

So far I only told you a sad story. But it also seems illogical.
I moved away and came back, and 4 million years passed at home, while for
me hardly any time passed. From my point of view, the earth moved away
and came back. Why is it not equally justified to say that I became 4
million years older, and only a short time passed on earth., What is the
difference? There is an important observable difference, and this dif-
ference I want to explain to you.

You stay-at-homes have not experienced much acceleration. I did,
When I started, I was accelerated, but I could look at a watch immedia-
tely, so there couldn't have been much difference in regard to the
passing of time. The same thing is true when I returned. I could check
on your time. But when I'm in Andromeda, no signals can reach me in less
than 2 million years, and there I also was accelerated both when I
arrived and when I left,.

) Could the accleration make a difference? Einstein said, "It can and
it does." It was Galileo who first observed that on earth all matter
gets accelerated by gravitation in the same way. Later this observation
was verified with great accuracy.

Then, Einstein got an idea. "If I am in a falling elevator, or to
be more modern, if I'm an astronaut sailing around the earth in a capsule,
I don't have the sensation of acceleration. I sit there with a pen in my
hand, and I drop the pen. What will happen? In the capsule, the pen
will not fall. We are not affected by the earth's gravitation. The pen
will just sail along on the same orbit as I. It will not appear to fall.
Within the capsule it will be as if there were no gravitation.

From this it is only a step to say, "Let's seal off this room, close
the door, bar the windows, forget that Taipei is outside, and then assume
that we are not on earth. We are in a big rocket. The rocket engine
under us accelerates us, and this acceleration is what presses us down
to our seats. Then it will become obvious that everybody and everything
accelerated in precisely the same way relative to the earth." This is
the principle of equivalence. In any local system gravitation and
acceleration are equivalent.

Now I will make a very peculiar calculation. The most peculiar
quality of this calculation is that I don't know but can only guess
(since he never told us) that Einstein made his calculation in the same
way.

The only way to explain that only one of us aged so much during the
Andromeda experience is tc appeal to the acceleration that turns me
around when I arrive at Andromeda. And, you will forgive me if I make
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this calculation in an oversimplified fashion. The acceleration that I
experienced is this--T have been going away from the earth at practically
light velocity, c. I want to turn around and come back toward earth with
practically light velocity, c. Otherwise the trip will take too long.
Therefore the velocity change is from -c to +c; the velocity change is Z2c.
Let us assume that this velocity change is accomplished in a short time,
tau. Therefore the acceleration is 2c¢/rT.

Now assume, according to the principle of equivalence, that this is
not an acceleration. It must be equivalent in every respect to a gravi-
tation force that produces the acceleration 2¢/t. This accelerating force
can be considered to act the whole distance between Andromeda and the
earth. My rocket is stationary, and earth is moving in relationship to me.

You must be careful. You must pay attention at every step to which
coordinate system applies. For the sake of simplicity, I will work in
the coordinate system of the stay-at-homes. The distance is two million
light years, or r. The accelerating force times the distance r is the
potential difference. That is the same kind of potential 1y which I
introduced when I wrote the equations about lines of force. This poten-
tial is (2¢/Tr. Einstein made the assumption, that in this time, T,
time was passing at a different rate for me than for you. I feel that 7
was a short time, but from your point of view, time will have passed
at a different rate. The 4 million years difference which is 2r/c has
occured in this way.

When T turn around near Andromeda, I will be accelerated toward the
earth. In the language of potentials, 1, the earth will have a high
potential. This is associated with a fast passage of time on earth. The
accelerating frame is equivalent to a static frame in a gravitational field.
An inertial frame is equivalent to a free-falling frame. So in this ana-
logy, earth is a free-falling frame in the gravity field.

The ratio is (2r/c)T. Sincezfor Ehe potential we have y=(2cr) /1, the
ratio may be written as (2cr/T)/c =y/c®. This actually is the famous
gravitational red shift discovered by Einstein.

Now comes the surprise. People in Cambridge, Massachusetts, were
interested in the small difference in potential between the top and the
foot of the Harvard Tower. This is about equal to the potential dif-
ference between this room and my room in the Grand Hotel. However, the
people at Harvard had very accurate nuclear clocks. They found that
the difference in the passage of time was precisely the red shift pre-
dicted by Einstein.

Now I would like to derive the 1/r” law. This point may be a
little difficult because I want to talk about space curvature. What is
space curvature? I cannot imagine curved space any more than you can. I
can imagine a curved surface because I can see a surface from a third
dimension. We know the earth's surface is a curved surface. If I start
at the North Pole of the globe with a vector that points straight towards
Taiwan and follow this vector to the equator, keeping it always pointing
towards you, move it east all the way to the latitude that I came from,
San Francisco, and then move back to the North Pole, the vector no longer
points toward Taiwan when I have returned to the North Pole.

Having kept my vector always pointing in the same direction, always
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pointing south as I move from point to point, the vector surprisingly
enough will still point in a different direction upon its return. By
displacing vectors, being careful to keep them parallel, you find in
the end a new direction. This is the sign of inherent curvature as
described by Gauss.

Gauss was a famous professor at Gottingen. He had a lot to say
about who else should be appointed professor at the university. A
man called Riemann was to be invited to the university. He offered to
talk about curved spaces in any number of dimensions. Gauss was very
much interested. Riemann was invited and gave a classic paper showing
how the idea of curvature can be generalized into many dimensions.

However, we don't need so many. Einstein was a simple-minded
person and could only count up to four--x, y, z, and the fourth dimension,
t. In four dimensions, all kinds of curvature may exist, and they are
really quite complicated. In four dimensions, I can take any pair of
directions, make a surface, go around it, and see how any vector changes
as I move around the surface.

Therefore, curvature in four dimensions is a little complicated.
I will use only a simple example of it. Even that is complicated. I can
take any pair of directions, x and y, and then another vector, for in-
stance z, and see how that vector changes in a fourth direction, in t.
So the curvature is described not by one number but by a collection of
numbers. This tells you how things will differ from the usual when out
of four directions we have chosen four not necessarily different direc-
tions. For instance, you could ask how when moving in the xy plane, the
X vector has changed in the y-direction.

According to Einstein, space is curved or warped due to the presence
of mass. This curvatire is in fact what we experience as gravitation.
These ideas are somewhat complex, not only because curvature in four-
dimensional space is being considered but also because one of these di-
mension is t, which we customarily consider a little differently from
dimensions in space.

Though warping is done by matter, it actually extends into empty
space where no matter is present. Indeed, the 1/r? law applies to empty
space. We shall discuss a single example of the four-dimensional space
curvature with the remarkable result that it does lead to the 1/r? law.

As in previous examples, we shall take a surface, in particular a
small surface in four dimensions. We shall start from a certain time
(t = 0) and a certain point in space (x=0). We shall also consider
(still at t=0) a neighboring point located at d&x.

In reality the situation is further complicated by our having to
perform all these operations twice, once starting from the original point
(x=0, t=0) and a second time, starting from the other end of a tiny vector
(x=8x, t=0). In each phase, the rate of the passage of time will play a
role.

A detailed consideration may convince the reader that what counts
is not just the red shift which itself is proportional to the rate at
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which a gratitational potential is changing. What really counts is the
change in the red shift between x and §x. Therefore, the final result
will turn out to be proportional not to gravitational force in the x
direction which is 8)/8x, but rather to the second derivative, azw/axz.

All of this is only the beginning. It has been pointed out that
curvature in four dimensions corresponds to a complicated structure.
Simple statements cannot be made about the curvature as a whole. Rather
we can speak about sums of curvatures which one obtains if one repeats
all the given arguments regarding x with similar arguments in regard to
y and z. The result will be:

2%y, 3%y | 3%y
x2 oy? 3z2

which is the expression we met long ago, and which turned out to be
zero in a vacuum,!

" . i %y 9%y . 9%y .
ore generally, Einstein has shown that %2 * Ao t no3 1S pro-
portional to the density of mass which correspénds g¥ecisgfy to the
mathematical formulation of Newton's law. With mass serving as a source
of the lines of force, the density of these lines around a small object
will decrease as 1/r? where r is the distance from the small object.

This indeed is the end of all argument, but not the end of Einstein's
argument. What he called general relativity did not merely derive
Newton's elementary results nor was it confined to an additional discus-
sion of gravitational red shift. Tt also established further refinements
in the theory of gravitation, dependent not only on the mass of the mate-
rial presnet but also on its motion or momentum, and furthermore on ten-
sions that exist in matter. This mathematically complicated theory pre-
dicts a great number of results which unfortunately are quite small and
hard to observe. To the extent to which the present observations go,
they have been verified in every detail.

It is a long way from the old geocentric system where gravity played
the role of establishing a natural place for objects to Newton's law of
universal gravitation, and from there to the abstractions and complication
of space curvature discussed by Einstein. Nor it is likely that the story
ends at this point. But as of 1983, no further essential part can be added.

What happened to 3%y/3t® in four-dimensional geometry? Of the various
answers that could be given, the simplest is that we are interested in
the case where nothing varies with time, and we simply investigate the
potential Y around a body at rest.



