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MACROSCOPIC ROTORS™
Rogers C. Ritter and W. Stephen Cheung®%*

Department of Physics, University of Virginia
Charlottesville, VA 22901 TU.S.A.

We have recently been carrying out developement on two gravitational
experiments using ultra-precise macroscopic rotors.’ These are:
1) a matter creation test in which the decay of rotational velocity
would be an indication of matter increase in a rotor, and 2) a precision
high-Q (>10'°) rotor forms the essential time base of an inertial
clock, whose gravitational red-shift would differ from that measured
by a hydrogen maser if gravity departs from the metricity of General
Relativity. Other possible experiments come to mind if the intended
rotor precision--including demonstrable decay time T#~10'®s—-is achieved.

This paper discusses, first, a few simple fundamental relationships
for assessing microscopic vs. macroscopic rotor properties, then some
classifications, basic properties and limits of macroscopic rotors and
finally some of the practical problems and research we have done with
these rotors.

A, Macroscopic vs. microscopic rotors

The relationship between precision macroscopic and microscopic
rotors has much the character of the principle of complementarity with
respect to the nature of the observations. We assume solid-body rotors,
so the collective motion of particles in a macroscopic rotor is, within
limits, guaranteed and leads to high observability for a single rotor.
This is unlike atomic, nuclear or molecular rotors, whose singular
interrogation leaves virtually no rotational information. (Tt is,
instead, the collection of information from many of these rotors that
leads to the sought-for practical result.)

A beautiful property of a given atom or nucleus is that (we
believe) it is exactly like every other one of its species. This
is strictly true only for the "free" particle undisturbed by the
presence of perturbing fields. Thus it is incumbent on a given
atomic experiment to provide assurance that the collective effect
measured is in fact representative of the species. Or, in cases where
only constancy is of interest, the perturbations must be so uniform and
constant that the intrinsic stability of the measured effect is retained
to the level needed.

No two macroscopic rotors are expected to be as alike as two
particles of a given kind. Nor are they as ideally symmetric (in
whatever symmetry they do have). Thus a macroscopic rotor lacks a
certain fundamental character inherent in, say, an atom. (It is,
of course, only on faith that we believe in the absolute fundamentality
of any type of particle thus far observed.) Nevertheless, particles
seem, on the fact of it, to be more fundamental than macroscopic
rotors.
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Practically, the consequences of the above differences have to
do much with the extreme differences in the nature and handling of
their disturbances, as will become apparent.

Another practical matter is that atoms have frequencies 1013 greater
(we consider macroscopic rotors with period T, ~ 1 s). When doing
measurements to a precision of 1015, it is clear that atoms have,
directly, the more useful information for timing things in a
reasonable epoch. 1In fact, the timing of varying events with a macro-
scopic rotor to high precision is impossible unless an appropriate "time
vernier" is found. Fortunately, the atomic experiments have already
dealt with some of those methods. For example, the practical cesium-
beam clock locks the relevant atomic oscillation to a crystal oscillator
of much lower frequency.

Thus it seems that, at least in the present stage of development,
atomic rotors have for many precision purposes, huge advantages. We,
nevertheless, will present here studies of the macroscopic rotor in
following sections. And, we also will keep in mind that for purposes
of many conceptual gravitational experiments, the atomic rotor is not
always the appropriate one.

B. Spherical vs. Axial Rotors

The type of rotor discussed here has cylindrical symmetry and has
the axis constrained to a fixed direction. (This is only approximately
true, as will be seen.) Spherical rotors have the disadvantage, for
the above purposes, of precession of the body-fixed spin axis. Thus
the measurement of angular velocity becomes more complex than it is
for an axial rotor.

The means of constraint for a cylindrical rotor (meaning here a
rotor having a single axis of rotational symmetry) are of interest.
In the usual magnetically suspended rotor, whether spherical or not,
there is a "vertical' axis maintained by gravity and the near absence
of friction. The "vertical" axis force is in fact partly gravitational
and partly inertial. The earth's rotation causes a constant turning
of that axis if the rotor is suspended from a fixed point on the earth
(except at the poles). The constancy of even that rotation, as well as of
the magnitude of the attraction is not high on the scale of precision
of interest here. All of these lead to the need for consideration of
such geophysical effects and their correction in a true precision
experiment.

The achievement of an axially-constrained rotation in a satellite
experiment is a different matter, and is meaningless in the usual scheme
of a magnetic suspension. Typically the reason for such a location of the
experiment would be the establishment of near zero gravitational field,
e.g. the Stanford Relativity Gyro experiment.3 An external means is
therefore in such cases needed for the reference frame with which the
spin axis is to be measured (or constrained). In the Stanford experiment
a telescope sighting on a "fixed star" provides that frame and the change
of the gyro axis of the spinning sphere is the measurement of interest.
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We restrict our interest here, however, to the scalar magnitude
change of the spin angular velocity. Thus a sphere may not always
be the best rotor for our purposes. For one thing, even the best
spheres to date have lacked true geometric and mass sphericity beyond
the 10”7 level. Beams" and Fremery’ did use small magnetically
suspended spheres for purposes such as we have in mind. These rotated
usually at high speed, ~10% to 10° Hz, and developed oblateness about
the spin axis which would be of consequence only in its constancey.

One problem of such spherical rotors is geophysically induced.
The spin-spin coupling of the rotor to the earth yields a constant
precession torque, termed® the "Keith Coriolis Torque'. This causes
a rotor to hang slightly toward one of the poles of the earth and thereby
to generate a tiny eddy-current drag due to the non-colinearity of the
true spin and magnetic support axes. (Eddy currents in a spinning magne-
tically suspended rotor align its spin axis with the support axis. LE
this were constant in inertial space there would be no such drag.)

It is surprising that, by careful analysis and by experiments, the
Keith drag is barely w- (angular velocity) dependent. Thus, larger,
slower spherical rotors do not gain in this effect. It seemed advan-—
tageous to use larger, non-spherical rotors and Fig. 1 shows one we use.
In this ~ 5% of the mass, at the top, is ferromagnetic and provides the
support. The precession-caused hangofff in such a rotor becomes a
much different matter than in the Keith calculation, and we have not yet
studied it.

Such a rotor, having new symmetries, leads to new modes and
their problems, as well as placing an added burden on suspension
stability. Some of this will be discussed in following sections,

Co Axial rotor stability.

The stability of a free symmetric body has been well-studied. ’
We take up the also well-known special case of our axially symmetric
rotor and use a relatively elementary analysis. The Euler equations of
motion for a free symmetric rotor (i.e. having 3 principal axes of
symmetry) are:

Fl = Ilwl + (13—12)w2m3 =0,
F2 = 12w2 + (Il~I3)wlw3 =0,
and
F3 = Tw, + (12—11)m2w1 =0, (L)

where T'q, I'y and T3 are torques about the three body axes (principal
axes of inertia) and are set to zero, I to I3 are the corresponding
moments of inertia, and wj to wg are the angular velocities.

We choose the 3 axis as the main spin axis, which also is the axis

of symmetry, so that Il = 12, or very nearly. Thus for perfect rotation,
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Fig. 1 Precision rotor for matter creation experiment. The disc
at bottom and main shaft are of ultra-stable Zerodur. An
aluminum collar and rod attach this to the annealed iron
support sphere. A mirrored surface on the collar provides
angular position sensing by means of a reflected laser beam.
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iy =wy=0, and wq=w. If there nre perturbations, however, so that at
some moment

Wy = W + Ey
w =,
and
w, G, (2)

with £,n and ¢ having small values <<w, we can evaluate conditions
for which they lead to increase (instability) or limitation of the
€, N and C.

From differentiation and rearrangement of (1) (with the I''s set to zero)
we have

Ty = (15-Tq) (Wb, ¥,

T.0

2%y (13-11)(w3w +w, W, ),

17173

and

I3w3 = (Il—Iz)(wlmz + wzwl), (3)

where I and I, are not yet made equal. Imsertion from (1) leads to
the form

.o 5 2
w; = [F(I)wj + G(I)wk]wi, (4)

where i, j and k are permutations of 1, 2, 3 and F(I) and G(I)
are of the form,

(Ii—Ii)(Tk—Ii )
Ik Ij
and

() (i )
Ik i

ik

respectively.

If, in (4) the [ ] factor is positive, Wy blows up. If it is
negative, that w4 oscillates.

If we now assume I7=I, (4) becomes

se

Wy = 0
T =F. 2
. 1 2
wl — _( Il ) UJ3 wls
and 2
- - 2
wo = —Qil 13)w3 Woe (6)

I3



452 R.C. RITTER AND W.S. CHEUNG 1983

Inserting the perturbations (2) and assuming w = constant we have.

o

£E=20
I.~T
e 1 2 2
n=~( T 2 ) wn,
3
and I.=1.. 2
IS 2
T == % 3) wz. (7)
il

The second and third of these always have negative coefficients
of N,z on the r.h.s. and hence are oscillatory in these perturbations.
If there is any damping in the system they will decay. £ could grow
linearly but would require continuing energy input. It can easily be
shown that if I; is not exactly equal to Ip, the perturbations will
still be oscillatory whether I; < I;,TI5 or the reverse.

Thus there is not a tendency of instability in the free axially
symmetric rotor except for the nearly spherical case. In the constrained
rotor this would be worst for I intermediate between Ij and Iy, as is
well known. TIn our rotors, however, we have totally avoided this
possibility, A long shaft, as shown in Fig. 1, is used for other
reasons®, but also accomplishes this.,

D. Some intrinsic limits of a rotor

In this section we further limit our discussion to rotors of a
few cm diameter and having 0.1 < w < 10 rad/s. Reasons for such
limitations in our research have been discussed.®’® The periods of
these rotors are measured and the constancy of the periods against
fluctuation and decay are of primary interest.

The intrinsic limits of interest here for such a rotor are from
thermal fluctuations and fluctuations and decay caused by light-
beam sensing of the rotor period.

The differential equation for the rotational motion of an
unfedback rotor is

16 + kB + c0 = T(t), (8)

where I is the moment of inertia, « the drag coefficient, c a torsional
coupling, and I'(t) an applied torque, for example noise. 1In the
successful rotor ¢ will be significantly near zero as will I'(t). Thus
the decay time for free rotation will be

™* = w/e = I/k, (9)

6.

where w

In addition to decay from frictional mechanisms leading to K,
there are thermal fluctuations which lead to a random walk about the
position predicted from the decay equation. For a system with some
couple these are found from consideration of the mean potential energy
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of this system of one degree of freedom,
%80 7 = 2T, (10)

where ABn is the rms thermal fluctuation of angle, k is Bolzman's
constant and T the temperature,

If, however, the suspension is torsionless, this is replaced by!°,
SThw 7 = 2k, (11)

where Aw, is the rms fluctuation of velocity. McCombie!® evaluates this
two ways, leading to,

86_7 = 2k1/k [At - TH{1-exp(-At/T)]], (12)

where At is the observation time during which the rotor has departed by
AB,. 1In all of our experiments At << T%, so that

%7 = (kT/T) A2, (13)

At room temperature and for I = 2000 gm—cmz, the factor (kT/I) is
about 10-'% (rad/s)?.

Our measurement is always the period or period fluctuation,!'?
Thus the angle random walk is effectively an angular velocity fluctua-
tion which varies the time of each period by an amount

ATr = (To/zw)Aen, (14)

where T, is the mean period. For single period fluctuation estimates
A8, would be the fluctuation during At = T,. However, the great
advantages of rotors in precision are their ability to be averaged
over many periods to decrease the measurement error. Thus in
general we average over N periods, where N =1, 10, 100, 1,000 or
10,000, 1In this case At = NTband ABH becomes the random walk in

N periods: Thus

ar_v) =z /2m Ger/n M o, (15)
and
AT _(N) = (l/2ﬂ)(kT/I)l/2NT§. (16)
-1/2

1f we define the characteristic rotor fluctuation time (kT/I)
as Tr this takes the form

AT_(N) = [12/(21T )N, (17)

ATy (N) is linear with N and quadratic with To' It is convenient to
use a normalized fluctuation
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ATr(N)/TB = [TO/ZWTr)]N; (18)

which is linear with To'

In addition to thermal fluctuation of the rotor there are effects
caused by observation of the rotor with a light beam.! These include
fluctuation from photon statistics and torques of a continuous
nature.

The fluctuations arising from statistics are dependent on the
mechanism of the photon sensor of rotor period. We use a small spot
of laser light reflected from a mirrored surface. TFor a perfect mirror
there would be no tangential momentum transfer by the photons to the
rotor and hence no rotor fluctuation from the fluctuating photon density
asymmetry. In fact there is some absorption, ~ 1% and such an effect
does occur. The magnitude is much less than other fluctuations
however, and can be ignored when compared with the rotor timing obser-
vation error,!>!?

A steady beam of light on a rotor causes at least two continuous
torques. Misalignment of direction from the rotation axis causes
an obvious, but not intrinsic, torque caused by tangential momentum
transfer of the partially absorbed beam. An intrinsic effect, however,
has been studied by Braginsky!'? and is termed the "rotational
ponderomotive instability". This results in a driving torque which
tends to speed up the rotor.

The ponderomotive instability arises when a uniform beam causes
differential heating. The part of the rotor arriving in the beam will
be cooler, having just come from the shadow. A differential thermal
coefficient of absorption, o = d8/dT where 0 is the mean value of
the coefficient of absorption, leads to a variable photon absorption
across the part of the rotor struck by the beam and hence a torque,

This effect has been calculated and measured for a hollow rotating

cylinder.'? The change in angular velocity over a time At is
woza*
Aw = "-—-5—"—2, (19)
(A1
where
41
a® = — - (20)
2wKAll

Here A is related to an eigenvalue of a hollow cylinder, K is the
coefficlent of thermal conductivity and a; is a function of the beam
intensity and some geometrical factors. TFor a small cylinder of 1 cm
radius, 1.5 cm height and 15 pm thick a speed increase of about 3% was
observed in 1800 s, in agreement with these equations.
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E. Modes of an axial rotor.

A rotor such as that of Fig. 1 is suspended magnetically at the
top by a force that can be approximated as a critically damped spring
in the vertical direction. As such it has a sufficient number of
degrees of freedom to develope some complex modes of motion.

Modes involving coupling to the vertical spring mode are not taken
up here. 1In long runs, the high damping of this mode, and low damping
of others, combined with the higher frequency (typically 20-75 Hz)
of the vertical oscillation mode, render it less important. We note,
however, that observation of this vertical motion by spectral analysis
(with a Hewlett Packard Model HP-3582A Analyzer) allows study of some
of the other motion.

The length of the bob of this rotor, viewed as a pendulum, gives
a "pendulum frequency" of 1.10 Hz which is seen in the spectrum
whenever the rotor is disturbed. 1In fact, the motion is a combination
of the axial rotor rotation and conical pendulum motion, This is a
particular case of the spinning (inverted) top.

Fig. 2 depicts the symmetric top.13 Here x, v and z is the
cartesian laboratory frame and the 1, 2, 3 axes are the body-fixed
axes for rotation about the 3 axis. 0O, ¢, and | give the polar,
precession and spin angles of the rotor. Clearly 6 is very near 7,

13

The standard derivation’>'?, leads to a 'potential energy' 'V'(0)

with an associated 'torque'

Ny (py=p,cos9) (p =p, cosh)
'TY = - AL . mglsinf - o ¥ b9 1 (21)
08 . B
I,sin 0

where p4 and Py are appropriate angular momenta. Notice that 'T' is
negative for 0 = m,

For pure precession at polar angle 80,

. p¢mpwcosﬁo Ty, 1/2
b = ., 2 = 21,cosb L (l—2acoseo) I Lo
I,sin 6 i o
1. 0
where
_ gmgﬁIE_. (23)
I, w
a3

Since I, = miz and I, =~ 1/2 mRz, where R is the radius of the disc of the
rotor, this is approximately

3
o ne SR (24)
R4m 37
3

and 3 W )
. 1R 3 B 1/2
d = 4(? cost [1 + (1-20cos )

1. (25)
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Fig. 2 Coordinates for the svmmetric top.
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Finally, for 80 &

R, 2 /2

. _— 1
b_(m) = @ w3[1 + (1+20)77 7], (26)

=

This can be manipulated further,

¢_ (M) W
S - - 31,1, ;2 R0, (27)
3 3

w 2371+
where wpz = g/f% is the pendulum frequency.

For the rotor of Fig., 1 I /Il e 1/2(R/SL)2 = 0.01758. We have
made several mode tests for ro%or periods of 3 and 4s, for which

w3 = 2m/3 and 2Tm/4, respectively. Since Wy is observed (or calculated)
to be 6.9 rad/s, these lead to wp/w3 = 3.3 and 4.4, respectively.

Eq. (27) yields nearly degenerate antisymmetric solutions, with a
difference for ¢, of 1/2 (I3/Il)m3 = 0.0088w3, or 0.0184 and 0,0138
rad/s for the two values of w3 tested., We might expect to observe a
modal energy exchange between pure rotation and maximum "coning" with
periods of 5.7 and 7.6 min., respectively. What are observed are
such exchanges with periods of (2.55 + 0.13) and (4.1 + 0.2) min. for
the rotor periods of 3s and 4s, respectively. This is highly repeatable

and the dEﬁarture from the calculated wvalues is not understood,
although the approximations for Iq, I3 are not very good.

F. Practical problems with a precision rotor

Years ago Beams'" listed 15 factors which might lead to deceleration
of a rotor. A newer, somewhat modified list is given in ref. 11.
We have studied a number of these and will present several of them,
along with other factors which lead to imprecision of measured rotor
periods.

L. Fluctuation of measured rotor period.

In addition to the intrinsic thermal fluctuation of a rotor,
discussed in Section D, there is at least one more factor contributing
error to the measured period.ll This is the intrinsic instrumental
error, ATO. Since it is presumably an independent error, it can be
added in quadrature to the thermal fluctuation AT, of eq. (16),

AT = x/'ATOZ+ATI2 . (28)

This applies to different measuring times, i.e. different numbers
of periods averaged per data point.

For the range of periods used in our experiments the instrumental
timing error, AT,, is only slightly dependent on period. It
is therefore a suitable approximation to assume that ATgy = ATOl/N gives
the fluctuation in time of N periods by this mechanism, when ATqpy is
that for one period. Using this and the expression for AT, from eq. (17)
in eq. (28) we have,
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AT = /ATOIZ/N2+(T4/T]:2)N2. (29)

Asymptotically, for N small this has a slope of -1 on a log-log plot
of AT vs N, or vs At. Tor N large it has a slope of +1. Typically
for us ATOI ~ 1-2x10~"s and T = 1083, so that for N=1 we determine
ATOl and for N = 103 or 104 we estimate an effective value for Ty
or correspondingly an effective temperature.

Tt is difficult to gather a sufficient ensemble of data for
N = 103 or 10% because of the length of undisturbed runs needed.
We have made a few dozen such runs for N=103 and several for 10%.
Unfortunately for N=10% the straight line decay approximation to gty ¥
is no longer valid. This combines with the spectral filtering inherent
in such large averaging to make it difficult to evaluate ATy, as
fluctuations about a known exponential decay line for a span of points
of small size given in a week or lass of undisturbed running time.
Consequently we have not yet made good asymptotic estimates of ATr
although the trend is readily apparent.

In data and analysis presented in ref. 11 we believed that the +1
asymptotic slope was demonstrated from the pattern of many runs even
though single runs were not precise enough for reasons given above.
Since then we have made improvements in data taking and in stability
and have found reason to reinvestigate the earlier data. In the process
we found a conceptual mistake in our data handling which had the
effect of dividing each measured value of AT by N. A rework of this
data and addition of a new set of careful measurements leads to the
strong possibility that the asymptotic slope for large N is +2,
not +1 as formerly believed and as given by eq. (29). This leads to
the question of whether 1/f noise could be present and add to the slope,
by +1. TFurther study is clearly needed.

2 Viscous drag of a rotor.

It has long been known" that a spinning rotor acts as a
pressure gauge. In the free molecule regime it seems likely to
provide an absolute standard of pressure measurement, and a commercial
instrument of this type is now available., An outline of the derivation
of the gas drag on a rotor!® is the following.

From kinetic theory in the free molecule regime the momentum
exchange leads to a force per unit area of

G- 3w (D), (30)

V)

where I is the velocity of the wall relative to the gas. (This

point is very important in the use of corotation_of the gas as a means
of reducing drag.) Also, P is the pressure and  the average speed of
the molecules. Tor a Maxwell velocity distribution
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v _ 4, m y1/2

;7 3 27kT ’ (31

where m is the mass of the molecule and k and T are as before., Hence

dF m
da =W ‘/zm . )
where Z = Pvm/2TkT.

The decelerating torque per unit area of a thin cylinder of radius
r and angular velocity w is

2
%% = =T Z, {339

or the total torque is

T =z S s (34)

where the surface integral is over the rotating surface.

Often solid rotors of density p are used, in which case the
moment of inertia is

I=op fvr2dv. (35)

For an exponentially decelerating rotor of decay time T%*,

~ fe
w=we /T (36)
and hence
w 1
s 1. (37)
Finally, we have
2
fvr dv
Ii* = E __2_' (38)
&
fAr dA
This can be evaluated for a cylinder of height h and radius a:
cx o _pa 39
T 2702 a/ny (39)
and for a sphere of radius a:
* = 8= (40)

57

In the early literature® the factor C appeared in the denominator
of (39) and (40). Taking a value from 1 to 2, it was used to handle



460 R.C. RITTER AND W.S. CHEUNG 1983

the "accomodation coefficient" related to the behavior of colliding
molecules at the surface. With appropriate materials and procedure
it can be made very nearly unity.

Since 7 is proportional to P, it is to be seen that T*P = const.
for a given cylindrical or spherical rotor. For the rotor of Fig. 1,

T™* = 59/P, (41)

—6
if the Pressure P is in Torr, so that at 10 torr, the gas drag time
constant is about 6 x 10’s.

3 Bearing drag.

In section B the geophysically-incuded eddy current bearing
drag was discussed. Tt presumably could be removed by the use of a
superconducting bearing, in which the earth would induce other responses
but eddy current loss would not be present.

In the ferromagnetic suspension, however, the '"Keith Coriolis"
torque led to limit of T#* ~ 10'% in tests by Beams and Fremery. In
practice, we usually find T* much lower''»!®, oOur lower speed rotors
of lower symmetry and greater force per unit suspension material
volume would be expected to emphasize anomalous eddy current effects.
We have studied these!'®>'® and found a strong rotational frequency
dependence of T#, 1In the studies we discovered a parametric pumping
effect whereby the rotor had energy pumped into or out of its rotational
motion by the suspension. This comes about in the following way. As
the rotor spins, it bounces synchronously. This is due to anomalous
light reaching the optical suspension detector in varying amounts as
it spins, causing a false sense and reaction in the servo. The amount
of bounce in a non-corotation rotor is about 10 um or less, but
sufficient to couple into azimuthal asymmetries of the suspension
potential and parametrically exchange energy.

Very recently we have discovered a strong correlation between the
~rotational speed and the suspension resonance, The harmonics of the
rotor frequency appear, up to the 8th or higher, in the suspension
sensor signal. When the 6th or 8th harmonic lies sufficiently near

: ; : : PR
the suspension resonance peak a dip appears in the decay time spectrum.'®>!

We have found a way to evaluate bearing and gas drags independently.17

This assumes that gas drag is proportional to relative angular velocity.

In our corotation apparatus we vary the direction and angular velocity

of the gas surrounding a spinning rotor. With the appropriate differential
equation and definition of relative periods, the data leads to a straight
line whose slope and intercept give the relevant information. 1In
particular, we have learned that an excess bearing drag occurs when the
corotation is synchronous or counter-synchronous (same speed but

opposite direction). The added bounce at these conditions presumably
contributes more to the energy exchange.
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4, Thermal expansion.

Thermal changes in a rotor give radius variations which lead to
angular velocity drifts that can mask the sought-for information. For
this reason our rotor discs (7.5 cm diameter for the rotor in Fig. 1) are
of the most stable material possible, an optical glass—ceramic: Zerodur.
This has a linear expansion coefficient o = 5 x 10-° per °C for the
best grade at room temperature.

From conservation of angular momentum

L = 1w, (42)
we find

dw dr . , dr

== 2 ) = (43)

if T = 1/2 mr® and m is constant. The expansion coefficient o gives
—r—"' = CLdT, (41‘)

for a differential temperature change dT, so that, with (43),

dw _
e 20dT. (45)

In our matter creation experimentl, a change of moment of inertia
I/1 of 10~1° per year would lead to a dw and be the signal of interest,
A thermal temperature change which would mimic this is obtained from

dm _ 2_§£ = 20dT, (46)
m T
or
_ dm/m
dT = s (47)

Assuming m/m = I/1I, then

i 7 B
%’g - om o= = Imk/yr (48)

Such a stringent limit can almost certainly not be reached at room
temperature with the above value for a. It therefore provides another
reason for doing the most precise rotor experiments at liquid helium
temperature.

Alternatively, we can calculate what decay time is mimiced by a given
temperature change. From (43) and (45) we can get
i

T%

°

w I _ dT
-— == = = 2q == 49
w I m N dat” (49)
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or

dT 1

dt 200T*

(50)

For T* a modest 10*’s and the above o this required dT/dt < 10°* *gle.,
On long runs such as those described for measuring fluctuations in
Section D thermal variation can be a factor in this way.

G. Conclusions

Macroscopic rotors, though of lower apparent fundamentality
than elementary particles or atoms, have potential as ultra-stable
oscillators and also in other types of gravitational experiments. Their
fluctuations and other precision-related properties have not been
well-studied. Instrinsic limits of these aspects as well as a number
of practical problems such as thermal effects are now the object of
experimentation. Interesting and unanticipated features have appeared.
As yvet, no insurmountable problems have indicated a limit to the
developement of precision rotors for gravitation experiments.
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