
Chapter 1

Group and Symmetry

1.1 Introduction

1. A group (G) is a collection of elements that can ‘multiply’ and ‘di-
vide’. The ‘multiplication’ ∗ is a binary operation that is associative
but not necessarily commutative. Formally, the defining properties are:

(a) if g1, g2 ∈ G, then g1 ∗ g2 ∈ G;

(b) there is an identity e ∈ G so that g ∗e = e∗g = g for every g ∈ G.
The identity e is sometimes written as 1 or 1;

(c) there is a unique inverse g−1 for every g ∈ G so that g ∗ g−1 =
g−1 ∗ g = e.

The multiplication rules of a group can be listed in a multiplication

table, in which every group element occurs once and only once in every
row and every column (prove this !) .

For example, the following is the multiplication table of a group with
four elements named Z4.

e g1 g2 g3

e e g1 g2 g3

g1 g1 g2 g3 e
g2 g2 g3 e g1

g3 g3 e g1 g2

Table 2.1 Multiplication table of Z4

3
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2. Two groups with identical multiplication tables are usually considered
to be the same. We also say that these two groups are isomorphic.

Group elements could be familiar mathematical objects, such
as numbers, matrices, and differential operators. In that case group
multiplication is usually the ordinary multiplication, but it could also
be ordinary addition. In the latter case the inverse of g is simply −g,
the identity e is simply 0, and the group multiplication is commutative.

The same abstract group can often be represented in several differ-
ent ways. For example, the elements of the Z4 group above could be
the complex numbers e = 1, ga = eaπi/2, for a = 1, 2, 3, with the group
multiplication taken to be ordinary multiplication. Alternatively, they
could be the integers e = 0, ga = a, with the group multiplication being
ordinary addition mod 4.

Group elements could also be operations on an underlying space
of objects. For example, for the Z4 group above, the elements could
be represented by rotations of a square, through the angles θ(e) =
0, θ(g1) = π/2, θ(g2) = π, θ(g3) = 3π/2.

In what follows we shall write the ‘multiplication’ g1 ∗ g2 simply as
g1g2, and g times itself m times as gm. We will also often write the
unit element e to be 1 or 1. [5.26]

3. A symmetry operation is an operation that leaves certain objects un-
changed. For example, the group Z4 above is the symmetry group of a
square. The set of symmetry operations taken together often (though
not always) forms a group. Most of the groups used in physics arise
from symmetry operations of physical objects.

4. Zn group. It describes a symmetry of a plane figure invariant after
a rotation of 2π/n degrees. We have discussed a Z4 symmetry in the
last section. The geometrical pattern below has a larger Z12 symmetry,
which is particular also has a Z4 symmetry. As we shall see, the smaller
symmetry Z4 is called a subgroup of the larger symmetry Z12.

The simplest non-trivial group is a group called Z2 consisting of two
elements e, σ such that eσ = σe = σ, σ2 = σσ = e.

There is another four-element group Z2 × Z2, the direct product of
two Z2’s, in which each of its elements is given by a pair g = (a, b),
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Figure 1.1: Z12 symmetry

with a ∈ Z2 and b is in the other Z2. Multiplication is carried out
independently in each component, namely, g1g2 = (a1a2, b1b2). The op-
erations of turning mattresses and flipping one’s two hands illustrated
below can both be considered as members of Z2 × Z2.

Figure 1.2: Z2 × Z2

5. Most of us are somewhat familiar with how symmetry helps to sim-
plify the analysis of physical systems. For example, if a potential is
spherically symmetric, then the force is radial, and angular mo-
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mentum is conserved. If a two dimensional potential has the Z4 sym-
metry discussed above, then the force along any direction is identical to
the force along the orthogonal direction. If the potential is indepen-
dent of x, then there is no force along the x-direction and momentum
along that direction is conserved.

Similar restrictions are also present on quantum mechanical systems.
The general connection between quantum physics and symmetry is rel-
atively simple, and is outlined at the end of this chapter.

1.2 Definitions

1. The number of elements in a group G is called the order of the group,
and will be denoted by |G|.
If |G| is a finite number, then the group is a finite group. If |G| is
infinite and if its elements are labeled by n continuous real parameters,
then G is a continuous group with dimension n. The only contin-
uous groups we will discuss are the smooth ones, those that are also
differentiable in their parameters, at least locally. Those are the Lie

groups.

2. Group summation. For a finite group, |G| =
∑

g′∈G 1. In what follows,
we will find other sums over elements of a finite group useful. If f(g)
is a function of g, then we can define another function c(g) by a group
sum, c(g) :=

∑
g′∈G f(g′g). This function turns out to be a constant,

independent of g. To see that, let g′′ = g′g. As g′ ranges over G,
g′′ also ranges over G, hence c(g) =

∑
g′′∈G f(g′′) is independent of g.

This invariant property of a group sum will be used fairly frequently in
group theory.

For a continuous group, we must replace summation over g′ by an
integral over g′:

∑
g′ →

∫
dg′. To retain the invariant group sum

property of a finite group, the integration measure dg should have the
property that dg′ = d(g′g). A measure satisfying this property is known
as a Haar measure or an invariant measure. If the group is compact,
then the volume

∫
dg of G is finite, and this can be used in place of

|G| of a finite group. With this replacement, many of the properties
of a finite group which we find in subsequent chapters remain valid for
compace Lie groups.
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For a concrete way to compute the Haar measure, see §2 of Ref. [3] and
§8.12 of Ref. [6].

3. A group G is said to be isomorphic to another group G′, in symbols,
G ∼= G′, if there is a one-one correspondence between the elements of
the two groups that preserves multiplication and inverses. This means,
the one-one correspondence gi ↔ g′i for every gi ∈ G and every g′i ∈ G′

is such that g1g2 ↔ g′1g
′
2 and g−1

i ↔ g
′−1
i .

Two groups isomorphic to each other are essentially the same except
for names. For that reason, most of the time we shall not make a
distinction between isomorphic groups, so we also write G = G′ to
mean G ∼= G′.

G is said to be homomorphic to G′ if the mapping goes one way only. In
that case, G is usually larger than G′ and the correspondence gi → g′i
implies g1g2 → g′1g

′
2 and g−1

i → g
′−1
I is many to one. We can think of

G′ as a projection of G. If there are exactly n gi’s, g
1
i , g

2
i , · · · , gni , that

corresponds to the same g′i, then the group G is said to cover G′ n
times. G′ is like a planar view of an n story building. If n = 2, the
cover is a double cover; if n = 3, it is a triple cover, etc.

1.3 Examples of symmetries and groups

1.3.1 Finite groups

1. Polyhedral groups. They describe the symmetry of a regular polyhe-
dron (tetrahedron, cube, octahedron, icosahedron, dodecahedron),
otherwise known as a Platonic solid.

F E V
tetrahedron 4 6 4

cube 6 12 8
octahedron 8 12 6

dodecahedron 12 30 20
icosahedron 20 30 12

Table 1.1 The five Platonic solids. F,E, V are respectively
the number of faces, edges, and vertices of the solid
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Figure 1.3: Platonic solids

(a) The number of faces (F), edges (E), and vertices (V) of these five
solids are given in Table 1.1.

(b) The cube and the octahedron (second row of Fig. 1.2) are dual
to each other, and so are the icosahedron and the dodecahedron
(third row of Fig. 1.2), in the sense that the number of vertices
of one is equal to the number of faces of another, so that one can
be fit snuggly into another by placing its vertices at the center
of the faces of another. For that reason, the cube and the octa-
hedron have the same symmetry O, and the icosahedron and the
dodecahedron have the same symmetry I. The tetrahedron is self
dual and its symmetry is denoted by T. Strictly speaking, these
symbols refer to their rotational symmetries only; reflections and
inversions are additional.

(c) These geometrical symmetries could be symmetry of molecules.
For example, the molecules CH4 and CCl4 have the tetrahedral
symmetry (T ), and the molecule UF6 (U in the middle, and F
occupying the six vertices of the octahedron) has the octahedral
symmetry (O).

2. Permutation symmetry

(a) We shall use the cyclic notation to denote a permutation of
n identical objects. For example, (135)(7986) is used to denote
a permutation of 9 objects, with the object in the top row below
replaced by the corresponding object in the bottom row. Any
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Figure 1.4: An octagon inside a cube

number (2 and 4 above) not appearing the cycles is unchanged
during the permutation.(

1 2 3 4 5 6 7 8 9
3 2 5 4 1 7 9 6 8

)
(135) is called a 3-cycle because the three symbols are cyclically
invariant: (135)= (351)= (513). (7986)=(9867)=(8679)=(6798)
is called a 4-cycle.

(b) The cycle notation is cyclic. For example, (1234)=(2341)=(3412)
=(4123). [5.26]

(c) The product of permutations is obtained by successive replace-
ments, starting from the rightmost cycle. For example, (243)(36)(64)=
(63)(42)

(d) The inverse of a permutation is obtained by reversing all the cy-
cles. For example, the inverse of (143)(25)(768) is (341)(52)(867).

(e) A cycle of odd/even length can be written as a product of an
even/odd number of 2-cycles. For example, (123)= (12)(23), (1234)=
(12)(23)(34).

(f) A useful rule (prove this !) : t′ = sts−1 is obtained from t by
making the substitution specified by s. Example: s = (1342), t =
(3516), then t′ = (4536).

(g) A permutation is called odd (even) if it consists of an odd (even)
number of 2-cycles. Hence an n-cycle is odd/even if n is even/odd.
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The signature of a permutation σ, denoted δσ, is±1 for even/odd
permutations.

(h) The product of two odd or two even cycles is an even cycle, because
the product contains odd+odd, or even+even, number of 2-cycles.
Similarly the product of an odd and an even cycle is an odd cycle.
Consequently, the signature of a product is the product of the
signatures. [5.26]

(i) The set of all permutations of n objects forms a group called the
symmetric group (Sn). The order of this group is the number of
ways permuting n objects, so it is n!. [5.26]

(j) The set of all even permutations of n objects forms a group called
the alternating group (An). The order of this group is n!/2,
because (12) times an odd cycle is an even cycle, and (12) times
an even cycle is an odd cycle. [5.26]

1.3.2 Continuous groups

1. SO(2) symmetry. Symmetry of a circle; 2-dim rotational symmetry.

Figure 1.5: SO(2) symmetry

Zn are finite subgroups of SO(2).

2. SO(3) symmetry. Symmetry of a sphere; 3-dim rotational symmetry.
See the picture on top of the next page.

The polyhedral groups are finite subgroups of SO(3).

3. spacetime groups. Other continuous group encountered in physics
include
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Figure 1.6: SO(3) symmetry

(a) Lorentz group of Lorentz transformations.

(b) Spacetime translation group T4.

(c) The Poincaré group generated by the Lorentz group and T4. [05.20]

(d) The conformal group valid for some scale-invariant systems, which
contains the Poincaré group.

1.3.3 Infinite discrete groups

There are groups which are neither finite, nor continuous. The transla-
tion group of a crystal lattice is a typical example. Molecules in a 3-
dimensional crystal are located at positions ~rn = n1~e1 +n2~e2 +n3~e3, where ni
are integers and ~ei are three linearly independent vectors which differ from
crystal to crystal. The crystal is invariant under a group G consisting of all
translations ~rn.

1.4 Generators and Relations

1. Group elements are related by multiplication and inverse, hence they
are not all independent. The independent elements of a group, from
which all other elements can be obtained through multiplication and in-
verse operations, are called the generators of the group. For example,
the 2-dimensional rotation

g :=

(
cos θ sin θ
− sin θ cos θ

)
= cos θ1 + i sin θ σ2, σ2 =

(
−i

i

)
(1.1)
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through an angle θ = 2π/n generates the Zn group because every group
element can be expressed as gm for some 0 ≤ m < n.

2. Since we like to identify isomorphic groups, there are usually differ-
ent ways to specify the generators, depending on how the group is
expressed.

Here are several ways that can be used to specify the Zn generators g:

g = cos θ1 + i sin θ σ2 = eiθσ2 ; eiθ; 1 mod n. (1.2)

In the first two cases, the group operation ∗ is ordinary multiplication.
In the third case, it is ordinary addition mod n.

3. There is a way to specify Zn and its generator g without going into
specific representations in (1.2). Note that whatever the representation
is, the generator satisfies gn = 1. This way of specifying an abstract
group element is called a relation. A finite group G can often be
specified this way by the expression G={generators|relations}. In the
case of Zn, that would be Zn = {g|gn = e}, or simply {g|gn} for short.
Any of the four ways to define Zn in (1.2) all satisfy this abstract
definition.

This abstract way of defining a group, through generators and relations,
is known as a presentation of the group.

If you want to know more about that way of doing things, take a look
at the book ‘generators and relations for discrete groups’ by Coxeter
and Moser. See also §3.11.

4. For a Lie group of n dimension, an element g is specified by n param-
eters. In particular, the neighborhood of the identity e can be written
in the form g ' e + i~ξ ·~t + · · ·, where ~ξ = (ξ1, · · · , ξn) are n infinites-
imal parameters, ~t = (t1, · · · , tn) are the corresponding generators

(sometimes known as ‘infinitesimal generators’) along the n directions,
and · · · means terms of order ξ2. The ti’s are generators in the same
sense as above because they not only specify the group elements near
identity, but by multiplying the elements within this identity, we can
gradually enlarge this neighborhood until it covers the whole group,
in much the same way as integrating a differential equation to get the
complete global solution, so they are indeed the generators of the whole
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group. In fact, as we shall see in later chapters, in order for them to
generate a group, they must be closed under commutation, and obey
other relations to form a structure known as a Lie algebra.

(a) For example, an element g = g(θ) ∈ SO(2) is given by (1.1). The
identity e is the 2-dimensional unit matrix 1. For |θ| � 1, we can
write g(θ) = 1 + iθt + O(θ2), with the generator t given by the
Pauli matrix σ2.

(b) You may also have learned from quantum mechanics that the gen-
erators of the 3-dimensional rotational group SO(3), which as a
group also has dimension 3, are the angular momentum operators:
~t = (Jx, Jy, Jz).

1.5 Physics Applications

Here are some illustrations of how symmetries and groups are useful in
physics. They by no means exhaust all the possibilities how groups can
be used.

1.5.1 Finite groups

Finite groups like Zn and the polyhedral symmetry groups T,O, I are used
to study symmetry of molecules, crystals (Secs. 3.13 to 3.15), as well as
symmetry of the three fermionic generations in particle physics, known as
horizontal symmetry (§3.12). Permutation symmetry is relevant for
identical particles in physics, and useful in constructing tensor representa-
tions in mathematics. Moreover, as we shall see, every finite group can be
considered as a subgroup of the symmetric group.

1.5.2 Lie groups

Our spacetime is parametrized by four continuous coordinates, hence symme-
tries in spacetime are given mostly by Lie groups. This includes the rotation
group SO(3), the Lorentz group, etc. A more detailed discussion of these
groups is given in Chap. 7.
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1.5.3 Quantum mechanical applications

1. In quantum mechanics, a group G of Hilbert-space operators is called
a symmetry group (of the Hamiltonian H) if H = g−1Hg for all g ∈ G.

2. If G is a symmetry group and ψ(~x) is an energy eigenfunction with
energy eigenvalue E, i.e., Hψ(~x) = Eψ(~x), then every gψ(~x) is an
energy eigenfunction with the same eigenvalue.

Suppose the functions Gψ form an n-dimensional vector space, then
every function in that space has the same energy eigenvalue.

A homomorphism or an isomorphism ofG into the linear operators of an
n-dimensional vector space Vn is called an n-dimensional representation
of G. If Gv spans Vn for every v ∈ Vn, then the representation is called
irreducible. In principle, given a group G, all its irreducible repre-
sentation can be determined. See later chapters to see how it is done.

This is a useful way to find out potential degenerate energy eigen-
states of a system possessing a symmetry, without having to solve the
Schroedinger equation first. All that we have to do is to find out the
irreducible representations (see §4.2) of the group G. If the dimen-
sion of the representation is n, then we know that potentially the sys-
tem possess a degenerate energy multiplet of multiplicity n. Al-
though we do not know the energy of such multiplets until we solve the
Schroedinger equation, we do know the relations between the states
in the same multiplet. For example, in a system possessing an SO(3)
symmetry (rotationally invariant), n = 2j + 1, and one can obtain any
state of such angular momentum multiplets from another in the same
multiplet by the angular-momentum creation and annihilation opera-
tors J±.

For n = 1, 2, 3, · · ·, such multiplets are called singlet, doublet,

triplet, etc., respectively.

3. The elements of a Lie group can be written in the form g = exp(i~ξ ·
~T ) := eηQ. The invariant condition gHg−1 = H gives rise to the

relation [Q,H] = 0 = [~T ,H], which implies that Q and ~T are conserved
operators.
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Proof : The first statement follows from the formula

eηQHe−ηQ =
∞∑
n=0

ηn

n!
adn(Q).H, ad(Q).H := [Q,H],

which is obtained by Taylor-expanding the left. The second statement
is a consequence of Heisenberg’s equation of motion.
.

4. The exponential form is really not required for the proof. Near the
identity, g ' 1+i~ξ·~T+· · · , (|~ξ| � 1), the invariant condition gHg−1 =

H therefore requires [~T ,H] = 0. [5.28]

Note that a symmetry group of order |G| does not lead to |G| indepen-
dent conserved quantum numbers; only as many as the number of
generators.

1.5.4 Harmonic analysis

We are familiar with using Fourier series to analyze periodic functions, and
spherical harmonics to expand solutions of spherically symmetric differential
equations. The exponential function in Fourier analysis, and the spherical
harmonics, are sometimes called ‘harmonic functions’. They are the basis
functions of a symmetry group, the translation symmetry over a period in
the former case, and rotation symmetry in the latter case. These ‘harmonic
analyses’ can be generalized to other groups G. The corresponding har-
monic functions are the basis of the ‘irreducible representations’, and their
orthonormality is closely related to the orthonormality of ‘unitary irreducible
representations’ to be explained in §4.2.

1.5.5 � Quantum field theory

A quantum field theory is simply a quantum mechanical system with an
infinite number of degrees of freedom, one for each spatial point ~x. As such,
any application of group theory to quantum mechanics is equally useful in
quantum field theories, but not vice versa. Here are some examples how
symmetries can be used in quantum field theories.
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Noether currents

1. In this section, the conserved group element g discussed before shall be
renamed Q to conform to usual notations. We shall refer to them as
conserved charges. It is to be regarded as a Hilbert-space operator,
and the symmetry group G will be assumed to be am n-dimensional
Lie group with generators ~T . Hence there aer n independent conserved
charges which we will denote as ~Q.

2. From the additional spatial information now available, one can derive
a conserved current ~jµ(x) = ~jµ(~x, t) (µ = 0, 1, 2, 3) such that ∂µ~j

µ = 0

and ~Q =
∫
~j0(~x, t)d3x. This current is known as the Noether current,

and is given in terms of the quantum fields φi(x) by the formula

~jµ(x) =
∑
i

Πµ
i (x)

~Tφi(x),

where Πµ
i (x) := δL/δ(∂µφi(x)) is the canonical momenta for φi(x)

and L(φi, ∂µφi) is the Lagrangian density invariant under G so that
L(φi, ∂µφi) = L(gφi, ∂µgφi) for every g ∈ G. For g ' e := 1, we can

write g ' 1 + i~ξ · ~T .

3. ∂µ~j
µ(x) = 0 because

Proof : Let δφi = i~ξ·~Tφi, then the fact that δL = 0 under this change
implies

δL =
∑
i

{
δL

δφi(x)
δφi(x) +

δL
δ(∂µφi(x))

δ∂µφi(x)

}
= 0.

Using the Euler-Lagrange equation of motion,

∂µΠ
µ(x) =

δL
δφi(x)

, Πµ
i (x) :=

δL
δ(∂µφi(x))

,

we obtain ∂µ
∑

i Π
µ
i (x)δφi(x) = 0 for every ~ξ, hence ∂µ~j

µ(x) = 0.
.

4. It follows that the integrated quantity ~Q =
∫
d3x ~j0(~x, t) is a conserved

charge.
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5. A similar Noether current can be worked out for continuous spacetime
symmetries. The formula and the derivation are more complicated
because G varies x as well as φi. See any quantum field theory book
for its derivation.

Spontaneous breaking of symmetry and Goldstone bosons

6. If a quantum field theory has a set of scalar fields φi(x), and if they
interact with one another through a potential V (φi) whose minimum
occurs at a value φi = vi 6= 0, then dynamically such a value of the
scalar field is preferred in the ground state. In that case, the origi-
nal symmetry G of the Lagrangian is reduced to a smaller symmetry
H which transforms the scalar fields in such a way that it leaves the
minimum unchanged: Hvi = vi. This is known as a spontaneous

breaking of symmetry, and the vi’s are called the condensates.

7. Massless bosons known as Goldstone bosons will appear whenever
spontaneous symmetry breaking of a Lie group occurs. This is known
as the Goldstone theorem. There are as many Goldstone bosons as
the broken generators, namely, generators in G but not in H.

Proof : Let V (φi) be the scalar potential. Then (∂V/∂φi)0 = 0 be-
cause the vacuum expectation value vi lies at the bottom of the poten-
tial. The subscript 0 indicates the substitution of φi by vi. Moreover,
(∂2V/∂φi∂φj)0 = mij is the mass matrix of the scalar particles, because
small excitations about the vacuum takes on the form

V (φ) ' V (vi) +
1

2

(
∂2V

∂φi∂φj

)
0

(φi − vi)(φj − vj) + · · · (1.3)

Let ∆φi be the infinitesimal variation of φi generated by a group el-
ement in G. Since V is invariant under G, V (φi) = V (φi + ∆φi).
Specializing φi − vi in (1.3) to ∆φi, we see that the second term on its
right (as well as all the subsequent terms) must vanish. If ∆φi comes
from the variation of H, then this is trivial because φi = vi in that
case. However, if ∆φi is not generated by H, then it must be an eigen-
vector of mij with zero eigenvalues, hence a massless state. This is the
Goldstone boson.
.
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8. A standard example of a Goldstone boson is the pion. In the limit of
zero up- and down-quark masses, there is no coupling between the left-
handed and the right-handed quarks, hence the isospin symmetry of
(u, d) is extended to an SU(2)L×SU(2)R symmetry, called the chiral
symmetry. The strong attraction between a quark and an antiquark
causes a scalar chiral condensate to be formed, which breaks the
chiral symmetry down to an isospin symmetry SU(2)L+R. As a result,
three massless Goldstone bosons emerge because there are three broken
generators, and they correspond to the pions in this massless limit of
the quarks.

Higgs mechanism

9. Gauge particles are massless spin-1 particles, carrying only transverse
polarizations. When the gauge group G is spontaneously broken down
to a gauge group H, the gauge bosons corresponding to the broken
generators can incorporate the Goldstone bosons to become their lon-
gitudinal polarized degree of freedom, and thereby gaining a mass. This
is known as the Higgs mechanism.

10. For example, in the Standard Model, the electroweak symmetry SU(2)×
U(1)Y is broken down spontaneously to U(1)Q. There are three broken
generators, and correspondingly the W± and Z0 bosons gain a mass
through the Higgs mechanism.

Symmetry and dynamics

11. A gauge theory has a symmetry at every spacetime point. This leads
to an infinite symmetry group, with an infinite number of Noether cur-
rents. In the case of pure electrodynamics, for example, these infinite
number of conservation laws are equivalent to the Maxwell equations
∂νF

µν = 0. Thus for gauge theories the symmetry is so large that it
completely determines the dynamics of the gauge fields. This is also the
case for string theory.
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Supersymmetry

12. Nowadays, supersymmetry (SUSY) is also popular. It this conjectured
symmetry between fermions and bosons is present, it must be badly
broken because we have found no trace of such symmetry among the
known particles. The mechanism causing such a breaking is unclear.
We will not discuss supersymmetry in these lectures.


