
Chapter 2

Group Structure

To be able to use groups in physics, or mathematics, we need to know what
are the important features distinguishing one group from another. This is
under the heading of ‘group structure’ which we will begin to discuss
in this chapter. Once the structure is understood, we need to know how to
use this knowledge to exploit the symmetry in physics. For that we need a
knowledge of group representation, a topic which will be discussed in
the subsequent chapters.

2.1 Classes

The most important structure of a group is its classes. Before plunging
into what that is, let us first dispense with some definitions.

1. A group is abelian if gg′ = g′g for all g, g′ ∈ G. Otherwise it is
nonabelian. For example, the Zn group and the SO(2) is abelian, but
the SO(3) group is non-abelian.

2. The center of G, denoted by Z(G), is the abelian subgroup which
commutes with every elements of G. The center always contains the
unit element e.

3. The most useful tool to specify a group is its class structure. A
class (or ‘conjugacy class’) is a collection of elements invariant un-
der similarity transformation. Formally, ρ is a class if and only
if gρg−1 ⊂ ρ for every g ∈ G. Here are some salient properties of
classes.
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(a) The intersection of two classes is a class. Thus, G can be
covered by a unique set of non-overlapping irreducible classes ρa
so that gρag

−1 = ρa for every g ∈ G. The total number of classes
will be denoted by |C|. If we need to specify which group |C| refers
to, we write |C|G.

Proof : For every g ∈ G, gρag
−1 ⊂ ρa. The right hand side cannot

be a proper subset, for otherwise there are two distinct elements
ra and r′a in ρa so that grag

−1 = grbg
−1, but that implies ra = rb,

contradictory to the original assumption. Hence gρag
−1 = ρa for

every g ∈ G.
.

The number of objects in ρa will be denoted by |ρa|. As g runs
over G, gρag

−1 runs over ρa a number of times, hence |G| must be
divisible by |ρa| (prove this !) .

Unless otherwise specified, when we say a class we mean an irre-
ducible class from now on.

(b) ρ1 := (e) is always a class; every element in Z(G) also forms a
class.

(c) Each element of an abelian group is a class. Hence |G| = |C|
in that case.

(d) If one element in ρc is inside ρaρb, then the whole class ρc is (prove
this !) . Hence ρaρb =

∑
c γabcρc for some integers γabc, known

as structure constants. They are somewhat analogous to the
structure constants in the commutation relations of a Lie algebra
which we will deal with later. The group structure constants can
be computed elaborately from the group multiplication table, but
they can also be computed from the ‘simple characters’ of the
group. See Chap. 6 for that.

(e) The class sum operator ca :=
∑

g∈ρa
g commutes with every y ∈

G, so that in some sense it can be treated just like a number.
Unlike members of the center of the group, a class sum operator
is not a member of the group, but it is a member of the ‘group
algebra’ to be discussed later.

Proof : ycay
−1 = ca because yρay

−1 = ρa
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.

(f) It follows from ρaρb =
∑

c γabcρc that (prove this !)

cacb =
∑
c

γabccc. (2.1)

4. Starting from a group, we can form a group algebra by allowing ad-
dition and multiplication by numbers.

2.2 Subgroups

The next important tool in analyzing the structure of a group is its sub-
groups, especially the kind known as normal subgroups. A group that
cannot be broken down any further in terms of normal subgroups is called
simple. Simple groups are liked prime numbers. All integers can be fac-
tored into prime numbers; similarly every finite group in some sense can be
broken down into simple groups (Jordan-Holder theorem). However,
there is a difference. Integers can be reconstructed by multiplying the com-
ponent prime numbers, but it may not be possible to reconstruct the group
G from the component simple groups. In that sense a simple group is not
as ‘complete’ as a prime number, but in another sense it is more complete
because all simple finite groups are now classified and known, whereas large
prime numbers are not known.

For Lie groups, whose local structure can be cast in terms of Lie alge-
bras, the classification of simple Lie algebras is also completely known.
We will discuss these simple Lie algebras systematically in Chapter 9.

Simple Lie algebras consist of 4 regular series (An, Bn, Cn, Dn),
and 5 exceptional algebras (E6, E7, E8, F4, G2). Finite simple groups
consist of Zp, An(n ≥ 5), plus 16 A,B,C,D,E, F,G groups over finite fields,
and 26 sporadic groups, which are the analog of the exceptional Lie al-
gebras. The largest sporadic group is known as the Monster group, whose
order is

80, 801, 742, 479, 451, 287, 588, 645, 990, 496, 171, 075, 700, 575, 436, 800, 000, 000,

roughly 8× 1052. As a comparison, the number of protons contained in the
Earth is 3.6×1051. Despite its monstrous size and difficulty to understand,
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the Monster group is studied quite intensely because it seems to contain
many deep connections with other branches of mathematics.

With this general introduction, let us now look at some of the details.

1. If H ⊂ G is a group, then it is called a subgroup of G. A proper

subgroup is one in which H 6= G. The following symbols are also used
to designate respectively the former and the latter: H ≤ G, H < G.

2. If a group G has a subgroup H, then G can be broken down into
copies of H in the following way. The set of elements gH for some
g ∈ G is called a left coset; the set of elements Hg is called a right

coset. Unless g = e, generally a coset is not a subgroup. Clearly the
number of elements in a coset is equal to |H|. Two (left or right) cosets
overlap only if they are identical: if g1h1 = g2h2, then g1 = g2(h2h

−1
1 ),

so g1 ∈ g2H. Similarly, g2 ∈ g1H, hence g1H = g2H. The same is
true for right cosets. Thus G can be covered by non-overlapping left
cosets of H, or by its non-overlapping right cosets. Hence, |G| must
be divisible by |H|.

3. If gm = e, then m is called the order of the element g. g and its powers
form an abelian subgroup, hence m divides |G|. It follows then that
every element of a finite group has a finite order.

4. [g, h] := ghg−1h−1 is called the commutator of g and h. The product of
two commutators are not necessarily a commutator. The commutator

subgroup of G, or the derived subgroup of G, is the group generated
by all the commutators of G. It is usually denoted by G′ or G(1).
The commutator subgroup of the commutator subgroup is denoted as
G′′ := G(2), etc. If G(k) = e for some k, then the group is called
solvable.

5. All abelian groups are solvable.

6. S2, S3, S4 are solvable.

Proof : S2 is solvable because it is abelian. For S3 and S4, the main
observation is that the commutator [g, h] = ghg−1h−1 is always an
even permutation.
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If g = (12) and h = (23), then [g, h] = (123)(123) = (132). Similarly,
if g = (13) and h = (32), then [g, h] = (132), hence the commutator
subgroup of S3 must contain A3 = Z3. It must be exactly that be-
cause commutators must be even. Since Z3 is abelian, its commutator
subgroup is {e}, hence the second derived group of S3 is e, making S3

solvable.

The proof for G = S4 is similar, but more complicated. By imitating
the construction of S3, we know that the generator of G′ contains the
3-cycles. Since (123)(234)=(21)(34), it must also include the 22-cycles
like (12)(34). As G′ contains only the even permutations, G′ must be
identical to A4.

Next, we will show that the derived group of A4 is the Klein group

K4, consisting of e, (12)(34), (13)(24), (14)(23). By the way, this group
is isomorphic to Z2 × Z2 (prove this !) .

To show that, we simply consider all possibilities. If g, h are both 22-
cycles, then since all 22-cycles commute, [g, h] = e. If g is a 3-cycle
and h is a 22 cycle, then ghg−1 is still a 22-cycle, so (ghg−1)h−1 ∈ K4.
The same can be seen to be true if g is a 22-cycle and h a 3-cycle
when we write [g, h] = g(hg−1h−1). Lastly, suppose both g and h are
3-cycles. Since there are only 4 letters to permute, g and h either con-
tain the same 3 letters, e.g., g = (123), h = (213), or they have one
letter different, e.g., g = (123), h = (214). In the former case, g and h
commute, so [g, h] = e. In the latter case, let a, b be the shared letters.
If g = (a, b,×), then h = (a, b, ◦) or h = (b, a, ◦), where × 6= ◦. In
the former case, [g, h] = (b,×, ◦)(◦, b, a) is a 22-cycle, according to our
previous rule. In the latter case, [g, h] = (×, b, ◦)(◦, a, b) is still a 22-
cycle. This exhausts all possibilities, so we conclude that (A4)

′ = K4.
Lastly, since K4 is abelian, we get (K4)

′ = e, hence (S4)
′′ = e, and S4

is solvable.
.

7. Historically, the name originated from the study of explicit solu-
tions of algebraic equations. We know that algebraic equations of de-
grees 2, 3, 4 have explicit solutions expressed in terms of radicals, and
those with degree 5 and higher do not. According to Galois, whether
an algebraic equation of degree n is always explicitly solvable or not
is related to whether the symmetry group Sn of its roots is a solvable
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group or not. Hence the name. It turns out that the groups S2, S3, S4

are solvable, but not Sn for n ≥ 5.

8. The group commutator [g, h] = ghg−1h−1 is related to the commu-
tator used in quantum mechanics in the following way.

Let t1 and t2 be some operators, and [t1, t2] := t1t2 − t2t1 be their
commutator in the sense of quantum mechanics. Let g = eiξt1 and
h = eiεt2 , where ξ, ε are two real parameters. Then g−1 = e−iξt1 and
h−1 = e−iεt2 . When ξ � 1, ε � 1, we can expand g and h in power
series to the second order,

g ' 1 + iξt1 − ξ2t21/2 +O(ξ3), h ' 1 + iεt2 − ε2t22/2 +O(ε3),

g−1 ' 1− iξt1 − ξ2t21/2 +O(ξ3), h−1 ' 1− iεt2 − ε2t22/2 +O(ε3).

Then up to the second order, one can verify that

ghg−1h−1 ' 1− ξε[t1, t2],

and this is the relation between the two ‘commutators’.

9. A subgroup N such that gNg−1 ⊂ N for all g ∈ G is called an invariant
or a normal subgroup. In that case gNg−1 = N (prove this). We
sometimes write N E G if N is a normal subgroup of G, and N C G
if it is a proper normal subgroup.

(a) Any subgroup of an abelian group is a normal subgroup (prove
this !) .

(b) An is a maximal normal subgroup of Sn (prove this !) .

10. A group without a proper normal subgroup (except the trivial group
consisting of the identity e) is called simple.

(a) For example, the cyclic group Zp for prime p is simple because
it has no proper subgroup, hence no normal subgroup.

(b) If G is simple, then G′ = G or G′ = (e). Thus simple groups and
solvable groups occupy two ends of a spectrum.

Proof : If G is abelian, then [g, h] = e and hence G′ = e. If N
is a normal subgroup of G, then gNg−1 = N implies that every



2.2. SUBGROUPS 27

n ∈ N can be written as n = gn′g−1 for some n′ ∈ N . If G is non-
abelian and simple, then N = G, so every n ∈ G can be written
as n = gn′g−1. That means every m ≡ nn′−1 ∈ G can be written
in the form gn′g−1n′−1 ∈ G′, hence G ⊂ G′. Since G′ is alwasy a
subgroup of G, this implies G = G′.
.

11. The left cosets of a normal subgroup coincide with the right cosets
(prove this). In this case, the cosets themselves form a group as follows.
Let Oi = Nxi (i = 1, · · · , k) be the right cosets that cover G. We can
multiply two such cosets to get another because N is normal: OiOj =
(Nxi)(Nxj) = NxiNx

−1
i xixj = NNxixj = Nxixj, which is the right

coset generated by xixj. In the same way we can also show that the
inverse of a coset is a coset if we take the ‘identity coset’ to be Ne = N .
This group H of cosets is called the factor group, or the quotient

group, and is denoted as Q = G/N .

Note that although Q = G/N is a group, it is not necessarily iso-
morphic to a subgroup of G because Nx1Nx2 = Nx3 does not imply
x1x2 = x3. All that it says is x1x2 = nx3 for some n ∈ N .

Here are two examples, the first showing that G/N is isomorphic to a
subgroup of G, and the second showing that G/N is not isomorphic to
a subgroup of G. [6.02]

(a) The group K4 consisting of e, (12)(34), (13)(24), (14)(23) is a nor-
mal subgroup of A4. In fact, it is abelian and isomorphic to
Z2 × Z2 (prove this !) . The quotient group A4/K4 consists of
the three cosets K4, (123)K4, (132)K4. It is obviously isomorphic
to the subgroup Z3 ⊂ A4 consisting of e, (123), (132).

(b) The group Z4 consists of the four numbers 1, i,−1,−i. It has
one and only one proper subgroup Z2 consisting of the number 1
and −1, which is necessarily normal because Z4 is abelian. The
quotient group Z4/Z2 consists of the two cosets Z2 = −Z2 and
iZ2 = −iZ2, so it is isomorphic to Z2. However, this quotient
group is not isomorphic to a subgroup of Z4 because the two num-
bers (1, i) does not form a group, neither does (−1, i), (1,−i), nor
(−1,−i).

Note further than given two groups N and Q, there is more than one
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way to construct a group G so that N is a normal subgroup of G and Q
is isomorphic to G/N . One way is to take G to be the direct product

N ×Q, but it is often possible to construct also ‘twisted’ products
known as semi-direct products (see item (13) of this section). How
general G can be so that

12. Jordan Holder theorem: if G is not simple, then it can be decom-
posed into a sequence of maximal normal subgroups: G = Nn ⊃
Nn−1 ⊃ · · · ⊃ N0 = 1, where Ni is a maximal normal subgroup of
Ni+1. This series is not unique, but the length n is, and the simple
quotient groups Hi+1 = Ni+1/Ni are unique up to permutations (the
JH theorem).

However, given a set of simple groups Hn+1, · · · , H1 = N1, Ni can-
not be uniquely obtained because of the possibility of taking ‘twisted
products’.

The breakdown of a group this way is a bit like breaking down an
integer into prime factors, with simple groups being the analog of prime
numbers. In that sense, simple groups are the fundamental building
blocks of groups just like prime numbers are the fundamental building
blocks of integers.

For example, 360 > 180 > 90 > 45 > 15 > 5 > 1 is like the JH
series, with the prime quotients 2, 2, 2, 3, 3, 5 the analog of the simple
quotient groups.

13. A 1-1 mapping ofG toG preserving the products is called an automorphism

of G. In other words, an automorphism is an isomorphism of a group
onto itself. If ϕ is an automorphism of G, then by definition ϕ(g1g2) =
ϕ(g1)ϕ(g2), so ϕ(e) = e and ϕ(g−1) = ϕ(g)−1. The set of all automor-
phisms forms a group denoted by Aut(G).

The automorphism ϕq(G) := qGq−1, with q ∈ G, is called an inner

automorphism. It clearly satisfies ϕq(ϕq′(g)) = ϕqq′(g). Other auto-
morphisms are called outer automorphisms. The automorphisms of
an abelian group is all outer.

If Q is a group, we can define a set of automorphisms ϕq on G for
every q ∈ Q such that ϕq(ϕq′(g)) = ϕqq′(g). This implies ϕe(g) = g. I
will simply refer this to be Q-automorphism of G, but please note
that this is not an official name. If Q ⊂ G, it may just be an inner
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automorphism with q ∈ Q. If Q 6⊂ G, then qnq−1 does not make sense,
so we cannot write it that way.

14. Direct product: The direct productG = N×Q of two non-overlapping
groups N and Q is a group consisting of elements (n, q) so that (n, q)·
(n′, q′) = (nn′, qq′). Its order is |G| = |N |·|Q|.

15. Semi-direct product:

A semi-direct product G = NoϕQ is a ‘twisted’ product: n′ is ‘twisted’
by a q-automorphism of N before a direct product is taken. Formally,
(n, q)·(n′, q′) = (nϕq(n

′), qq′). The order of G is still |N |·|Q|, but the
semi-direct product depends on the automorphisms ϕ used.

Note that the product is not symmetric between 1 and 2, hence G can
be non-abelian even if both N and Q are abelian. Many non-abelian
groups can be built up this way from the abelian cyclic groups Zn. In
fact, of the 93 groups of order less than 32, 88 of them can be built
up that way.

Using the properties of Q-automorphisms, it follows that

(n, q)−1 = (ϕq−1(n−1), q−1)

[(n1, q1)·(n2, q2)]·(n3, q3) = (n1, q1)·[(n2, q2)·(n3, q3)] .

This shows that semi-direct product does form a group. Here are some
other properties of a semi-direct product:

(a) N is a normal subgroup of G because

(n, q)(n′, e)(ϕq−1(n−1), q−1) = (n, q)(n′ϕq−1(n−1), q−1)

= (nϕq(n
′ϕq−1(n−1)), e)

= (nϕq(n
′)ϕq(ϕq−1(n−1))), e)

= (nϕq(n
′)n−1, e) ∈ N.

(b) The cosets generating G/N is of the form g ·N , where g can be
taken to be elements of the form (e, q). Thus G/N is isomorphic
to Q.

(c) If ϕq(n) = n, then (n1, q1)(n2, q2) = (n1n2, q1q2) is just the direct
product.
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(d) If Q and N are two non-overlapping subgroups of G and if the Q-
automorphism is just an inner automorphism ofG, ϕq(n) = qnq−1,
then (n, q) can be identified with nq, because

(n1, q1)(n2, q2) = (n1q1n2q
−1
1 , q1q2) = n1q1n2q

−1
1 q1q2 = n1q1n2q2.

(e) An example. Consider G = S3, the symmetric group of three ob-
jects, with order 3! = 6. The 3-cycles generate a normal subgroup
N = A3

∼= Z3 , and the quotient group Q = G/N ∼= Z2, where Z2

is generated by (12). In fact, the two cosets with respect to N =
A3 = [e, (123), (132)] are Ne = N and N(12) = [(12), (13), (23)].
Thus every element of S3 is of the form nq := (n, q), where
n = e, (123), or (132), and q = e or (12). The product of
two elements is nqn′n′ = (nϕq(n

′), qq′), where ϕe(n
′) = n′ and

ϕ(12)(n
′) is obtained from n′ by interchanging 1 and 2. With this

ϕ, S3 = Z3 oϕ Z2.

Note that the direct product Z3 × Z2 = Z6 is a different group.


