
Chapter 9

Lie algebra

9.1 Lie group and Lie algebra

1. from group to algebra:

Let g0 ∈ G be a member of a Lie group G, and N0 a neighborhood of
g0. g−1

0 N0 is then a neighborhood of the identity e := 1. Therefore,
the structure of the group in any neighborhood N0 is identical to the
structure of the group near the identity, so most properties of the group
is already revealed in its structure near the identity.

Near the identity of an n-dimensional Lie group, we saw in §1.3 that
a group element can be expressed in the form g = 1 + i~ξ ·~t + O(ξ2),
where ~t = (t1, t2, · · · , tn) is the infinitesimal generator and |ξi| � 1. If
h = 1 + i~ε ·~t+O(ε2) is another group element, we saw in §2.2 that the

infinitesimal generator of ghg−1h−1 is proportional to [~ξ·~t, ~η·~t]. Hence
[ti, tj] must be a linear combination of tk,

[ti, tj] = icijktk. (9.1)

The constants cijk are called the structure constants; one n-dimensional
group differs from another because their structure constants are differ-
ent. The i in front is there to make cijk real when the generators
ti are hermitian. The antisymmetry of the commutator implies that
cijk = −cjik.
In order to ensure

[ti, [tj, tk]] = [[ti, tj], tk] + [tj, [ti, tk]], (9.2)
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an equality known as the Jacobi identity, the structure constants
must satisfy the relation

cjklclim + cijlclkm + ckilcljm = 0. (9.3)

2. from algebra to group:

An n-dimensional Lie algebra is defined to be a set of linear operators
ti (i = 1, · · · , n) closed under commutation as in (9.1), that satisfies the
Jabobi identity (9.2). Given a Lie algebra, one can use it as infinitesi-
mal generators to construct group elements near the identity, then by
repeated multiplication push the group elements further and further
away from the identity, and eventually integrate it out to cover the
whole group. It can be shown that this is feasible but we will not go
into the details. The closure under commutation is to ensure that if
g ∈ G, h ∈ G, then the commutator ghg−1h−1 is also in G. The Jacobi
identity is there to make sure of associativity of group multiplication.

ti are usually matrices, but they can be differential operators.

Character in the lower-case is usually used to denote a Lie algebra.
Thus su(n) is the Lie algebra for the Lie group SU(n). Unless other-
wise specified, henceforth g shall stand for a Lie algebra.

Since the Lie algebra reveals only the local structure of a group, it is
possible that two different groups with different global structures may
share the same algebra. The Lie algebra determines the differential
equation from which to integrate out to reach the rest of the group,
but the resulting solution may depend on the boundary condition. For
example, SO(3) and SU(2) both share the same angular momentum
Lie algebra su(2), but their global topological structures are different,
as we saw in §7.2.

3. If the generators of a Lie algebra g′ coincides with some of the genera-
tors of another Lie algebra g, then g′ is said to be a subalgebra of g.
This relation is denoted as g′ ⊂ g.

4. If [ti, tj] = 0 for all ti, tj in g, then g is said to be abelian.
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9.2 Adjoint representation

1. If d × d matrices Ti satisfy the same commutation relations as ti,
[Ti, Tj] = icijkTk, then {Ti} is said to form a d-dimensional representation
of g. The most important representation is the n-dimensional repre-
sentation called the adjoint representation, which is the counterpart of
regular representation for a finite group.

2. The linear mapping ad(a) defined by ad(a)b := [a, b] gives rise to an
n-dimensional representation of a Lie algebra known as the adjoint

representation. This means, if [a, b] = c, then ad([a, b]) = [ad(a), ad(b)] =
ad(c).

Proof : [ad(a), ad(b)]d = [a, [b, d]]− [b, [a, d]] = [[a, b], d] = ad([a, b])d =
ad(c)d.
.

Explicitly, if ad(ti)tj = ad(ti)kjtk, then [ad(ti)]kj = icijk = −icjik. Note
the index order of the matrix element.

Adjoint representation is crucial in the Lie algebra theory because it
converts its study into a problem in linear algebra representations. A
very useful tool in studying the adjoint representation is the Killing
form:

3. The bilinear symmetric form Kab := (a, b) := Tr[ad(a)ad(b)] is called
the Killing form. Jacobi identity shows that ([a, b], c) = (a, [b, c]).
Killing form is independent of the choice of basis, because it is defined
through a trace, hence it indeed reflects the intrinsic structure of a Lie
algebra.

If we do choose a basis, then (ti, tj) = ad(ti)pqad(tj)qp = −ciqpcjpq.

9.3 Killing form as a classification tool

1. Since K is symmetric, it can be diagonalized by an orthogonal matrix
O so that OTKO := D = diag(ki) is diagonal. If we let t′i = Opitp,
[t′i, t

′
j] = ic′ijltl, then kiδij = Tr(ad(t′i)ad(t

′
j)) and [ad(t′i), ad(t

′
j)] =

ic′ijlad(t
′
l). Multiply both sides by ad(t′p) and take the trace, we get
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ikpc
′
ijp = −ikpc′jip = Tr(ad(t′p)[ad(t

′
i), ad(t

′
j)]) = Tr([ad(t′p), ad(t

′
i)]ad(t

′
j))

= ikjc
′
pij = −ikjc′ipj. To summarize, we have

kpc
′
ijp = kjc

′
ipj, c′ijp = −c′jip. (9.4)

We can further simplify the form by dividing t′i by
√
|ki| if ki 6= 0.

From now on we shall assume that to be done and will refer to basis of
this kind as orthonormal. This means

(τi, τj) = κiδij, (9.5)

where τi = t′i if ki = 0, τi = t′i/
√
|ki| if ki 6= 0, and κi = +1, 0, or −1.

We will refer to the index i as positive, zero, or negative depending on
whether κi is 1, 0, or −1. Using (9.4), one can conclude that

In an orthonormal basis, cijk = −cjik is zero if the sign of j
or i is zero but the sign of k is not. Otherwise, cijk = ∓cikj
if the signs of j and k are same/different.

2. If the Killing form is positive definite, then (a, b) defines a proper
scalar product. This defines a class of very important algebra known as
semi-simple algebra, a class of algebra which we will study in much
more detail later.

3. If the generators ti are hermitian (so that the Lie group G is compact),
then cijk are real. Moreover, 〈ti, tj〉 := tr(titj) is a positive definite real
symmetric form, so we can choose basis and normalization so that
tr(titj) = δij. Then −icjik = icijk = tr([ti, tj]tk) = tr(ti, [tj, tk]) = icjki,
so the structure coefficient is antisymmetric in the last two indices,
showing that the Killing form (ti, tj) is positive definite. Hence the Lie
algebras of all compact Lie groups are all semi-simple.

Example

In su(2), ti = σi, the Pauli matrices, and ti = t†i . The structure
constants are cijk = εijk, so the Killing form (σi, σj) = +εipqεjpq is
positive definite.
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9.4 Semi-simple and solvable algebras

1. There are two main types of Lie algebras: semi-simple, and solvable.
Levi’s theorem states that any real Lie algebra is a direct product
of a semi-simple and a solvable algebra.

2. a subset n ⊂ g is invariant if [t,n] ⊂ n for every t ∈ g. n is also
called an ideal. Since [n,n] ⊂ n, n is automatically a subalgebra.
In fact, it is the subalgebra of a normal subgroup N ⊂ G. This is so
because gNg−1 ⊂ N for every g ∈ G. If g = exp(iξt), then for |ξ| � 1,
g ' 1 + iξt, so gNg−1 ' N + iξ[t, N ] ⊂ N implies that [t, N ] ⊂ N . If
n is the Lie algebra of N , then it also implies [t,n] ⊂ n.

With this, we can define simple Lie algebra and solvable Lie algebra to
be the Lie-algebraic equivalent of simple group and solvable group.

3. A simple Lie algebra is one without a proper ideal. The commutator
subalgebra g(1) := [g, g] is always an ideal, so if g is simple, then g(1) =
g. In particular, a simple algebra is always non-abelian.

Example: su(2).

4. A semi-simple Lie algebra is one without an abelian ideal.

5. Let g = g1⊕g2, where gi are simple algebras. In other words, an element
x ∈ g looks like (x1, x2), xi ∈ gi, and [x, y] = ([x1, y1], [x2, y2]). Then
g is not simple, because (g1,0) and (0,g2) are proper ideals. However,
these ideals are not abelian because gi are simple. Hence, the algebra
is semi-simple.

6. Let g(0) = g, g(k) = [g(k−1), g(k−1)], then a solvable algebra is one in
which g(k) = 0 for some finite k. If [g, [g, · · · , [g, g] · · ·]] = 0 when the
chain is sufficiently long, then the algebra is nilpotent. A nilpotent
algebra is always solvable but not necessarily the other way around.
A solvable algebra cannot be semi-simple because g(k−1) is an abelian
ideal.

Note: every g(k) is an ideal. This can be proven by induction as
follows. First, g(1) is an ideal. If g(k−1) is, then for every a ∈ g,
[a, g(k)] = [a, [g(k−1), g(k−1)]] = [[a, g(k−1)], g(k−1)] + [g(k−1), [a, g(k−1)]] ⊂
[g(k−1), g(k−1)] = g(k), by induction.



178 CHAPTER 9. LIE ALGEBRA

Example

The Heisenberg algebra of canonical commutation relations, [qi, pj] =
i~δij, is nilpotent, hence solvable.

7. We will now state an important theorem without proof:

Cartan’s criterion for semi-simple algebra: g is semi-simple if
and only if its Killing form is non-degenerate. That means, (a, b) defines
a proper inner product in g.

8. Let ti (i = 1 · · ·n) be a basis of a semi-simple Lie algebra. Using the
Killing form inner product, and the Schmidt orthogonalization process,
we can assume them to be orthonormal, (ti, tj) = δij. With this basis,
the structure coefficients cijk = −cjik is completely antisymmetrical in
all three indices.

Proof : Multiply both sides of [ad(ti), ad(tj)] = icijkad(tk) by ad(tl)
and take the trace, we get

icijl = tr (ad(tl)[ad(ti), ad(tj)]) = tr ([ad(tl), ad(ti)]ad(tj)) = iclij = −icilj

.

9.5 su(2)

The simplest simple Lie algebra is su(2), the angular momentum algebra
which we are familiar with in quantum mechanics. The three generators ti
are the angular momentum operators Ji satisfying the commutation relation

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy. (9.6)

It turns out that the treatment of all other simple algebras is very similar to
that of su(2), so let us first review what we know about su(2).

Putting Jx ± iJy = J±, we obtain an equivalent commutation relation

(a) : [J+, J−] = 2Jz, (b) : [Jz, J±] = ±J± (9.7)
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which is better suited for analysis. Note that Jx, Jy, Jz are hermitian, but J+

and J− are hermitian conjugates of each other.
Let |m〉 be an eigenfunction of Jz with eigenvalue m: Jz|m〉 = m|m〉.

Then J±|m〉 is proportional to |m± 1〉 according to (9.7)(b), hence J± serves
to raise/lower the quantum number m by 1 unit, and they are known as
creation and annihilation operators, or, raising and lowering opera-
tors. Assume the eigenfunctions to be normalized, 〈m|m〉 = 1. We can
choose the phase of |m + 1〉 so that 〈m + 1|J+|m〉 := Nm+1 is real and
positive. Then because J†+ = J−, we also have 〈m|J−|m+ 1〉 = Nm+1.

Suppose the angular momentum in question is finite, so thatm is bounded
from above by some number j. In that case J+|j〉 = 0, and (9.7)(a) implies
Nj =

√
2j. More generally, 〈m|[J+, J−]|m〉 = N2

m−N2
m+1 = 〈m|2Jz|m〉 = 2m

gives an recursion relation to compute all Nm for m < j. For example,
N2
j−1 = 2j + 2(j − 1), N2

j−2 = 2j + 2(j − 1) + 2(j − 2), etc. The general
formula is N2

m = (j +m)(j −m+ 1), hence

J±|m〉 =
√

(j ±m)(j ∓m− 1)|m± 1〉,

and in particular, J−| − j〉 = 0. Since we reach m = −j from m = j in 2j
steps, 2j must be an integer.

The state |m〉 is often written as |j,m〉 to make sure what j it belongs

to. It can be checked directly that ~J2 = J2
z + (J+J− + J−J+)/2, and that

~J2|j,m〉 = j(j + 1)|j,m〉.

The states |j,−j〉, · · · , |j, j〉 form a (2j+1)-dimensional representation
of the angular momentum operators.

By the way, this analysis relies on the hermiticity of Ji. This property is
shared by all semi-simple Lie algebras, a property which we shall use from
now on. That does not mean that every generator is necessarily hermitian,
because even in su(2), J± are not. However, it does mean that if a generator
is not hermitian, then its hermitian conjugate is also a generator.

9.6 Roots of semi-simple algebras

In this section we generalize the analysis of su(2) to all semi-simple Lie
algebras.
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1. A maximal abelian subalgebra of g is called a Cartan subalgebra, to
be denoted by h. Since g is semi-simple, we can assume the basis of h
to consist of hermitian operators.

2. The dimension l of the vector-space of h is called the rank of g. This
is the number of simultaneously commuting hermitian operators in the
algebra.

For su(2), l = 1, and the Cartan algebra is generated by Jz.

3. Since h is abelian, all the ad(h)’s for h ∈ h commute, so they have
simultaneous eigenvectors eα with eigenvalues α(h) for h ∈ h:

ad(h)eα = α(h)eα, eα ∈ g. (9.8)

the eigenvalue α(h) is called a root.

Taking the hermitian conjugate of (9.8), keeping in mind that h = h†,
we see that e†α is also an eigenvector of ad(h) with eigenvalue −α(h).
We may hence write e†α = e−α, and conclude that non-zero roots come
in pairs: α and = α.

For su(2), the roots are J+, with eigenvalue α+ = 1, and J−, with
eigenvalue α− = −1; positive root for creation and negative root for
annihilation operators.

4. All the eigenvectors with the same α(h) form a subspace of g, desig-
nated as Lα. If eα ∈ Lα, eβ ∈ Lβ, then

ad(h)[eα, eβ] = [ad(h)eα, εβ] + [eα, ad(h)eβ] = [α(h) + β(h)][eα, eβ],

hence [Lα, Lβ] ⊂ Lα+β and (α + β)(h) = α(h) + β(h). In particular,
h ⊂ L0. Actually, it can be shown that h = L0. That means, the origin
of the root diagram is a root, and that

if α, β are roots, then α+ β is a either root, or

[eα, eβ] = 0.

For su(2), −1+1 = 0,−1+0 = −1,+1+0 = +1 correspond respectively
to the commutators [Jz, J±] = ±J±, and [J+, J−] = 2J3.
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5. If a ∈ Lα and b ∈ Lβ, with α 6= −β, then (a, b) = 0. This is so because
([a, h], b) = −α(a, b) = (a, [h, b]) = β(a, b)

For su(2), this implies (+1, 0) = 0 and (+1,−1) 6= 0. We can see di-
rectly why that is true. On the one hand, (+1, 0) = Tr(ad(J+)ad(Jz)).
On the other hand, ad(Ji) as a linear operator on g is isomorphic to the
quantum-mechanical operator J)i on the Hilbert space states |jm〉 with
j = 1. Hence (J+, Jz) = Tr(ad(J+)ad(Jz)) =

∑
m=−1,0,+1(J+)mmm = 0

because J+ does not have diagonal matrix elements.

9.7 Geometry of the Cartan algebra

The Cartan algebra is abelian, has dimension l, so it can be treated as an
ordinary l-dimensional vector space. The inner product of this vector space
can be taken to be the Killing form, because, for a semi-simple algebra,

1. the Killing form restricted to h is non-degenerate.

Proof : Otherwise, there is a h′ ∈ h so that (h′, h) = 0 ∀ h ∈ h. But
(h′, a) = 0 as well for all a ∈ Lα when α 6= 0. This is not allowed
because the Killing form on g is non-degenerate.
.

2. With this inner product, we can choose an orthonormal basis hi ∈ h so
that (hi, hj) = δij. Then α(hi) will be the ith component of the root
α. A diagram plotting all the roots is called a root diagram; the axes
of this diagram are hi so the root components are α(hi). It would be
more intuitive to write it simply as αi, but unfortunately that symbol
is usually used for something else which we will encounter below.

For su(2), l = 1, the root diagram consists of the three points −1, 0,+1
on the real line.

The members of h are zero roots, but often by roots one means non-zero
roots.

3. Roots can be ordered by first ordering α(h1), then α(h2), then α(h3),
etc. A root is called a positive root if the first non-zero α(hi) is pos-
itive, a negative root if the first non-zero α(hi) is negative. Positive
roots and negative roots come in pairs; the only root that is neither
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positive nor negative are roots with α(hi) = 0 for all i, and these are
roots that belong to L0. The set of all positive roots will be denoted
by ∆+, the set of negative roots by ∆−.

4. A positive root that cannot be expressed as a sum of two other positive
roots is called a simple root. There are l simple roots, to be denoted
by αi, which are located at the boundary of the convex cone of positive
roots. Please do not confuse αi with α(hi).

Examples

Fig. 9.1 shows the root diagram of all the rank-2 semi-simple Lie alge-
bras, whose origin will be discussed later in the Chapter. The Lie al-
gebras su(2), su(3), so(3) are here named A1, A2, B2 respectively. G2 is
not the Lie algebra of any classical group, so it is called an exceptional

algebra. The two simple roots in each case are denoted by α and β,
and the positive roots are all those roots between the two simple roots.
A1 × A1, being the direct product of two simple Lie algebras A1, is
semi-simple.

Note that

(a) the angle between roots are confined to 90◦, 60◦, 45◦, 30◦, or multi-
ples thereof, and that the angles are different for these four cases;

(b) for A2, whose angle is 60◦, the root lengths are all the same, but
for B2 and G2, with 45◦ and 30◦ angles, the root lengths are not
all identical;

(c) the angle between the simple roots is always ≥ 90◦.

It turns out that these are generic features valid for all semi-simple Lie
algebras, as we will see later.

5. The simultaneous eigenvalues λ(h) of all h ∈ h for a state |λ〉 is called
a weight. A weight in the adjoint representation is just a root.

6. The non-degeneracy of the Killing form allows us to associate a unique
tα ∈ h with every root α, so that (tα, hi) = α(hi), or equivalently,
(ta, h) = α(h) for any h ∈ h. We can expand tα in terms of hi, then tα :=
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Figure 9.1: l = 2 semi-simple Lie algebras

∑
j(tα, hj)hj =

∑
j α(hj)hj, so (tα, tβ) = (tα, hi)(hi, tβ) = α(hi)β(hi) =

(α, β).

Note: This association between α and tα ∈ h is true for any l-dimensional
vector α, not necessarily a root. In particular, we can associate a weight
λ with a tλ =

∑
i λ(hi)hi ∈ h so that (tλ, h) = λ(h) for all h ∈ h. This

also means (tλ, tα) =
∑

i λ(hi)α(ki) = (λ, α).

7. To each Lα, we can associate a unique eα ∈ Lα, fα ∈ L−α, and hα ∈
h = L0, such that fα = e†α, and that

hα = [eα, fα], [ha, eα] = 2eα, [hα, fα] = −2fα. (9.9)
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The corresponding su(2) group will be denoted as su(2)α. Note that

(a) the normalization of the generators here, hα ∼= σ3, eα ∼= σ+, fα ∼=
σ−, are twice that of the angular momentum operators, so that the
eigenvalues of hα are integers k, rather than half integers j = k/2
for Jz;

(b) it implies dim (Lα) = 1, and hence [Lα, Lβ] = Lα+β;

(c) it turns out that hα = 2tα/|α|2, hence (hα, hα) = 4/|α|2.

Proof : Pick any e ∈ Lα, f ∈ L−α, then [e, f ] ∈ L0, so the first step is
to find a h ∈ L0 so that [e, f ] = h. It should come as no surprise that
h turns out to be proportional to the unique tα that is associated with
α, as discussed above.

To see that, let h′ be any element in L0. Then (h′, [e, f ]) = ([h′, e], f) =
α(h′)(e, f) = (h′, (e, f)tα). Since Killing is non-degenerate on L0, this
implies [e, f ] = (e, f)tα. Now [tα, e] = α(tα)e = |α|2e, [tα, f ] =
−α(tα)f = −|α|2f . Let hα = 2tα/|α|2, then [hα, e] = 2e, [hα, f ] = −2f ,
and [e, f ] = hα{(e, f)|α|2/2}, so a rescaling of e to eα and f to fα to
make {· · ·} = 1 will finish the job. The scaling is unique if we insist on
fα = e†α.

To see the uniqueness, suppose e′α is another highest root in Lα which
is not a multiple of eα, then the two su(2) algebras g = (eα, hα, fα) and
g′ = (e′α, h

′
α, f

′
α) form a spin-1 representations of each other. When g

is considered as weights of algebra g′, we have

[e′α, eα] = 0, [h′α, eα] = 2eα, [f
′
α, eα] = −hα, [f ′α, hα] = 2fα, [e

′
α, fα] = hα

When g′ is considered as weights of algebra g, then

[eα, e
′
α] = 0, [hα, e

′
α] = 2e′α, [fα, e

′
α] = −h′α, [fα, h′α] = 2f ′α, [eα, f

′
α] = h′α

This shows g = g′. Essentially the same calculation shows that nα
cannot be a root. Hence, dim (Lα) = 1.

We have shown preciously that [Lα, Lβ] ⊂ Lα+β, but since dim (Lα+β) = 1,
[Lα, Lβ] = Lα+β.
.
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8. Cartesian generators: The su(2) generators can be taken to be
J1, J2, J3, or, J± = J1 ± iJ2 and J3. I shall refer to the former as
the Cartesian basis and the latter as the spherical basis. In this
language, the generators based on roots in a semi-simple Lie algebra are
in the spherical basis. We shall now proceed to construct the equivalent
operators in the Cartesian basis.

Let Tα1 = |α|2(eα+fα)/4, Tα2 = −i|α|2(eα−fα)/4, and Tα3 = |α|4hα/8.
Then T †

αi = Tαi, and [Tαi, Tα,j] = iεijkTαk. In short, every Tαi behaves
like Ji if |α|2 = 2, which is the case for su(2). Note that 4(T 2

α1 +T 2
α2) =

|α|2(eαfα + fαeα)/2 = |α|2fαeα + |α|2hα/2 = |α|2(eαfα + fαeα)/2 =
|α|2fαeα + tα.

A Lie algebra of rank l and dimension n has n− l roots and l diagonal
generators in the Cartan subalgebra. In the spherical basis, the gener-
ators are eα, fα for every α ∈ ∆+, and hi for 1 ≤ i ≤ l. Note that it is
not hα, for otherwise there would be too many of them. In the Carte-
sian basis, the generators would be Tα1, Tα2 and hi/2. It sometimes
convenient to write them together as Tp = T †

p , for 1 ≤ p ≤ n.

The advantage of the Cartesian basis is that all the generators are
hermitian, hence the corresponding structure constants are totally an-
tisymmetric in its three indices (§9.3(3)).

9. Casimir operators: For su(2), J2 =
∑3

i=1 J
2
i commutes with every Ji,

so by Schur’s lemma it is a constant in every irreducible representation.
Its generalization to a semi-simple algebra is the (quadratic) Casimir
operator

C2 := 4
n∑
p=1

T 2
p = 4

∑
α∈∆+

(T 2
α1 + T 2

α2) +
l∑

i=1

h2
i

=
∑
α∈∆+

[|α|2fαeα + tα] +
l∑

i=1

h2
i . (9.10)

Proof :

We have to show that [C2, Tq] = 0. Since Tp are hermitian, the struc-
ture constant is completely antisymmetric in its three indices (§9.3(3)).
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Hence

[C2, Tq] = 4
n∑

p,r=1

(
TpTrc

r
pq + TrTpc

r
pq

)
= 0.

.

10. Let Rα = {eβ ∈ g|[eα, eβ] = 0} be the set of highest roots of su(2)α.
By Jacobi identity, if eβ, eγ ∈ Rα, then [eβ, eγ] ∈ Rα, so Ra is a subal-
gebra of g. Clearly eα ∈ Rα.

If eβ ∈ Rα, and ad(hα)eβ = keβ, then §9.5 shows that k is an integer
(remember that hα = 2Jz).

11. Recall that (α, β) = (tα, tβ) = β(ta) and hα = 2tα/|α|2. Hence (α, β) =
|α|β(hα)/2, and [hα, eβ] = β(hα)eβ = [2(α, β)/|α|2]eβ := 〈β|α〉eβ. The
quantity k = 〈β|α〉 is an integer called the Cartan integer. Note that
it is linear in β but not in α. β can be a root or a weight of g.

Since h is a l-dimensional Euclidean space, we may express (α, β) in
terms of the angle θ between the two roots, (α, β) = |α| |β| cos θ. Since
k = 〈β|α〉 = 2 cos θ|β|/|α| and k′ = 〈α|β〉 = 2 cos θ|α|/|β| are both inte-
gers, the allowed values of cos θ = ±

√
kk′/2 are 0,±1/2,±

√
2/2,±

√
3/2,

and the corresponding allowed angles are 90◦, 60◦(120◦), 45◦(135◦), 30◦(150◦).

If cos θ = 0, the lengths of |β| and |α| are not related. Otherwise, the
ratio is |β|/|α| = k/2 cos θ. For θ = 60◦(120◦), this ratio is 1. For
θ = 45◦(135◦), this ratio is

√
2 or 1/

√
2. For θ = 30◦(150◦), this ratio

is
√

3 or 1/
√

3.

12. α∨ := 2α/(α, α) is called a coroot. The Cartan integer 〈β|α〉 is there-
fore equal to (β, α∨). If ∆ is the system of roots, then ∆∨ is the system
of coroots, and (∆∨)∨ = ∆.

13. The cosine of the angle between two simple roots αi and αj is always
negative, hence such an angle is always between 90◦ and 180◦. More-
over, αi − αj cannot be a root, hence [eαi

, fαj
] = 0.

Proof : β := αi − αj cannot be a root. Otherwise it is either positive
or negative. In the first case, αi = αj + β so αi cannot be simple. In
the second case, −β is positive so αj = αi − β cannot be simple.
.
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14. Fig. 9.2 shows all possible connections between pairs of simple roots.
Each circle represents a simple root. The number of lines connecting
two circles indicates the angle between the two simple roots: 0, 1, 2,
3 lines correspond respectively to 90◦, 120◦, 135◦, 150◦. In the case of
two or three lines, the ratio of the lengths of the two roots is

√
2 or√

3 respectively. The arrow then points to the shorter root. The three-
line connection occurs only in the algebra G2, and that is explicitly
indicated in the Figure. From left to right, the other three possibilities
correspond respectively to the algebras A1×A1, A2, and B2 of Fig. 9.1.

We shall see in the next section that every semi-simple Lie algebra of
rank l can be represented by a l-circle diagram like these. Moreover,
the diagram is always connected, but the lines connecting the circles
never form a loop. This classification of semi-simple Lie algebra is due
to Cartan, and these l-circle diagrams are called Dynkin diagrams.

Figure 9.2: Connection of pairs of simple roots

9.8 Cartan matrix

The l × l asymmetric matrix Aij = 2(αi, αj)/(αi, αi) form from the simple
roots αi is known as the Cartan matrix. Diagonal entries are always Aii = 2,
and a non-diagonal entry is either 0,−1,−2, or −3, with the constraint that
AijAji = 4 cos2 θ < 4. Pictorially, one draws AijAji lines between nodes i
and j. If |Aij| < |Aji|, meaning |αj| < |αi|, then an arrow is drawn from
node i to node j. In other words, an arrow always points to the shorter root.
These diagrams are shown in Fig. 9.2.

Properties of the Cartan matrix

1. there are at most l − 1 pairs of vertices connected by lines;

2. there are no loops;
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3. there are at most three edges issuing from any node;

4. the only connected diagram containing a triple bond is the rank-two
diagram G2;

5. if two nodes are connected by a single line, then we may shrink the line
and merge the two nodes to get another legitimate Cartan matrix (or
Dynkin diagram);

6. a diagram cannot have two double bonds, nor two T -junctions of single
bonds;

7. if the double bond occurs once in a linear chain, then it must be at the
beginning (Bl), at the end (Cl), or right in the middle for a four-node
chain (F4);

8. if a diagram contains a linear chain of single bonds without any T -
junction, then the Lie algebra is known as Al.

9. if a diagram containing single bonds has one T -function, and the three
branches emerging from the T -junction has p − 1, q − 1, r − 1 nodes,
so that l = p + q + r − 2. Suppose further that p ≥ q ≥ r. Then the
allowed diagrams must satisfy p−1 + q−1 + r−1 > 1, which has solutions
(p, q, r) = (p, 2, 2) (Dl) and (3/4/5,3,3) (E6/E7/E8).

For a reference, see p. 172 of Ref. [9].

Proof :

1. Let x =
∑l

i=1 αi/|αi|. Then 0 < |x|2 = l + 2
∑

i<j(αi, αj)/|αi||αj| =

l−
∑

i<j

√
AijAji. Since each non-zero summand above must be 1,

√
2,

or
√

3, there must be at most l − 1 pairs of non-connected edges.

2. A connected diagram of l nodes with one loop has at least l lines.

3. Let β1, · · · , βr be the nodes (simple roots) connected to the node α.
Then (βi, βj) = 0 for i 6= j, or else a loop is present. Since all the
simple roots are linearly independent, α must have a non-zero com-
ponent orthogonal to all the βi’s. Hence |α|2 >

∑
i(α, βi)

2/|βi|2 =
|α|2

∑
iAαiAi,α/4. Therefore

∑
iAαiAiα ≤ 3.
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4. Otherwise there is at least one node with four edges emerging from it.

5. Let Kij = (αi, αj) = Ai,j(αi, αi)/2 be the positive definite Killing form
associated with a Cartan matrix A, or a Dynkin diagram. Positive
definiteness means

∑
Kijxixj > 0 if at least one xi 6= 0. Suppose

nodes a and b are connected by a single line. ThenKaa = Kbb = −2Kab,
so that x2

aKaa + x2
bKbb + 2xaxbKab = x2

aKaa if we set xa = xb. Now
merge nodes a, b into a new node c, and use i, j from now on to denote
nodes that are neither a nor b. Then the new symmetric matrix K ′ that
corresponds to the new Dynkin diagram isK ′

ij = Kij, K
′
cc = Kaa = Kbb,

and K ′
ic = Kia + Kib = K ′

ci. Note that if Kia 6= 0, meaning i and a
are connected, then we must have Kib = 0 or else there will be a loop
in the Dynkin diagram. If we set x′c = xa = xb and x′i = xi, then
xTKx = x′TK ′x′, showing that K ′ is positive definite if K is. This
proves that the new diagram is a legitimate Dynkin diagram if un-
merged one is.

6. If there are two double bonds, then by shrinking all the single bonds
between the two double bonds would result in a node with four lines,
which is not allowed. The same is true if there are two T -junctions of
single bonds.

7. Suppose we enumerate the l nodes from left to right, suppose the double
bond occurs between nodes p and p + 1, and suppose its arrow points
from right to left. Then we may assume |αi|2 = 1 for 1 ≤ i ≤ p, and
|αi|2 = 2 for p + 1 ≤ i ≤ l. Relabel the q = l − p nodes from right to
left as β1, · · · , βq. Let α =

∑p
i=1 iαi, β =

∑q
i=1 iβi. Then

(α, α) =

p∑
i=1

i2 −
p−1∑
i=1

2i(i+ 1)/2 = p2 −
p−1∑
i=1

i = p2 − p(p− 1)/2 = p(p+ 1)/2,

(β, β) =

q∑
j=1

2j2 −
q−1∑
j=1

2j(j + 1) = q(q + 1),

(α, β) = pq(αp, βq) = −pq.
(9.11)

Since α and β cannot be parallel, Schwarz inequality requires (pq)2 <
(α, α)(β, β) = pq(p + 1)(q + 1)/2, or 2pq < (p + 1)(q + 1) ⇒ pq <
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p + q + 1. The only allowed solutions are (p, q) = (1, n), (n, 1), (2, 2),
for an arbitrary n ≥ 1. The desired conclusion then follows.

8. This is the definition of the Lie algebra Al.

9. Let α =
∑p−1

i=1 iαi, β =
∑q−1

j=1 jβj, γ =
∑r−1

k=1 kγk, and δ be the simple
root at the junction. Then (α, α) = p(p − 1)(δ, δ)/2, and similarly
for (β, β) and (γ, γ). Moreover, (α, δ) = −(p − 1)(δ, δ)/2, etc. Now
α/|α|, β/|β|, γ/|γ|, ε form an orthonormal set if ε is a unit vector or-
thogonal to the other three. Since δ is independent of α, β, γ, (δ, ε) 6= 0,
hence |δ|2 is largest than the square of its components along α, β, γ.
This works out to be

1 >

(
(α, δ)

|α||δ|

)2

+

(
(β, δ)

|β||δ|

)2

+

(
(γ, δ)

|γ||δ|

)2

=

(
p− 1

2

)2
2

p(p− 1)
+

(
q − 1

2

)2
2

q(q − 1)
+

(
r − 1

2

)2
2

r(r − 1)

=
p− 1

2p
+
q − 1

2q
+
r − 1

2r
⇒

1 < p−1 + q−1 + r−1.

The only solutions are (p, q, r) = (2, 2, r), whose algebra is called Dl,
and (2,3,3/4/5), whose algebras are called E6/E7/E8 respectively.
.

9.9 Dynkin diagrams

Given the properties of the Cartan matrix in the last section, the only allowed
connected Dynkin diagrams for a semi-simple algebra are summarized below.
Disconnected diagram represents the direct product of algebras associated
with its connected components.

It is known that the four infinite series, Al, Bl, Cl, Dl, correspond to the
Lie algebra of classical groups: Al = sl(l + 1), Bl = so(2l + 1), Cl =
sp(2l), Dl = so(2l). The other five, G2, F4, E6, E7, E8 are called exceptional

Lie algebras
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Figure 9.3: Dynkin diagrams for simple Lie algebras

9.10 Classical Lie algebras

The roots of an algebra must obey the following two rules: (i), if α is a root,
then nα is a root if and only if n = ±1; (ii), if α, β are roots, and (α, β) 6= 0,
then | cos θ| = |(α, β)|/|α||β| should be equal to the ratio |α|/|β|, or |β|/|α|,
and these must have the values 0, 1/

√
2, 1/2,

√
3/
√

2; (iii), the ratio
√

3/
√

2
occurs only in G2, hence irrelevant for classical Lie algebras.

We shall refer to these rules as the root rules in the rest of this sec-
tion. These rules will help us to find out what classical algebras Al, Bl, Cl, Dl

correspond to.
Note that roots must satisfy the root rule, but a vector satisfying the root

rule may not be a root. To be sure, we have to work out the whole algebra.
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To simplify writing, we shall not distinguish a root α from its counterpart
tα in h.

For simplicity in writing, it is useful to introduce the matrices Eij, whose
element is 1 in the (i, j) position, and 0 everywhere else. Then EijEpq =
δjpEiq, (Eij, Epq) = Tr(EijEpq) = δjpδki.

9.10.1 su(l + 1)

We know from §7.2 that the generators are (l+1)×(l+1) hermitian traceless
matrices, and there are (l+1)2−1 = l(l+2) of them. Let hi = Eii−Ei+1,i+1.
Then the l hi’s span the Cartan subalgebra h with rank l. Its commutation
relation with Epq is

[hi, Epq] = (δip − δiq − δi+1,p + δi+1,q)Epq := αpqEpq,

hence Epq (p 6= q ≤ l+1) constitute the l(l+1) root (creation or annihilation)
operators. Note that such operators are traceless, but not hermitian, so they
are analogous to J±. However, since Epq = E†

qp, we can make two hermitian
operators out of the linear combination of Epq and Eqp. Analogous to σ+,
let us define Epq for 1 ≤ p < q ≤ l + 1 to be the creation operators, and
αpq for p < q to be the positive roots. The corresponding operator in h is
tαpq := tpq = hp − hq.

The simple roots are α1 = α12, α2 = α23, · · · , αl = αl,l+1. The dot prod-
ucts of the simple roots are (αi, αj) = 2 if i = j, = −1 if j = i ± 1, = 0
otherwise. Hence the Dynkin diagram of su(l + 1) is Al.

As an illustration, let us look at the roots of A2 = su(3) in Fig. 9.1.
Here α1 = α, α2 = β are simple roots, and the only other positive root is
α13 = α+ β.

9.10.2 so(2l)

We know from §7.1 that the number of generators of so(n) is n(n − 1)/2 =
l(2l−1), and these generators are imaginary anti-symmetric 2l×2l matrices.
These can be taken to be the matrices Fpq = −i(Epq − Eqp) = −Fqp for
1 ≤ p < q ≤ 2l. The l matrices hi = F2i−1,2i which commute with one
another span h. The commutation of hi with Fpq is

[hi, Fpq] = −[E2i−1,2i − E2i,2i−1, Epq − Eqp]

= i (−δ2i,pF2i−1,q − δ2i,qFp,2i−1 + δ2i−1,pF2i,q + δ2i−1,qFp,2i) .
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In particular, with j < k,

[hi, F2j−1,2k−1] = i (δijF2j,2k−1 + δikF2j−1,2k) ,

[hi, F2j−1,2k] = i (δijF2j,2k − δikF2j−1,2k−1) ,

[hi, F2j,2k−1] = i (−δijF2j−1,2k−1 + δikF2j,2k) ,

[hi, F2j,2k] = i (−δijF2j−1,2k − δikF2j,2k−1) .

We can write these in a matrix form

[hi, Fjk] = CFjk, Fjk =


F2j−1,2k−1

F2j−1,2k

F2j,2k−1

F2j,2k

 , C = δijA+ δikB, (9.12)

where A = i

(
1

1
−1

−1

)
, B = i

(
1

−1
1

−1

)
. These two matrices

commute, so they have 4 simultaneous eigenvectors va,

v1 =

0B@
1
i
i
−1

1CA , v2 =

0B@
1
i
−i
1

1CA , v3 =

0B@
1
−i
i
1

1CA , v4 =

0B@
1
−i
−i
−1

1CA ,

with eigenvalues of C to be

λ1 = −δij − δik, λ
2 = δij − δik, λ

3 = −δij + δik, λ
4 = δij + δik. (9.13)

Multiplying both sides of (9.12) by vaT , defining Ga
jk = vaT ·Fjk, and making

using of the antisymmetry of C, we arrive at

[hi, G
a
jk] = −λaGa

jk. (9.14)

Since j < k, the positive roots are αjk(hi) = −λ1 with the creation operator
G1
jk, and α′jk = −λ3 with the creation operator G3

jk. The corresponding
annihilation operators are G4

jk and G2
jk respectively. The simple roots are

α1 = α12, α2 = α23, · · · , αl−1 = αl−1,l,and αl = α′l−1,l. It is easy to verify
that all the positive roots are positive combinations of the simple roots.

The dot products of the simple roots are have norm 2, and for i < j < l,
(αi, αj) = −δj,i+1. Moreover, (αj, αl) 6= 0 only for j = l − 2, in which case it
is −1. Therefore, the Dynkin diagram formed by these simple roots are Dl.
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9.10.3 so(2l + 1)

The number of generators is now the (2l+1)l imaginary antisymmetric (2l+
1) × (2l + 1) matrices Fpq = −i(Epq − Eqp), with 1 ≤ p < q ≤ 2l + 1.
As in the previous case, hi = F2i−1,2i spans the Cartan algebra h so this
algebra is of rank l, leaving behind l2 positive roots. Other than the roots
αjk and α′jk (1 ≤ j < k ≤ l) in so(2l), which are also positive roots here
corresponding to the creation operators G1

jk and G3
jk, there should be l more

positive roots. They are βj = δij, corresponding to the creation operator
Hj = F2j−1,2l+1 + iF2j,2l+1, because

[hi, Hj] = δijHj.

The first (l − 1) simple roots are identical with those in so(2l), namely,
αi = αi,i+1, and the last one is αl = βl. Since (αl, αl) = 1, (αl−1, αl−1) =
2, (αl−1, αl) = −1, the Dynkin diagram for these simple roots is Bl.

9.10.4 sp(2l)

The symplectic group (§7.3) is defined by 2l × 2l matrices M satisfying

MTΩM = Ω, where Ω =

(
1n

−1n

)
. Near the identity, M ' 12l+i~ξ·~t+· · ·,

hence the Lie algebra sp(2l) is defined by the generators satisfying

tTi Ω + Ωti = 0. (9.15)

Unitarity of A implies 1 = M †M ' 1+i~ξ·(~t†−~t)+ · · ·, hence t†i = ti. Unit

determinant implies 1 = det(M) = exp(Tr(ln(A)) ' exp
(
Tr(i~ξ ·~t+ · · ·)

)
,

hence Tr(ti) = 0.

Let us write a generator t as t =

(
A B
C D

)
, where A,B,C,D are l × l

matrices. To satisfy (9.15), we need A = −DT , B = BT , C = CT . The trace-
less condition is automatically satisfied, and the unitarity condition implies
that A,D are hermitian, and B† = B∗ = C.

The number of real parameters needed to specify a complex symmetric
matrix B is l(l + 1). The number of real parameters needed to specify a
hermitian matrix A is l2, hence the dimension of sp(2l) is 2l2 + l. The Cartan
algebra h is spanned by hi = Eii − El+i,l+i, 1 ≤ i ≤ l, hence the number of
positive roots is l2. They are αjk, βjk(j < k), and γj, with the corresponding



9.11. ISOMORPHISM OF LOW-ORDER ALGEBRAS 195

creation operators to be Ajk = Ejk−El+j,l+k, Bjk = El+j,l+k+El+k,l+j, Cjk =
2El+j,l+k:

[hi, Ajk] = αjkAjk, [hi, Bjk] = βjkBjk, [hi, Cj] = γjCj,

αjk(hi) = δij − δik, βjk(hi) = δij + δik, γj = 2δij. (9.16)

The simple roots are αi = αi,i+1 for 1 ≤ i < l, and αl = γl. The norm of the
roots αi is 2 for 1 ≤ i < l, and that of αl is 4. Moreover, (αl−1, αl) = −2,
hence the Dynkin diagram is Cl.

9.11 Isomorphism of low-order algebras

The Dynkin diagrams of certain low-order algebras are indistinguishable,
hence these algebras are identical. For example, B2 = so(5) = C2 =
sp(4), D2 = so(4) = A1 × A1 = su(2)× su(2), D3 = so(6) = A3 = su(4).

9.11.1 Remarks

1. Only single bonds occur in algebras Al, Dl, El. These algebras are said
to be simply laced.

2. It is convenient to re-scale hα, eα, fα in such a way that the root lengths
are |α|2 = 2 for all simply laced algebras, and the standard commuta-
tion relation (9.9) are maintained. It is also convenient to adopt this
convention for Bl and Cl so that the roots linked by single bonds have
the same norm.

9.12 Weyl and Coxeter groups

1. The root system of any semi-simple algebra has a very regular structure,
reminding us of the symmetry of a molecule or a crystal. The symmetry
group of the root system is called a Weyl group. It is generated by
ri, reflection about the hyperplane perpendicular to the simple root
αi. If the (acute) angle between −αi and αj is θij = π/mij, then
mij = 2, 3, 4, 6 respectively, if αi and αj are connected with no, one,
two, and three bonds. Since rirj is a rotation by an angle 2θ in the
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plane of these two vectors, (rirj)
mij = 1, and the presentation of the

Weyl group is

W = {r1, r2, · · · , rl|r2
i = (rirj)

mij = 1}. (9.17)

2. Analytically, the Weyl reflection is ri : (l) = λ − 2(λ, αi)αi/(αi.αi) =
λ−〈λ|αi〉αi. Remember from §9.7(9) (??) that 〈λ|αi〉 is the eigenvalue
of hαi

for the state |λ〉, hence the corresponding eigenvalue of ri(λ) is
〈λ|αi〉 − 〈λ|αi〉〈αi|αi〉 = −〈λ|αi〉, which is what we expect a reflection
should do. This implies, in particular, that the multiplicity of λ is the
same as the multiplicity of ri(λ). The states in a Weyl orbit therefore
all have the same multiplicities.

3. Reflection should preserve scalar products, so (λ, µ) = (ri(λ), ri(µ)).
This can be analytically checked using the reflection formula in §9.12(2).

4. The convex cone-like regions bounded by adjacent roots are known as
Weyl chambers. The elements of W permutes the Weyl chambers.

Figure 9.4: Weyl chambers of A2

5. Let ri be a Weyl reflection. Then ri changes αi to −αi, but permutes
all other positive roots in ∆+ − {αi}.

Proof : If α is a positive root, then α =
∑

i niαi with ni ≥ 0. Since
ri(α) differs from α only in the αi component, it follows that ri(α) must
have some positive nj when α ∈ ∆+ − {αi}. If ri(α) is a root, then it
must be a positive root because a root is either positive or negative,
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with nothing in between. Now, ri(α) is obtained from α by using fi
to crank it down 〈α|αi〉 times, namely, the state with an hi quantum
number opposite to that of α, so it is indeed a root.
.

6. The simple roots and Weyl reflections of classical Lie algebras are sum-
marized below. For the exceptional algebras, see
http://en.wikipedia.org/wiki/Root system

(a) Al:
αi = ei − ei+1, |∆| = l(l + 1).
ri : ei 7→ ei+1, ei+1 7→ ei, ej 7→ ej(j 6= i, i+ 1), W = Sl+1

(b) Bl:
αi = ei − ei+1 (i ≤ l − 1) (long), αl = el (short).
|∆| = 2l2, |∆<| = 2l (short).
ri : ei ↔ ei+1 (i ≤ l − 1), rl : el ↔ −el. |W | = 2ll!.

(c) Cl:
αi = ei − ei+1 (i ≤ l − 1) (short), αl = 2el (long).
|∆| = 2l2, |∆>| = 2l (long).
ri : ei ↔ ei+1 (i ≤ l − 1), rl : el ↔ −el. |W | = 2ll!.

(d) Dl:
αi = ei − ei+1 (i ≤ l − 1), αl = el−1 + el. |∆| = 2l(l − 1).
ri : ei ↔ ei+1 (i ≤ l − 1), rl : el ↔ −el. |W | = 2l−1l!.

7. More generally, the group defined by a presentation of the kind in ‘1.’
above, for any positive integers mij, is called a Coxeter group. Other
than the Weyl groups, we already know that the dihedral group Dn is
a Coxeter group, with r1 = r1, r2 = r2,m12 = n. See §3.3(1).

It can be shown that the only other finite Coxeter groups are H3 and
H4, given by

H3 = {r1, r2, r3|r2
i = (r1r2)

5 = (r2r3)
3 = (r1r3)

2 = 1},
H4 = {r1, r2, r3, r4|r2

i = (r1r2)
5 = (r2r3)

3 = (r3r4)
3 = (rarb)

2 = 1},
(9.18)

where rarb are products that have not occured before in the relations.
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9.13 Extended Dynkin Diagrams

An extended Dynkin diagrams has one node added to the ordinary Dynkin
diagrams as shown in the following diagram.
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Figure 9.5: Extended Dynkin diagrams

If X is a Dynkin diagram for an algebra, then we use the notation X̃ to
denote the extended Dynkin diagram.

One use of the extended diagram is to use it to find some subalgebras of a
given algebra. The rule is as follows: remove one node from the extended di-
agram. Then the resulting algebra is a subalgebra of the original unextended
Dynkin diagram.

We can get no information on Al because no matter which node of Ãl we
remove, we get back to Al. This is not the case for the other algebras:

1. B2 = C2 = so(5) ⊃ A1 × A1 = su(2)× su(2) = so(4).
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2. Bl ⊃ A1 × A1 ×Bl−2, A3 ×Bl−3, Dk ×Bl−k, Dl−1 × A1.

3. Cl ⊃ A1 × Cl−1, Ck × Cl−k.

4. Dl ⊃ A1 ×Dl=1, Dk ×Dl−k.

5. E6 ⊃ A1 × A5, A2 × A2 × A2.

6. E7 ⊃ A7, A1 ×D6, A2 × A5.

7. E8 ⊃ A8, D8, A1 × A2 × A5, A4 × A4, D5 × A3, E6 × A2, E7 × A1.

8. F4 ⊃ A1 × C3, A2 × A2, A3 × A1.

9. G2 ⊃ A1 × A1.

9.14 Weights

1. The eigenvalue λ(h) of h ∈ h in a representation is called a weight. In
particular, if α is a root, then λ(hα) is an eigenvalue of hα ∈ su(2)α,
and we know that it has to be an integer. Since hα = 2tα/(α, a), we
conclude that

〈λ|α〉 := λ(hα) =
2λ(tα)

(α, α)
=

2(tλ, tα)

(α, α)
=

2(λ, α)

(α, α)
(9.19)

has to be an integer.

2. The l weights λi obeying 〈λi|αj〉 = δij are called the fundamental

weights. Every weight is an integer linear combination of the funda-
mental weights.

3. Integer combinations of αi constitute points of the root lattice. In-
teger combinations of λi constitute points of the weight lattice. The
weights of the adjoint representation are the roots, hence the root lat-
tice is a sublattice of the weight lattice. For simply laced algebras with
|α|2 = 2, the weight lattice is simply the reciprocal lattice of the root
lattice.
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4. The weight λ0 in an irreducible representation is called the highest

weight if none of λ0 +αi are weights. That means eαi
|λ0〉 = 0 for all i.

Every state in the IR can be obtained from |λ0〉 by applying repeatedly
the su(2)α annihilation operators of the positive roots α. The highest
weight of the adjoint representation is called the highest root.

5. If λ0 is the highest weight of an IR, then the value of the Casimir op-
erator (§9.7(8,9)) for this IR can be computed from the highest weight
state to be

C2|λ0〉 = [
∑
α∈∆+

tα +
l∑

i=1

h2
i ]|λ0〉 = [

∑
α∈∆+

(λ0, α) +
l∑

i=1

(λ0)
2
i ]|λ0〉

= (λ0 + 2ρ, λ0)|λ0〉, (9.20)

where ρ =
∑

α∈∆+ α/2 is called the Weyl vector. See §9.16(3) for
more discussion of it.

6. If λ0 =
∑l

m=1miλi is the highest weight of an IR, then this IR is often
labeled by (m1,m2, · · · ,ml), where mi ≥ 0 are integers.

7. If λ be a highest weight and αi a simple root. Then m = 〈λ|αi〉 is an
integer, and ri(λ) = λ−mαi.

Proof : The hi quantum number of λ is m = 〈λ|αi〉, an integer. The
hi quantum number of ri(λ) −m, corresponding to a weight vector
λ−mαi.
.

8. Dimensions of IR are listed in Appendix I of Ref. [7], and in Ref. [17].

9. If the Young tableau labeling an IR of SU(n) is λ = (λ1, λ2, · · · , λn−1),
then the corresponding IR of su(n) is given by mi = λi − λi+1, if
we take λn = 0. Complex conjugate representations are given by the
conjugate tableau. In Lie algebra, they are given by the representations
(ml,ml−1, · · · ,m2,m1). Adjoint representations are (1, 0, · · · , 0, 1); they
are self-conjugate.
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9.15 su(3) representations and quark model

Please reverse λ1 and λ2 in this section, as well as α1 and α2.
Let us illustrate all these with su(3) = A2 shown in Fig. 9.5. Orange

dots are roots, and purple dots are weights. Simple roots are α1 and α2,
fundamental weights are λ1 and λ2; they are shown embedded with a white
×.

If we take h1 ∈ h along the x-axis and h2 ∈ h along the y-axis, then
the quantum number α(h1) is called the (third component of) isospin in
physics, I3, and α(h2) is called hypercharge, Y . Hypercharge is normalized
so that α2(Y ) = +1, and I3 is normalized so that α1(I3) = 1.

Since 2(λ2, α2)/|α2|2 = 1 and the angle between λ2 and α2 is 30◦, it is
easy to show from trigonometry that Y (λ2) = 2/3 and Y (λ1) = 1/3.

As discussed in Example 2 of §8.10.4, if we ignore the mass difference
between the u, d, s quarks, then the quarks possess both a color symmetry
SU(3)c and a flavor symmetry SU(3)F , both are SU(3) groups. The quark
model of hadrons was briefly discussed there, but the quantum numbers of
the quarks and hadrons can best be seen in the su(3) weight diagram shown
in Figs. 9.5 and 9.6.

An IR is labeled by (m1,m2). The following representations are shown in
Fig. 9.5:

1. the quark triplet 3 = (1, 0) is the inverted purple triangle with highest
weight λ1;

2. the antiquark triplet 3∗ = (0, 1) is the purple triangle with highest
weight λ2;

3. the octet baryon (Fig. 9.6, left) or the meson octet 8 = (1, 1) is shown
with the orange dots. The highest root α1 +α2 is indicated by a white
+;

4. the decuplet baryon (Fig. 9.6, right) 10 = (3, 0) made up of three
quarks is shown with dark dots, and its highest weight is indicated by
a while +.

5. In Fig. 9.6, the name of the baryons are filled in. S is called strangeness

and Q is the electric charge. They are related to I3 and Y by S = Y −B
where B = 1 is the baryonic number, and Q = I3 + Y/2;
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6. at the time when the decuplet classification was proposed by Gell-Mann
(circa 1963), Ω− was missing. Its subsequent discovery got him a Nobel
prize, and furthr confirmation to the correctness of the quark model.

Figure 9.6: A2 root and weight diagrams

9.16 Weyl character formula

1. Let G be a Lie group with a Lie algebra g and its Cartan subalgebra
h. The weights λ(hi) of g are the simultaneous quantum numbers of
hi (1 ≤ i ≤ l). If λ0 is the highest weight of an mth dimensional IR,
then the representation Hi of of hi are m×m diagonal matrices, with
entries λ(hi).

2. The maximal tori T ofG in this representation is the abelian subgroup
generated by the Hi’s, namely, diagonal matrices of the form M(θ) :=
M(θ1, · · · , θl) = exp(i

∑l
j=1 θjHj). Its character is

χλ0(θ) =
∑
λ

exp(i~θ·~λ), (9.21)

where ~λ = (λ(H1), · · · , λ(Hl)), and the sum is taken over all weights,

with multiplicity taken into account, and ~λ = ~0 included. For groups
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Figure 9.7: Baryon octet and decuplet

like SU(n) and SO(n) whose matrices are diagonalizable, (9.21) gives
the character of every group member whose diagonalized form is M(θ).

3. The problem with (9.21) is that it is hard to know what the weights
λ and their multiplicities are. The explicit Weyl character formula

solves that problem,

χλ(θ) =

∑
w∈W (−)w exp(iw(λ+ ρ)·θ)
eiρ.θ

∏
α∈∆+(1− e−iα.θ)

, (9.22)

where (−)w = ±1 if w is a product of an even/odd number of ri. In this
formula, λ is the highest weight, and ρ =

∑l
i=1 λi is the Weyl vector.

This formula is often written in the abstract form

χλ =

∑
w∈W (−)w exp(w(λ+ ρ))

eρ
∏

α∈∆+(1− eα)
. (9.23)

Note that the Weyl vector has the following properties:

ρ =
∑
α∈∆+

α/2, ri(ρ) = ρ− αi. (9.24)

Proof : ri(ρ) = ρ− 〈ρ|αi〉αi = ρ− αi because 〈λj|αi〉 = δij.
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To show that ρ is half the sum of all positive roots, first note that such
a sum also has the same reflection property under ri. To see this, write
the half sum as τ = β + αi/2, where β is half the sum of all positive
roots except αi. Now ri(αi) = −αi, and from §9.12(5), ri(β) = (β),
hence ri(τ) = τ − αi. Consequently ρ− τ is invariant under all reflec-
tions ri, so it must be zero.
.

Before proceeding to prove this formula, let us first make some obser-
vations to motivate it.

(a) Characters should be invariant under Weyl reflections: χw(λ) = χλ
for every w ∈ W . To see that, consider a simple reflection w = ri.
The hαi

quantum number of λ is 〈λ|αi〉, and the hαi
quantum

number of ri(λ) = λ − 〈λ|αi〉αi is 〈ri(λ)|αi〉 = −〈λ|αi〉. Thus
|ri(λ)〉 can be obtained from |λ〉 by using fαi

to crank it down, so
it is also a weight.

This is an important property because it will be used to obtain
indirectly all the weights and their multiplicities.

(b) To be consistent with this property, one can show that both the
numerator and the denominator are Weyl-invariant up to a sign:

i. using (9.24), the denominator can be written asD =
∏

α∈∆+(eα/2−
e−α/2). Recall from §9.12(4) that ri maps αi to −αi but all
other positive roots into positive roots, it is clear that ri maps
D into −D, hence w(D) = (−)wD for all w ∈ W .

ii. The numerator N clearly has that property as well, because
W forms a group.

(c) Let us now look to su(2) for a guide. With λ(J3) = j, λ =
{j, j − 1, · · · ,−j}, its character is

χλ(θ) =

j∑
m=−j

eimθ =
ei(j+1/2)θ − e−i(j+1/2)θ

eiθ/2 − e−iθ/2
, (9.25)

and its dimension is

dim (Vλ) = χλ(0) = 2j + 1. (9.26)
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The abstract form of (9.25) is

χλ =
eλ+ρ − e−(λ+ρ)

eρ(1− e−α)
, (9.27)

because its only positive root is α = 1, its Weyl vector is ρ = 1/2,
and the dominant weight is λ = j. In this form, (9.27) is precisely
equal to (9.23), so the Weyl character formula is proved for su(2).

(d) The number of weights in an IR is generally not equal to the order
|W | of the Weyl group. For example, in su(n), |W | = |Sn| = n!,
but the number of weights ν in an IR depends on what λ is, so
generally ν 6= |W |. One might therefore wonder how possibly can
(9.23) give rise to the character. The example of su(2) shows us
how. By expanding the denomintor of (9.27) into power series,
one gets

χλ = (1 + e−α + e−2α + · · ·)(eλ − e−(λ+2ρ))

= eλ + eλ−α + eλ−2α + · · ·+ e−λ. (9.28)

This expansion of the denominator that produces an infinite num-
ber of terms, so the total number of terms is no longer controlled
by |W |. Moreover, the unwanted terms e−(λ+mα) for any m > 0
all get cancelled out, so we are finally left with the 2j + 1 terms
needed for the character.

Another way of saying the same thing is that we can factorize the
numerator into

eλ+ρ(1−e−2(λ+ρ)) = eλ+ρ(1−e−α)(1+e−α+e−2α+· · ·+e−2(λ+ρ)+α),

because both 2λ and 2ρ are integer multiples of α. Hence we
are left with the last expression in (9.28) after dividing it by the
denominator of (9.27) because 2ρ = α.

(e) A similar mechanism is at work for the general Weyl character
formula. If ξ is a linear combination of eµ of weights µ, and w(ξ) =
(−)wξ, then ξ is divisible by the denominator D of (9.23). This
is so because for every α ∈ ∆+, rα(µ) = µ − kα for some integer
k = 2〈µ|α〉, hence ξ must contain the combination eµ − eµ−kα.
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This however can be factorized into eµ(1− e−α)(1 + e−a + e−2α +
· · ·+ e−(k−1)α). In particular, since N has the same property of ξ,
the numerator N in (9.23) is divisible by its denominator D, so
χλ is given by a finite series.

9.17 Proof of the Weyl character formula

A Verma moduleM(λ) with a highest weight λ is the set of all states obtain-
able from λ by operating products of fα (α ∈ ∆+) on |λ〉. It is a vector space
much larger than the IR L(λ) with highest weight λ. While the character
χλ of L(λ) is relatively difficult to obtain because we need to know its lower
boundaries and the multiplicity of states, the character of M(λ) is simple
and is equal to

χM(λ) = eλ
∏
α∈∆+

(1 + e−α + e−2α + · · ·) =
eλ∏

α∈∆+(1− e−α)
. (9.29)

The vector space M(λ) can be decomposed into sums of irreducible spaces
L(λ′), with λ′ ≤ λ. Conversely, L(λ) can also be written as sums and differ-
ences of M(λ′) with λ′ ≤ λ. What distinguishes L(λ) from other states in
M(λ) is that every state in L(λ) has the same Casimir number (λ+ρ)2−ρ2.
We may therefore write

L(λ) =
∑

λ′≤λ, (ρ+λ′)2=(ρ+λ)2

cλ′M(λ′), (9.30)

with cλ = 1. Now take the formal character from both sides of (9.30), and
multiply them by

D = eρ
∏
α∈∆+

(1− e−α) =
∏
α∈∆+

(eα/2 − e−α/2).

Using (9.29), the result is

Dχλ =
∑

λ′≤λ, (ρ+λ′)2=(ρ+λ)2

cλ′e
ρ+λ′ . (9.31)

It follows from §9.12(5) that w(D) = (−)wD for every w ∈ W . Since
χw(λ) = χλ, the right hand side of (9.31) must also be skew symmetric under
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all w ∈ W , hence it must of the form∑
λ′≤λ, (ρ+λ′)2=(ρ+λ)2

cλ′
∑
w∈W

(−)wew(ρ+λ′). (9.32)

Finally, note that (w(ρ + λ′))2 = (ρ + λ′)2 if λ′ = λ, but this cannot be
true if λ′ < λ. Hence we conclude that

χλ =

∑
w∈W (−)wew(ρ+λ′)

D
=

∑
w∈W (−)wew(ρ+λ)

eρ
∏

α∈∆+(1− e−α)
, (9.33)

thus proving (9.23).

9.18 An example in su(3)

For su(3), ρ = α1 + α2 := α0, ∆+ = {α1, α2, α0}, hence

D = eρ(1− e−α1)(1− e−α2)(1− e−α0). (9.34)

The Weyl group is W = S3, generated by the Weyl reflections r0, r1, and
r2, respectively about the bluish dotted lines perpendicular to α0, α1 and α2,
as seen in the following figure. r0 = r1r2r1. Other than the identity, the two
other even elements of W = S3 are r1r2 and r2r1, rotation for +120◦ and
−120◦, respectively.

The roots are given by the orange dots.

quark representation in su(3)

I shall use Fig. 9.8 to illustrate the derivation and the use of the Weyl char-
acter formula.

1. First, use (9.23) to compute the character χλ1 of the quark representa-
tion.

The quark weights are the blue dots forming the inverted triangle with
highest weight λ1. The three weights are λ1 = r2(λ1), λ

′
1 = r1(λ1) =

r1r2(λ1) = λ1 − α1, and λ′′1 = r0(λ1) = r0r2(λ1) = λ1 − ρ.
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Figure 9.8: An illustration of the Weyl character formula

The numerator of the character formula is

N = eλ1+ρ + eλ1−2α1 + eλ1−ρ−α2 − eλ1−α1+α2 − eλ1+α1 − eλ1−2ρ

= eλ1+ρ(1 + e−3α1−α2 + e−2α1−3α2 − e−2α1 − e−α2 − e−3α1−3α2)

= eλ1+ρ(1− e−α2)(1 + e−3α1−2α2 + e−3α1−α2 − e−2α1−2α2

−e−2α1−α2 − e−2α1)

= eλ1+ρ(1− e−α2)(1− e−α1)(1− e−α1−α2)(1 + e−α1 + e−α1−α2),

(9.35)

hence

χλ1 =
N

D
= eλ1(1 + e−α1 + e−α1−α2) = eλ1 + eλ

′
1 + eλ

′′
1 . (9.36)

2. Let us use Fig. 9.8 to illustrate the derivation of the character formula.
The six Weyl reflection points w(λ1 + ρ) are given by the six green
dots, each of which acting as the highest weight of a Verma module
with character

ew(λ1+ρ)
∏
α∈∆+

(1 + e−α + e−2α + · · ·).

The thick orange lines in the lower right corner indicates the direction
to crank from the highest weight states to get other states in the Verma
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module. The blue ± sign on top of each green dot comes from the factor
(−)w, and indicates whether the states in this Verma module should be
added or subtracted to get the states in the IR L(λ1)+ |ρ〉. These final
states are indicated by the three big blue open circles. When shifted
back by −ρ, we get the three solid blue quark states λ1, λ

′
1, λ

′′
1, whose

character is given by (9.23).

9.19 Weyl denominator formula

is an identity obtained by setting λ = 0 in (9.23):

eρ
∏
α∈∆+

(1− e−α) =
∑
w∈W

(−)wew(ρ). (9.37)

1. ri(ρ) = ρ − αi, hence w(ρ) is of the form ρ −
∑

i n
w
i αi. (9.37) is then

equivalent to ∏
α∈∆+

(1− e−α) =
∑
w∈W

(−)we−
P

i n
w
i αi . (9.38)

2. (9.38) is non-trivial to prove because the number of terms on the left
is 2|∆

+|, which is not equal to the number of terms |W | on the right.

3. Let us demonstrate (9.37) explicitly for A1,A2. For this, it is more
convenient to write the left hand side as∏

α∈∆+

(eα/2 − e−α/2). (9.39)

Recall from §9.10.1 and §9.12(4a) that the positive roots of Al are
eij = ei− ej, for 1 ≤ i < j ≤ l+ 1, the simple roots are αi = ei,i+1, and
the Weyl group W = Sl+1 is the group permuting the ei’s.

We shall use L and R respectively to denote the left hand side and the
right hand side of (9.37).

4. A1: ∆+ = {α1}, ρ = α1/2.

L = eα1/2 − e−α1/2, R = eρ − e(12)ρ = eα1/2 − e−α1/2.⇒ L = R
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5. A2: ∆+ = {e12, e23, e13}, ρ = e13.

L = e(e12+e23+e13)/2 − e(−e12+e23+e13)/2 − e(e12−e23+e13)/2

− e(e12+e23−e13)/2 − e(−e12−e23−e13)/2 + e(e12−e23−e13)/2

+ e(−e12+e23−e13)/2 + e(−e12−e23+e13)/2

Since the two underlined terms cancel, we are left with only 6 terms.

R = ee13 − ee23 − ee12 − ee31 + ee21 + ee32 (9.40)

Since R(1, 2, 3, 4, 5, 6) = L(1, 2, 3, 5, 7, 6) and L(4) + L(8) = 0, hence
L = R.

9.20 Weyl dimensional formula

is obtained from (9.22) by letting ~θ = θ~ρ and setting θ = 0. After some
manipulation, we get

dim (Vλ) =
∏
α>0

(λ+ ρ, α)

(ρ, α)
. (9.41)

By α > 0, we mean α ∈ ∆+.

Proof : Starting from the denominator identity, replace α by (α, θξ), then
set θ = 0. In this way we get the identity

∏
α>0(α, ξ) =

∑
w(−)w(wρ, ξ). Now

set θ = 0 in (9.22) and use this formula, we get

χλ(0) = dim (Vλ) =

∑
w(−)w(λ+ ρ, wρ)∏

α>0(α, ρ)
=
∏
α>0

(λ+ ρ, α)

(ρ, α)
.

.
Let us apply this formula to su(2) and su(3).

1. A1: there is only one positive root, α = α1, and ρ = α/2. The high-
est weight is λ = jα, where j is an integer or a half integer. Hence
dim (Vj) = 2(j + 1/2) = 2j + 1.
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2. A2: the positive roots are α1, α2, β = α1+α2, with (α1, α1) = (α2, α2) =
2, and (α1, α2) = −1. Moreover, ρ = β. If λ1, λ2 are the fundamental
weights, then (λi, αj) = δij, and the highest weight is given by λ =
mλ1 + nλ2. Thus

dim (Vm,n) =
(λ+ ρ, α1)(λ+ ρ, α2)(λ+ ρ, β)

(ρ, α1)(ρ, α2)(ρ, β)

=
(m+ 1)(n+ 1)(m+ n+ 2)

2
. (9.42)

In particular, the dimensions of (1,0) and (0,1) are 3, (2,0) and (0,1)
are 6, (3,0) and (0,3) are 10, (1,1) is 8, and (2,2) is 27.

9.21 Kac-Moody algebra

A free field φ(x, t) is 1+1 dimension satisfies the wave equation

(∂2
t − ∂2

x)φ(x, t) = 0, (9.43)

whose general solution is of the form f(x, t) = L(x + t) + R(x − t). The
wave packets L and R propagates respectively to the left and to the right,
without changing their shape. This is a special feature of 1 + 1 dimensions;
in higher dimensions, the wave packet always spreads and changes shape as
time goes on. Imagine now the wave packet carries a charge. In this case not
only the total charge carried by each packet is conserved, but the amount of
charge in any fixed interval of the packet is also conserved. In other words,
charge density itself is also conserved: ∂tj

0(x, t) = 0 for any x. This is still
true even if the charge is non-abelian. To emphasize this fact, we write it as
∂t~j

0(x, t) = 0, where the arrow indicates isotopic spin, SU(3) charge, etc.

If the Lie algebra for the nonabelian charge is g, then with this greatly
enlarged conservation, g is also greatly enlarged. The resluting algebra g̃ is
known as a Kac-Moody algebra. This is the kind of symmetry that a string
theory possesses.

Simple Lie algebras can be classified by l × l Cartan matrices Aij, with
diagonal entries equal to 2, and non-diagonal entries equal to 0,−1,−2,−3.
Moreover, if Aij = 0, then Aji = 0, and, the rank of A is always l. Kac-Moody
algebra can also be classified by n × n generalized Cartan matrices of
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rank l, whose diagonal entries are 2, and non-diagonal entries arbitrary non-
positive numbers, such that Aij = 0 implies Aji = 0. The number of simple
roots in this case is n.

I will not go into the details of Kac-Mooday algebra, except to refer you
to the book by Victor Kac: ‘Infinite dimensional Lie algebras’ (Cambridge
University Press).


