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Axial Anomaly
Ward ldentity

In Ag* theory with U (1) symmetry the Noether current is given by
Jo=1i[(3:9") 9~ (0,9) ¢']
and it is conserved
AUy =0

Using canonical commutation relation,

[804;* (? t) (x t)] — 5 (; 3 7)

o (30) o (¥.0)] = (3 - %) 0 (%) 0
o (5.6). 0" (56)] = =& (% = &) (1) @)

Consider 3-point function,
Gu(p.q) = / d*xd*y e~iax—ipy <0 )T (Jy () (y) 9" (0)> ) 0>
Contract this with momentum g¥,
"Gy (pq) = —i./ dixdy e-iax—ipy af‘< ‘ (J ¢ (y)¢' (0) )‘O>
J (x ¢

- —igx—ipy {(0]T ( )¢ ()]
= l./d4Xd4ye q P +<|()|T( [ ¢+(0) 4)

we get




One important consequence: no renormalization constant is needed for the composite operator
Jyu. Recall that the renormalized 3-point function and propagator are

GR(p.a) =272 Gu(pq), AR (p)=2Z,'A(p)

where Z, and Z, are the renormalization constants for operators ¢ and J, respectively. Then
Ward identity implies
Z;'q" G (p.q) = —iAF (p+q) +iaF (p)

Since RHS is cutoff indep, LHS must be also cutoff indep and we do not need any counter term
for J, i.e. Z; = 1. Such a non-renormalization result holds for all kind of conserved quantities.
Ward identity at 1-loop

It is instructive to see how Ward identity works in terms of diagrams. Amputated Green's
function T, (p, g) and 1Pl self energy X (p) are

T (p.a) = [i6% (p+-9)] Gy (p. @) [ (p)]

[A(p)] "t =p>—p2—Z(p)

Ward identity takes the form,

a'Tu(p.q) = (p+a)’ —p* —Z(p+q)+Z(p)
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In zeroth order we have tree graph contribution and

ig"T7) (p, q) = ig" (~1) (2p +q), = [(p+ @)* = u?] = (p* — ?)

This verifies Ward identity to lowest order. This is just an algebric relation between vertex and
self energy.
Using dimensional regularization for 1-loop diagram, we get

") (b) — #/ﬂ;, %
iq"T,” (p,q) iq (27r)4l)\k2—l/‘2( i) (2k +q), ktql -2

- af

For n < 2, first integral is convergent and shift the integration variable k — k — g, to get

!
(k+q)° —p2  K2—p?

d"k 1
ig" T (p.q) = f?\/ ( {

1
27r)4 k2 — 2 _kz,yz} =0

This will still be true when we analytically continue to n > 2. The contribution of self energy
graphs are

ig" Ty (p,q) = ig" (=) (2p + q), Z(p+q)—Z(0)]

1
(p+q) —p2
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where

. A [ odTk
*/Z(p+q)=*7/(2n)4m

is independent of external momentum. Thus
S(p)=Z(p+q)-2(0)=0

and

ig" T\ (p,q) =0
Similarly

. d

Iq”F,S ' (pq) =0
Thus up to 1-loop order the sum of all these contribution gives,

ig" T (p, @) = (p+q)° — p°
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Ward identity for axial vector current
Consider 3-point function in QED

Tyon (k1. k2, q) = i/d4x1d4xQ (0] T (Vi (x1) Vi (x2) Ax (0)) ] 0) efratikexa

T (k1 k2, q) = i/' d*x1dx (0| T (Vi (x1) Vi (x2) P (0))| 0) ek ik
where
Vi () =9 () 7,9 (x), Ar () = (x) 7,759 (%), P(x) = (x) 79 (x), q=ki+k
From equations of motion, divergence of V,, A, are
MV, (x) =0, 9MA, (x) = 2imP (x)

From
IHT (Ju(x)O(y)) =T (9" (x) O(y)) +6(x0 —y0) [Jo (x), O (y)]

and
d(x0 —y0)[Vo(x), Ao (y)] =0

where O (y) arbitrary local operator. We get the Ward identities

k{l T]JV}L = ké/ TyV/\ =0 (4)
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q* Tywa =2mTyy (%)

But in lowest order contribution to T;w/\ and T]“/, Ward identities are not satisfied,

TWA:"/%(71){7—'{dfim”%;j—g;fm%;/fl;lfmy"} +< ﬁllkf/ )} (6)

and

Tw:i/%(*1){”{ﬂlm%,/f;fm”,;/f//i—m%‘} +< ﬁl;ki )}
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Use the relation
drs =75 (F—¢—m)+ (F—m)vs +2m7s

we get
1 2
q}\ Tyv}\ =2mTu + A;Sv) + A;v) (7)

with

a _ [ d*p { 1 i i i }
Ay = T Y - "
" /(271)4 Ng=m ™ —m T g —m
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(2)_/ d*p { 1 i i i }
A, = T - ,
W et e m B T i m P g m

If AL’V) =0, we get the Ward identity. Superficially this appears to be the case. Two integrals in
A](}U) cancel each other if we can shift the integration variable p to p + k> in the second term.
But integrals are linearly divergent and a translation of integration variable will produce extra

terms with A](,ll,) #0, A](ﬁ,) #0.
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Linearly divergent integral

Consider the integral,

Aa) = /j:o dx [f (x +a) — f (x)]

If each integral is convergent, a shift x — x — a in the first integral will give A (a) = 0. However
if integrals are divergent we need to be more careful. Expand by Taylor expansion to get

A(a)

o 32
[ {af/ () + 2 () +
32
= a[f(oo)_f(_"o)]—O—?[f’(oo)—f’(—oo)]-i-”'

If [, dxf (x) is convergent then f (£o0),f’ (£00),--- all vanish and A (a) = 0. But for a
linearly dlvergent integral f (c0) # 0, and ' (£o0) =0, --- and

A(a) = a[f (00) = f (—0)]

This is a "surface" term in one dimension. Note that eventhough [ dxf (x) is divergent but
A (a) is finite because divergences cancel out between the first and second term in A (a).
The generalization to n—dimension is straightforward,

A(a) /::d"r[f(r—s—a)—f(r)]

/j:o d"r {a’\a%f(r) +a’\%a”if(r) fir)+---
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After applying Gauss's theorem, all but the first term vanish upon integration to r = R — o0

where S, (R) is the surface area of the hypersphere of radius R. For the case of 4-dim
Minkowski space, we have

Aa) = aA/d“xaAf(x) —=2in?a" Jim RZRyf (R) (8)

Ling-Fong Li ()



Ambiquities in T,

The 1-loop Ty, given in Eq(6) is linearly divergent and not uniquely defined. Suppose we make
a shift of mtegration variable so that the propagator g — m is replacd by g+ d— m with

a=lxk1+(067‘3)k2

Then
) o ) {Tr{#a ’Y/\’std,,,%;/ I{l }
Aur (a) = TW"/(zn,))“ ! [# Ws; e el ekl %( f;kff >}

= Al (@) +a%) ()

Apply the result in Eq(8) , we have

~ d'p a ;
AN (5 = ,/ a)‘ { }
VVA() (27‘() - m')//\')/5# . m'yvd I}{lim
—i2m?at
= Wplgﬂoop paTr (’Yu’h’Ys’Y/s%’y(,'y”) p*pPp? / p®

—i2m%at pAp’
———— lim —=—4ig,,)
(27_[)4 2 nvap
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A Lo Ap
P f by gT we have

(5) = Lo

(1)
A 872

HvA

Since AI(WA (a) is related to Agw)/\( a) by ki <> ko and p < v, we have

By (3) = A2 (2) + A2 (3) = ghreguun (h — ko'

Thus the amplitude T\ has an ambiguity in arbitrary parameter

T;w/\ B) = Tw//\ (0) — T;w)L - %spyv)x (k1 — k2)p (9)

Try to determine this arbitrariness in B by imposing vector and axial vector Ward identities Eqs
(4,5). In Eq (7), two surface terms can be evaluated by using the relation in Eq (8)

d*p 9 i i
AL = —/7kA—Tr {7 Ty E— }
nv | (27_[)4 2 apA #7 m7A757v#7 lfl — m'}’p
k 1
= (27_[) 217{2 I|m —Tr <’)‘a’757v7ﬁ7p> Plxkf = *Wsﬂwpkfkg
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and

1 2
AN =A%)

The axial Ward identity is then

]_ _
" Tya (B) =2m Ty (0) — ?fewpkfkg

For the vector Ward identity,

M(O):/(dl( 1) {Tr[# ’Y)L’Ys[/ d rn%’l;/ /’{ K1}

KT, -
Y 2m)° +Tr {ﬁ’h%m%m%}}
Using
Ki=@-m —[f—K—ml=[g—H,—m]—[f—¢—m]
we get
4
k{’T,m(O):/(gn‘)l (1) Tr {VA”-”;;—;_m%,;—/{ll—m”{l_”%’,/—;/t_mwd—lm
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Again RHS is a surface term and can be evaluated by using Eq (8) ,

kY ' d 1 1
K Ty = L /d4 —Ti
e ©) P U Er e Byl
= il 2im? lim Tr (’y Vs VoYY )ké"pﬁ = ieMV K kg
(2m)* p—co wl5 Tvrp Ty 82 IVPTL

Then with Eq(9) we get
1+
kf Tyv/\ B) = %g}uﬂupkfkg

For arbitrary B we can not satisfy both vector and axial Ward identities. If we choose to satisfy
the vector Ward identity, i. e. = —1, then there will be an extra term in axial Ward identity

1
A
G Tyur (B) =2m Ty, (0) — ﬁswgpki’kg
and the axial current is not conserved any more
i 1
1Ay (x) = 2imP (x) + Wcimﬁﬁwﬁxﬁ

Remarks

@ The anomaly is indep of fermion masses and should be present in the massless theory.
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@ Adler and Bardeen have shown that the coefficient in the anormaly term is not affected by
the higher order radiative corrections

© It seems that we have choice to put the anomalous term either in vector or axial vector
Ward identy. But it is not hard to see that the Ward identiy for 3-point function with all
axial current (T (AAA)) also has anomaly and there is no choice but to put the anomaly
in the axial current.
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ABJ anomaly for non-Abelian symmetries
The 3-point function for non-Abelian currents of interest is of the form,

T2 (ki k. q) = i/d4x1d4X2 <o ( T (v; (x1) Vi (x2) AS (0)) ‘ 0> efkuaatikex
where
Vi) =9 ()T (x), AL =9 ()77 T (x)

where T? is the internal symmetry matrix. It is not hard to see that the anomaly in the axial
Ward identity is

1
A ab t; B ryab
q'T av/f = (commutator terms) —2 5 swaﬁkfb D3¢

2
where
Dabe = %tr ({re.70} 1)
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= vy
Important application of axial anomaly is 71— 7+ decay. This amplitude is defined as

(7 (ke v (kave2) |70 (q)) = i (2m)*6* (g — k1 — ko) ] (K1) €5 (k2) Ty (K1, k2, q)

with
T (k1 ke, @) = € [ diyd*zeaier (o|T (i (2) Sz (1)) | 70 (0))

which has structure,
r]u/ (klukaq) = ig;unxﬁkixkfr (q2) (10)

Consider
Tn (ki ke, q) = [ d'xd®ye®szer (0T (A3 (x) 57 (0) 57 (1) ]0)
which satisfies the Ward identity,

@"Tun (k1. k2, q) = fi/d4xd4ye‘

+T3 (x0 = o) [A43 (), JE™ ()] J5™ (0) + T (x0) [ 43 (), 5™ ()] Je™ (1)}o >
It is easy to see that the commutators here all vanish,

0T (et ke, q) = =1 [ d*xdye™ 7 < 0| T{ (943 (x) 5™ (0) J2™ (1)
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Naively we would identify the right side as 7%— g+ amplitude,

22 2 S
r#V (kh kz,q) — M /d4xd4yequ+:k2y < O‘T{ (aAAi (X) _/;'" (0) le/em (y))

frm%
so that
M (ko ko) = TR ke )= e TR Br (2
q"Tya (ki, ko, q) = (= +m2) w (ki, k2, q) = eQ(_q2+m%)'€yvaﬁ 1ky T (q°)

Then as we let ¢ — 0, the result is
ro)=o0

i.e. amplitude for 19— 4+ vanishes as ¢ — 0. However, one must include the anomaly in the
Ward identity,

fem? D
A . y
q"Tyya (ki, k2, q) = mrw (k1 k2, q) — ’Wsyvaﬁk?kf

where D is the coefficient of anomaly. The low energy theorem is

. . e2D B
;@Orw (ki, ko, q) = 'm%mﬁksz

or
e’D
272 f
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Thus in low energy limit amplitude for 7%— 7 comes entirely from anomaly. To compute D ,

we write the currents in terms of quark fields v, d, s,

KM =80) Q000 AL() =7 () 77524 ()

with

The coefficient D takes the value,

1 As) 1
D—§Tr<{Q,Q}7>—6

yielding
r'(0) =0.0123 my!

which is about factor 3 smaller than the experimental value T (m%) = 0.0375 my!. This lends
support to the idea that quarks carry color degree of freedom and gives an additional factor of 3

coming from summing over colors

T (0) =0.037 m;*.
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Axial vector current in 2-dim
The Lagrangian in 2-dim QED is

£= () iDM1, () = 3 FuF™,

Choose the o matrices to be

The axial vector current is

L =9 )79 (%),

The equations of motion

I = —ieqyp,

with Dy = dy + ieAy

with 95 = 99"

At = pied

JS is a composite operator constructed from the fermion fields. The product of local operators
are often singular so define the product by point spliting,

L(x)=lim {9

s e—0

Ling-Fong Li ()

(x + g) Y5 exp | —ie /XXEE dz-A(z)| ¢ (x - g)

2
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The phase factor will make the axial current gauge invariant. Now we can compute the
divergence

€
) _ 5 €
E)"J]i3 x) = Lmo{ayzp (x + - 'y;,'ys exp X7£2 “A(z)| ¢ (x - 5)
2

€
+1:b<x 8)7# 5exp[ / Edz A(Z:|ayl/1 X**
+¥ <x + g) Tus [—iec"0, Ay (x)} 1p - g

Using equations of motion,

I3 (x)

I|m{1p (X + = ) [/eA (x + = ) ieA ( 7) — ieg’0, A, (x)} Y5 (x — g)
lim { (x + 2 ) [—ien"e" (3,4, —0,A,)] v59 (x— 7 )

This expression looks like it is going to vanish as ¢ — 0. However we need take into account the
singularity in the product of fermion field. Fermion propagator in 2-dim is

<°)T(¢(V)¢(Z))(°>:/(d2k e 02 'l/:—a[—ln( 2 } _Cirtly=2),

2m)? T (y—-2z)
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which is singular as y — z. Then we have

(o7 (7 (e 5) o (- 3))|o) = 3 7| )

and

B"J;( x) = ||m{—Tr [782 7”75} (—iee” Fuy)}

Using Tr (7" 9% ys) = 2e*, we get

# 5 € i '€ o
aJF(x):Ehm 27 Pl

or
e ,
Iy (x) = Esm Fuv

Here we have taken the symmetric limit

v
ele _ 1 .
e—0 €2 2

In the free fermion theory, the integral of axial vector current conservation law gives,

/d2xaVA;, (x) = Ng — N; =0
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Combine this with vector current conservation
Nr +N; =0

we get conservation for Ng, N, separately.
In 2-dim QED, the anomalous term is also a total derivative,

e Fy =29y, (" Ay)
we still maintain the global conservation law if the quantity &'V A, falls off sufficiently at infinity.
Let us analyze this problem by studying the fermions in one dim in a backgroun Al field that is

constant in space and has a very slow time dependence. We will assume that the system has a
finite length L, with periodic boundary condition. The Hamiltonian is

H= /d%a,u+ (—ia'D1)y = /d2x{fi1/)++ (9 —ieAY) v, + iyt (91 —ieA) y_}

=(3)
exp {—ie /OL dxAl}

where

Note that Wilson line
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forms a gauge invariant loop due to the periodic boundary condition. For constant Al field we
can diagonalize H . The eigenstates of the covariant derivatives are wavefunctions

efknx, with  k, = ===, n=—co,- 00

Thus the single particle eigenstates of H have energies
Py En = (ko — eAl)

Y Ep=— (kn—eAl)

Each type of fermions has infinite towers of equally spaced levels. The ground state will have all
negative energy levels filled and we interpret holes as antiparticles. If the field Al changes by

27
AAL = ==

el
which brings the Wilson loop to its original value, the spectrum of H returns to its original form.
In this process, each level of ¢, moves down to next position and i move up to the next
position as shown.
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eSS,

Figure 19.2. Effect on the vacuum state of the Hamiltonian H of one-
dimensional QED due to an adiabatic change in the background A' field.
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Thus one right moving fermion disappears from the vacuum and one extra left moving fermion
appears. At the same time

[dx (SevFu) = [ ddeZaoa = S1(-aal) =2
T T T
Thus the integrated form of the anomalous non-conservation law is indeef satisfied,

N — N = /d2x (Semru)

Ling-Fong Li ()



Anomaly in 4-dimension

We now want to derive the axial anomaly in the operator form for the 4-dimensional case. The
steps leading to the final result remain the same and most of the equations remain valid except
for the singularity in the fermion propagator which is of the form,

_ g i ; it y—2),
(Ol (rorwe)]o) = | e ™= g 2| =

This is highly singular as y —z — 0, but it gives zero when traced it with y*75. We need to
consider the higher order term

d*k 1 d*p ke [ (K +1) i
/ /(27_[)46 (k+P}/ ik (k+p) ( ’eA)kT

This contribution leads to

T ((+5) s (=)o) = [ ks [ Loperseem {Mm (—ie

_ [ [P g de T Kt DA (o)
(2m)* K2 (k+p)?

—~
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To evaluate the limit € — 0, we can expand the integrand for large k. Then

(7 (7 (e 3) vt (= 3))[0)

2

d*p i ke [ Ky dk
4e£"”"57/ (27_[)4&" paAp (p) e ks/k—z(2n)4e ke

2] i 1
- e (a“Aﬁ ™) v (167 e >>
_i Y
= 2y <W ?2)
We then get for the divergence of axial current

—jeY
35 (x) = 5 lim (e Fyp (8’—;) (—ie€" Fy)

e—0
Again we will take the symmetric limit to get

e2

Iy (x) = — 672 eI Fog Foy
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Path integral derivation of axial anomaly
For the fermions, the generating functional can be written as a path integral of the form

Z[n.7) = [ 1dy] [dp] exp {f/(uﬁwwn)} (11)

For simplicity, we will take the Lagrangian to have the form L=¢ipy with
Dy = 0y — igAy being the covariant derivative, and Ay the U (1) gauge field. One way to define

the integration measure of the path integral is to expand ¢ and ¥ in terms of a complete set of
orthonormal functions, ¢, (x),

) =Y anp, ()= ¢, (x)3, (12)

where

[ 6000 () d'x = 6o (13)
and take
[ay] M = [TdanTTdm (14)
n m
We now perform an axial transformation.

P — g =Ty, (15)
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To compute the Jacobian for this transformation we expand the transformed field zp’ = e“""ﬂp,

in a complete set of basis functions,

ll]l = Eb”¢n (X)

The coefficients of expansion can be projected out by using the orthogonality relation,

bn

/d4x¢n /d4X4> €15y (x)
/ d4x4)’; 15 Eamq)m ECnmam

where

Com */d4x¢ '75'14) (X)

Similarly, ., B _
¢ =Y bapr(x), by =Y Comam.
n m

Thus the Jacobian of the transformation (an, a,) — (b,,, b,,) is

J = (det C)?

Ling-Fong Li ()
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For infinitesimal «, we have
Com = 8um + it [ x4, (x) 56 (%) (21)
or in matrix form
C~1+iaD  with Doy = / dx¢ (x) 15, (%) (22)
Thus we get for the determinant:

det C = det (1 +iaD) ~ 1+ iaTrD ~ exp (ia TrD) (23)

where

=Y / d*xgE () 15, (x) . (24)

This is just the identity det (eA) = e’ Thus we can write the Jacobian as an exponential:

J = (det C)? ~ 2T *exp{2/0¢2/d4x¢ X) 75, (x)}. (25)

This means that the effect of an axial transformation can be included as an extra term in the
Lagrangian,

0Ly =2u Z‘Pn x) ¥s¢, (x) - (26)
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TrD is quite singular: If we take ¢, (x) to be the plane wave ¢, (x) = u(p,s) e P*, we get
TiD = [ d*xePut (p.5) 750 (p.5) e P = 8 (0)u (p.5) 75 (p.5) (27)

which is not well-define because 6* (0) — oo, while u® (p,s) y5u (p,s) — 0. It has been
suggested by Fugikawa that we can regulate Tr (D) by Gaussian cutoff,

2
Tr (D) = Jim Z/d“ («Pm eXP( AZ) 47") (28)

where A, is the eigenvalue of the operator i[D,
iDx,=AnX,- Dy =9, — igAy (29)
Calculate Tr (D) in the limit M — oo.

iDxXp=AnXn : (30)

For the special case of g =0, we have A, = ¥, and

oo (-3t ) = o0 (1) (31
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and the integral over k is convergent. For the general case we choose ¢, (x) to be the
eigenfunctions of the operator i[) and write TrD as

2
D = 2/ d*x¢y (x) 75 exp <I\IZ/),2> ¢, (x). (32)

Since the trace is invariant under the change of basis (unitary transformation), we can now use
the plane wave state
> (33)

1 1
71D D =77, (5 [0, D'] + 2 {D", D"})

¢, (x) = e, <;H /

to compute the trace. Simple algebra gives the result

d*k
(2m)*

bp

1 1 .y
= Z{’)’;lr')/v}{DyrDv}J"E’Yy,YV (_,gFI“) (34)
1 N 8
= §g;lv{DVxDl}*I [’yw'\/v] FIW:sza‘T;wFPW
where .
, i
FH = gl AY — ¥ AH, O = 3 h"' %] (35)

Also,
D? = (9, — igAy) (9" — igA¥) = 9? — 2igA¥d,, — igd, A + g2 AP A,
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D2e—ikx — [_ (ke + 8AL)° — ,'ga},A”] o ik (36)

D? ;
exp <_W> e = exp

Put all these together we get,
2
xTr< Y5 exp (DZ>> /d4
-
2

(kﬂ +gA ) w_= ’g
x Tr (’ysexp{ =t o F M 50 Al

Thus we have )
_(kutegAu)”  igA
M2 M2

efikx (37)

TrD

M2

Change the integration variable, k, —gA, = k]"M,

d* k' / 1
TD = /d4xM4/ (2n)4e*kzrr (75 exp [_%""VFWW _ e =0, A D

It is clear that last term in exponential, not containing any y-matrices, will not contribute
as Trys = 0. We can expand the exponential ,

1
exp |:—%(7}WF a4 }

ig 1
2 o0 |~ n P o %

. 2
_ g v 1 1(ig vpap L
= 1- ?’Yy%’:" wta <5> VYo YarpFF /SW +..
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Only the first and the M~* terms will survive as the M~2 term will vanish after taking the trace,
while the higher order terms vanish in the limit M — oco. Using the relation,

Tr (%nvmm) = 4ieuvup (39)

we get
TD = _7/ / 4lsmﬁFWF“5e*k (40)

From .
d*k o i

- 41
/ (zn)“e 1672 (41)

we get
D = 32 £ / A xEpap FI P, (42)

Thus the effective term in the Lagrangian is of the form,

g2
oL =20—— 32 5 swzxﬁF“"F“ﬁ. (43)

Since the divergence of the axial vector current is just the coefficient of a (x) in £ under the
axial transformation, we see that the Jacobian here will contribute to 8;,A7‘ as

2
Al = ﬁsywﬁpwmﬁ. (44)
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Or, if we define
= 1
F;n/ = Egyva[i":als: (45)

this can be written as 9
g o
a"Ay = 72,:1“/,:]“/’ (46)

which is just the axial anomaly equation.
Axial anomaly and 7 — vy

The decay 7 — 7 is very similar to 7% — ¥ . Suppose that the process also proceeds, just like
the case for 1%, through the axial anomaly. Parametrize the matrix elements for the decays, as
in CL-eqns (6.61) and (6.63),

A[P(q) — 7 (ki e1) v (kav€2)] = €} (k1) €b (ko) ieyapki ks Tp (47) (47)

where P stands for either of the pseudoscalar mesons 7 or 7.
If we assume 7 is a pure octet, 77 = ¢, we can show that

Ir(0) _
T, 0) V3 (48)

from the theory of anomaly. From CL-eqns (6.69) and (6.72), we see that

2 2

e
I'z (0) = mTr (QZ/\g) ) and F,7 (0) = mTr (Qz)\S)
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Using

1 2 1 1 1
Q== -1 Az = -1 Ag = — 1
3 -1 0 V3 -2
we get
La(0) _ Tr(1@%) _ o
= =3 49
50) ~ Tr(A@?) “)
We can also show that the ratio of decay rates is given by
3 2 2
T (7‘[0 N 'y'y) _ (ﬂ) T'r (m,r) (50)
T(n— ) my ) |1, (m%)

Assume that
T (m%) _ T (0)

Ty (m%>

compute the decay ratio, and compare it with the experimental results.Since the amplitude is
proportional to f;1, and the decay rate o f,72. This means that we need m,3,-, in the decay rates
to get the right dimension,

(51)

L(P— ) o« myTp (mp) (52)
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Then we have for the ratio

If we assume

we get

2
I(n®—y) ma 3| Tr (m?)
T(p—yy) (mn> T, (m%) (53)
Tn(m?)  Tz(0) _
ty(m) " 10 0
T =) (ma\’ o,
T —y) (w) X3 =008 (39)

Experimentally, this ratio is about 0.0165. The discrepancy probably is due to the assumption
(51). That m2 ~ 0.02 GeV? is quite close to 0, the approximation I'z (m2%) &~ I'z (0) should be

fairly good, while m% ~ 0.3 GeV? and ry (m%) ~ Ty (0) is probably not a reliable
approximation. Another possibility is that the # meson does not transform as a pure member of

the SU (3) octet.
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The Ward Identity and Unitarity
In non-Abelian gauge theory, we need to choose a gauge to carry out the quantization. In the
renormalizable R; gauge, the gauge boson propagator is of the form,

i i ky ky 1
A% (k) — —i6® [gw —a-pk }

k2 | k2 +ie

and has the asymptotic behavior as k — oo,

iAVV(k)Az—i{%%?]

Then the theory is renormalizable by power counting. But in this gauge the ghost fields are
needed and the propator is of the form,

1
k? +ie

iN? (k) = —is®

These ghost fields will give rise to unphysical states which might cause problem in the physical
interpretation of the theory. It turns out that we can use Ward identity to eliminate the ghost
field contribution so that the unitarity is preserved.

Consider a simple SU(2) gauge theory with fermion (f) in a doublet representation. The
requirement that S—matrix must be unitary,

sst=sts=1  or Y SacSie = 6ap
c
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implies that the scattering amplitude T, which is related to S, by
Sab =026+ (271)" 8" (pa— pb) Tab

which satisfy the relation
1
Im T =3 Y Toc Ti (21)* 6* (pa — pb)
c

In other words, the requirement that the S-matrix must be unitary implies that the imaginary
part of the scattering amplitude T, os directly related to a sum over products of matrix
elements connecting the initial and final states to all physical states with the same
energy-momentum as the initial and final states. For our caluculation we shall consider the
fermion and anti-fermion scattering amplitude T (ff — ?f) with the intermediate states being

the two gauge boson states. This is represented schematically in following graph,
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The imaginary part of the scattering amplitude on the left-hand side of Eq() can be calculated
by replacing the propagators in the intermediate states by their imaginary parts and multiplying

them by the on-shell scattering amplitudes T (?f — AA) and T* (AA — ?f) .
For the vector boson propagator we take the 't Hooft-Feynam gauge withe gauge parameter

&=1,

1
b _ sab
It has the imaginary part
6%t gd (k)0 (w),  with w= ‘k' (56)

Similarly, the imaginary part of the ghost field propagator is
m6%b8 (k) 0 (w) (57)

The step function in Eqs (56,57) have the effect of constraining the intermediate gauge particle
states and ghost states to the same physical region. The unitarity condition for the 4-th order
amplitude then reads

[ dex {2 TabTobigh g" sabsab*} =5 [ e, {2 TEETE P (k) P (K)| (58)
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where T}ff and S2 are the ff — AzAfZ and ff — ¢ cb amplitudes where Aj and ¢? are gauge
and ghost fields respectively. The p, integration is over 2 (massless)-particle phase space. The
PH" are the polarization sum of the gauge particles

P () = Y & (ko) e] (ko)
=12

PV (k)= Y & (ko) (ko o)

o=1,2

where ¢! (ki,0) and €} (ko, o) are polarization 4-vector of the gauge bosons.

We note that in this case LHS of Eq (58) receives a contribution coming from ghost fields while
RHS does not because ghosts are not physical states. This is the feature which makes the
demonstration of unitarity relation non-trivial. As we shall see, what ultimately allows the
unitarity relation to hold is that the polarization sum PH¥ (k1) is not just g and the effect of
the ghost fields is jut to make up the difference.

We shall carry out the lowest non-trivail order calculation as in Eq (58). The imaginary part of

the amplitude ff — ff
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[

(a) (b)

>

}<
(c) (d)
>I\'\.-4 -Y‘v\<
2
t
(e) (n

F1G.9.5. Fourth-order cut-diagrams for fT — [T where the intermediate-state particles are ga
particles and FP ghosts.

has been written as squares of the ff — AA amplitude
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hy

and of ff — cfc amplitudes

P

P
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1
The factor of 5 on the LHS of Eq (58) on the LHS in Eq(58) arises because there are 9
diagrams when one square the ff — AA amplitude in the Figure, eight of them are just the
twice those of Fig (a) — (d) and the 9-th one corresponds to (e) with closed gauge boson loop

having a symmetry factor of 5 The FP ghost field ¢ behaves like a fermion with ¢ # c*; hence

there is a minus sign and no symmetry factor of the S5* term.

The lowest-order diagrams for T;‘flf’ and S?" are shown below

b 1 T T 1 b
T = g2y (p, L'Y ——— —yu(p1) — g%V (p2) =Yy =t (P1
iz (P2) g =y —m 2 Tt (P) 8V () gy e ()
g2 (ks — ko), g + (k1 + 260, 800 + 2k + ko), | ———— 7 (p2) S u (p
! (k1 + k2) 2
1 TP
Sab — _ig2£abc7V (p2)71{ U(Pl
(ki + k2)? 2" )

Ling-Fong Li () 47 / 53



Gauge-particle polarization

The gauge particle being massless has only 2 physical polarization states, ¢ (k,0), 0 =1,2.
Thus the 3 4-vectors, ky, " (k,1),e" (k,2) do not completely span the 4-dim space. We can
furnish another vector 17, such that

n-e(k,o)=0, c=1,2
where ¢* (k, o) satisfy
e(k,1)-e(k,2)=0, & k-e(k,o0)=0
Since k> =0 and 7, can not be portional to k;, we must have k - = 0. By the usual procedure

of establishing completeness relations, these orthogonality condition and normalization
&2 (k,0) = —1, yields for the polarization sum,

P;n/ = —8w + Q;tv
with 1
va = {(k . ’7) (’94’7 ,+ kV’] ) - ’72ka1/:| T N2
' g (k1)
Clearly, the extra terms @y, substracts out the non-transverse polarization states. The task of
checking the unitarity relation of Eq (58) involves verifying that the FP ghost term percisely
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compensates for the extra projection terms in the polarization sum. To simply the calculation,
we will adopt the convenient choics 7% = 0. Then we get

Q" (kmy) = [ (Kt + k't | (k%h)

Q" (kavp,) = [ (Kmy +48'n3) | (,(217,72)
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Ward identities from lowest-order diagram

We first compute ky lef,’. The first two terms

b (K1 —Hp) +m

b +a _ m a
Tj %%”(Pl) — ig2v (p2) %%/{1

.o T
—ig%v (p2) 5 (o1 — ki)
—k)? —
b La 2 abc— ‘
2

= —ig’v(p2) ou(p1) = €7 (p2) S 7, (1)

—

-
R

The last term yields

_ €
—g2e? (k1 — k2), kuv + 2ka - kigry + (2k1 + ko), kin] ————— v (p2) =7 u (p1)
(k1 + k2) 2

2 abc— T° A 2 abc k1v - T° 2 abc
= g€V (p) sru(pr) —g e ——V(p2) (H1 +K,) Sulp) —g°¢
)5 G ) )

k2v 7
(ki + k2)2

Thus we have
KT = —iSky,

Similarly,
Ky T30 = —iS*kyy,

These are example of non-Abelian theories.
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It is then easy to check that the unitary condition in Eq (58) is indeed satisfied as the RHS reads,

1 ab Tabs _ ! ’ /
Q/dpz {2 T T [+ (K k) ko) ] [+ (R k) (R
17 . . ~ ~

= 3 / dp{TT gg + [(kiTi1y) (1, T ke) + (11, Tha) (k2 T™11,)] (katpy) ' (ka11,) !

T, T+ (1, T) - (kT (k) ™ = (Tha) - (T*1,) + (Try) - (T k)] (ko) ™1
- %/dpz{TT*gg+255* —255* — 255"} = %/ dp,{TT"gg — 2557}

To summarize, the unitary condition (58) relateds the LHS where we have used the covariant
guage Feynman rule with their spurious states of longitudinal polarization and FP ghosts, to the
RHS where only the physical transvere polarization states appear because of the (axial) gauge
conditions. The spurious states of covariant gauge on LHS do cancel among themselves and in
the axial gauge on the RHS there are only physical states. In short, the FP ghosts fields are
needed in order to maintain the unitarity conditon.

The issue of unitarity is particularly relevent for the spontaneous broken gauge theories. In such
theory one encounters further unphysical particles , the would be Goldstone-bosons. One needs
to check their decoupling by using Ward identies. Thus we must be sure that Ward identities
are satisfied to all orders in perturbation theory. Since there are reflection of theory's
symmetries, it is important that we adopt regularization procedure that respect these
symmetries. One of the virtures of the dimensional regularization is that it clearly preserve the
generalized Ward identities.
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Anomaly cancellation in Standard Model

Since the ABJ anomaly spoils the renormalizability of the gauge theory, the fermionic gauge
coupling must not introduce anomalous Ward identity. Thus for the fermion representation R
with representation matrix T2 (R), the trace Tr({T?(R), T (R)}T? (R)) should be zero to
ensure that the Ward identities are anomaly free.

In the Standard model the fermions are either doublets or singlets under SU (2). The matrix T2
will be either the Pauli matrix 7 or the U (1) hypercharge Y. Since the group SU(2) is anomly
free

Tr ({Ti,rj}rk) =260 Tr (Tk) =0

we will consider cases where at least on of the T's is the hypercharges Y. Because every
member of a given SU(2) multiplet has the same hypercharge, for the case ot two T's being a
Y we have,

Tr (r" YY) ~ Tr (r") =0
and for the case of one T being a Y we have
Tr ({r",rf}y) =200 Tr (V)

and

Tr(Y)=YYi=)Y Y+Y v

i lepton quark

Explict calculation gives
Y Y=-1x2-2=-4

lepton
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1 4 2
) Y_3(§x2+§—§)_4

quark

For the case when all T's are the hypercharge, we have
Tr(YYY) =8Tr (@ —3Q?T3 +3QT; — T3) ~ Tr (Q*Ts — QT3)

where Tr (T3) = 0. Explicit calculation gives

2 oy L 1_ 1

/epzton (Q T3 QTS) N 2 + 4 o 4
21, o2y (2 1 1 1) _1
qgk(o [E QT3)_(3 6 2+4>_4

Thus the anomaly cancels among the fermions.
A simplier condition for anomaly condition is to note that

TrY ~ TrQ

and
Tr(Q?T3 — QTZ) ~ Tr (T3QY) ~ Tr (TZY) ~ TrQ

Thus the ABJ anomaly is proportional to
TrQ=) Q=0
i

Lepton and quark charges cancel when 3 colors are taken into account.
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