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Axial Anomaly
Ward Identity

In λφ4 theory with U (1) symmetry the Noether current is given by

Jµ = i
h�

∂µφ†
�

φ�
�
∂µφ

�
φ†
i

and it is conserved
∂µJµ = 0

Using canonical commutation relation,h
∂0φ†

�!
x , t

�
, φ(
!
x
0
, t)
i
= �iδ3

�!
x �!x

0�
we get h

J0
�!
x , t

�
, φ
�!
x
0
, t
�i
= δ3

�!
x �!x

0�
φ
�!
x
0
, t
�

(1)h
J0
�!
x , t

�
, φ†

�!
x
0
, t
�i
= �δ3

�!
x �!x

0�
φ†
�!
x
0
, t
�

(2)

Consider 3-point function,

Gµ (p, q) =
Z
d 4xd 4y e�iq�x�ip�y

D
0
���T �Jµ (x ) φ (y ) φ† (0)

���� 0E
Contract this with momentum qµ,

qµGµ (p, q) = �i
Z
d 4xd 4y e�iq�x�ip�y ∂

µ
x

D
0
���T �Jµ (x ) φ (y ) φ† (0)

���� 0E
= �i

Z
d 4xd 4y e�iq�x�ip�y

f


0
��T �δ (x0 � y0) [J0 (x ) , φ (y )] φ† (0)

��� 0�
+


0
��T �δ (x0) �J0 (x ) , φ† (0)

�
φ (y )

��� 0�g
where current conservation ∂µJµ = 0 has been used. Using commutation relation given in Eqs
(1,2,) we get

qµGµ (p, q) = �i∆ (p + q) + i∆ (p) (3)

This relation is an example of Ward identity.
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One important consequence: no renormalization constant is needed for the composite operator
Jµ. Recall that the renormalized 3-point function and propagator are

G Rµ (p, q) = Z
�1
φ Z�1J Gµ (p, q) , ∆R (p) = Z�1φ ∆ (p)

where Zφ and ZJ are the renormalization constants for operators φ and Jµ respectively. Then
Ward identity implies

Z�1J qµG Rµ (p, q) = �i∆R (p + q) + i∆R (p)

Since RHS is cuto¤ indep, LHS must be also cuto¤ indep and we do not need any counter term
for Jµ i.e. Zj = 1. Such a non-renormalization result holds for all kind of conserved quantities.
Ward identity at 1-loop
It is instructive to see how Ward identity works in terms of diagrams. Amputated Green�s
function Γµ (p, q) and 1PI self energy eΣ (p) are

Γµ (p, q) =
h
i∆R (p + q)

i�1
Gµ (p, q) [i∆ (p)]

�1

[∆ (p)]�1 = p2 � µ2 � eΣ (p)
Ward identity takes the form,

qµΓµ (p, q) = (p + q)
2 � p2 � eΣ (p + q) + eΣ (p)
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In zeroth order we have tree graph contribution and

iqµΓ(a)µ (p, q) = iqµ (�i ) (2p + q)µ = [(p + q)
2 � µ2 ]� (p2 � µ2)

This veri�es Ward identity to lowest order. This is just an algebric relation between vertex and
self energy.
Using dimensional regularization for 1-loop diagram, we get

iqµΓ(b)µ (p, q) = iqµ
Z d nk

(2π)4
iλ

i
k 2 � µ2

(�i ) (2k + q)µ
i

(k + q)2 � µ2

= iλ
Z d nk

(2π)4

"
1

(k + q)2 � µ2
� 1
k 2 � µ2

#

For n < 2, �rst integral is convergent and shift the integration variable k ! k � q, to get

iqµΓ(b)µ (p, q) = iλ
Z d nk

(2π)4

�
1

k 2 � µ2
� 1
k 2 � µ2

�
= 0

This will still be true when we analytically continue to n > 2. The contribution of self energy
graphs are

iqµΓ(c )µ (p, q) = iqµ (�i ) (2p + q)µ
i

(p + q)2 � µ2
[Σ (p + q)� Σ (0)]
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where

�iΣ (p + q) = � iλ
2

Z d nk

(2π)4
i

k 2 � µ2

is independent of external momentum. Thus

eΣ (p) = Σ (p + q)� Σ (0) = 0

and

iqµΓ(c )µ (p, q) = 0

Similarly

iqµΓ(d )µ (p, q) = 0

Thus up to 1-loop order the sum of all these contribution gives,

iqµΓ(a)µ (p, q) = (p + q)2 � p2
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Ward identity for axial vector current
Consider 3-point function in QED

Tµνλ (k1, k2, q) = i
Z
d 4x1d 4x2



0
��T �Vµ (x1)Vν (x2)Aλ (0)

��� 0� e ik1x1+ik2x2
Tµν (k1, k2, q) = i

Z
d 4x1d 4x2



0
��T �Vµ (x1)Vν (x2)P (0)

��� 0� e ik1x1+ik2x2
where

Vµ (x ) =
_
ψ (x ) γµψ (x ) , Aλ (x ) =

_
ψ (x ) γµγ5ψ (x ) , P (x ) =

_
ψ (x ) γ5ψ (x ) , q = k1+ k2

From equations of motion, divergence of Vµ,Aλ are

∂µVµ (x ) = 0, ∂λAλ (x ) = 2imP (x )

From
∂µT

�
Jµ (x )O (y )

�
= T

�
∂µJµ (x )O (y )

�
+ δ (x0 � y0) [J0 (x ) ,O (y )]

and
δ (x0 � y0) [V0 (x ) ,A0 (y )] = 0

where O (y ) arbitrary local operator. We get the Ward identities

kµ
1 Tµνλ = k

ν
2Tµνλ = 0 (4)
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qλTµνλ = 2mTµν (5)

But in lowest order contribution to Tµνλ and Tµν, Ward identities are not satis�ed,

Tµνλ = i
Z d 4p

(2π)4
(�1)

�
Tr
�

i
/p �m γλγ5

i
/p � /q �m γν

i
/p � /k 1 �m

γµ

�
+

�
k1 $ k2
µ ! ν

��
(6)

and

Tµν = i
Z d 4p

(2π)4
(�1)

�
Tr
�

i
/p �m γ5

i
/p � /q �m γν

i
/p � /k 1 �m

γµ

�
+

�
k1 $ k2
µ ! ν

��
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Use the relation
/qγ5 = γ5 ( /p � /q �m) + ( /p �m) γ5 + 2mγ5

we get

qλTµνλ = 2mTµν + ∆(1)µν + ∆(2)µν (7)

with

∆(1)µν =
Z d 4p

(2π)4
Tr
�

1
/p �m γ5γν

i
/p � /k 1 �m

γµ �
i

/p � /k 2 �m
γ5γν

i
/p � /q �m γµ

�
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∆(2)µν =
Z d 4p

(2π)4
Tr
�

1
/p �m γ5γµ

i
/p � /k 2 �m

γν �
i

/p � /k 1 �m
γ5γµ

i
/p � /q �m γν

�

If ∆(i )µν = 0, we get the Ward identity. Super�cially this appears to be the case. Two integrals in

∆(1)µν cancel each other if we can shift the integration variable p to p + k2 in the second term.
But integrals are linearly divergent and a translation of integration variable will produce extra

terms with ∆(1)µν 6= 0, ∆(2)µν 6= 0.
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Linearly divergent integral
Consider the integral,

∆ (a) =
Z ∞

�∞
dx [f (x + a)� f (x )]

If each integral is convergent, a shift x ! x � a in the �rst integral will give ∆ (a) = 0. However
if integrals are divergent we need to be more careful. Expand by Taylor expansion to get

∆ (a) =
Z ∞

�∞
dx
�
af 0 (x ) +

a2

2
f " (x ) + � � �

�
= a [f (∞)� f (�∞)] +

a2

2

�
f 0 (∞)� f 0 (�∞)

�
+ � � �

If
R ∞
�∞ dxf (x ) is convergent then f (�∞) , f 0 (�∞) , � � � all vanish and ∆ (a) = 0. But for a

linearly divergent integral f (�∞) 6= 0, and f 0 (�∞) = 0, � � � and

∆ (a) = a [f (∞)� f (�∞)]

This is a "surface" term in one dimension. Note that eventhough
R ∞
�∞ dxf (x ) is divergent but

∆ (a) is �nite because divergences cancel out between the �rst and second term in ∆ (a) .
The generalization to n�dimension is straightforward,

∆ (a) =
Z ∞

�∞
d nr [f (r + a)� f (r )]

=
Z ∞

�∞
d nr

�
aλ ∂

∂r λ
f (r ) + aλ ∂

∂r λ
aσ ∂

∂r σ
f (r ) f (r ) + � � �

�
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After applying Gauss�s theorem, all but the �rst term vanish upon integration to r = R ! ∞

∆ (a) = aλ Rλ

R
f (R ) Sn (R )

where Sn (R ) is the surface area of the hypersphere of radius R . For the case of 4-dim
Minkowski space, we have

∆ (a) = aλ
Z
d 4x∂λf (x ) = 2iπ

2aλ lim
R!∞

R 2Rλf (R ) (8)
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Ambiquities in Tµνλ

The 1-loop Tµνλ given in Eq(6) is linearly divergent and not uniquely de�ned. Suppose we make
a shift of integration variable so that the propagator /p �m is replacd by /p + /a �m with

a = αk1 + (α� β) k2

Then

∆µνλ (a) = Tµνλ = i
Z d 4p

(2π)4
(�1)

fTr
�

i
/p+ /a�m γλγ5

i
/p� /q�m γν

i
/p� /k 1�m

γµ

�
�
�

i
/p�m γλγ5

i
/p� /q�m γν

i
/p� /k 1�m

γµ

�
+

�
k1 $ k2
µ ! ν

�
g

= ∆(1)µνλ (a) + ∆(2)µνλ (a)

Apply the result in Eq(8) , we have

∆(1)µνλ (a) = �
Z d 4p

(2π)4
aλ ∂

∂pλ
Tr
�

i
/p �m γλγ5

i
/p � /q �m γν

i
/p � /k 1 �m

γµ

�
=

�i2π2aλ

(2π)4
lim
p!∞

p2pλTr
�

γαγλγ5γβγνγδγµ

�
pαpβpδ/p6

=
�i2π2aλ

(2π)4
lim

pλpρ

p2
4i εµνλρ
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After the replacement
pλpρ

p2
by

g λρ

4
, we have

∆(1)µνλ (a) =
aλερµνλ

8π2

Since ∆(2)µνλ (a) is related to ∆(1)µνλ (a) by k1 $ k2 and µ$ ν, we have

∆µνλ (a) = ∆(2)µνλ (a) + ∆(2)µνλ (a) =
β

8π2
ερµνλ (k1 � k2)ρ

Thus the amplitude Tµνλ has an ambiguity in arbitrary parameter β

Tµνλ (β) = Tµνλ (0)� Tµνλ �
β

8π2
ερµνλ (k1 � k2)ρ (9)

Try to determine this arbitrariness in β by imposing vector and axial vector Ward identities Eqs
(4,5). In Eq (7), two surface terms can be evaluated by using the relation in Eq (8)

∆(1)µν = �
Z d 4p

(2π)4
kλ
2

∂

∂pλ
Tr
�

i
/p �m γλγ5γν

i
/p � /k 1 �m

γµ

�
= � kλ

2

(2π)4
2iπ2 lim

p!∞

pλ

p2
Tr
�

γαγ5γνγβγµ

�
pαk β

1 = �
1
8π2

εµνσρkσ
1 k

ρ
2
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and
∆(1)µν = ∆(2)µν

The axial Ward identity is then

qλTµνλ (β) = 2mTµν (0)�
1� β

4π2
εµνσρkσ

1 k
ρ
2

For the vector Ward identity,

kµ
1 Tµνλ (0) =

Z d 4p

(2π)4
(�1)

fTr
�

1
/p�m γλγ5

1
/p� /q�m γν

1
/p� /k 1�m

/k 1

�
+

+Tr
�

1
/p�m γλγ5

1
/p� /q�m /k 1

1
/p� /k 2�m

γν

�
g

Using
/k 1 = ( /p �m)� [ /p � /k 1 �m] = [ /p � /k2 �m]� [ /p � /q �m]

we get

kµ
1 Tµνλ (0) =

Z d 4p

(2π)4
(�1)Tr

�
γλγ5

1
/p � /q �m γν

1
/p � /k 1 �m

/k 1 � γλγ5
1

/p � /k 2 �m
γν

1
/p �m

�
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Again RHS is a surface term and can be evaluated by using Eq (8) ,

kµ
1 Tµνλ (0) =

kσ
1

(2π)4

Z
d 4p

∂

∂pσ
Tr
�

γλγ5
1

/p � /q �m γν
1

/p � /k 1 �m
/k 1

�
=

kσ
1

(2π)4
2iπ2 lim

p!∞
Tr
�

γαγ5γνγβγµ

�
k α
2 p

β =
�1
8π2

ελσνρk
ρ
1 k

σ
2

Then with Eq(9) we get

kµ
1 Tµνλ (β) =

(1+ β)

8π2
ελσνρk

ρ
1 k

σ
2

For arbitrary β we can not satisfy both vector and axial Ward identities. If we choose to satisfy
the vector Ward identity, i. e. β = �1, then there will be an extra term in axial Ward identity

qλTµνλ (β) = 2mTµν (0)�
1
2π2

εµνσρkσ
1 k

ρ
2

and the axial current is not conserved any more

∂λAλ (x ) = 2imP (x ) +
1
4π2

εµναβFµνFαβ

Remarks

1 The anomaly is indep of fermion masses and should be present in the massless theory.
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2 Adler and Bardeen have shown that the coe¢ cient in the anormaly term is not a¤ected by
the higher order radiative corrections

3 It seems that we have choice to put the anomalous term either in vector or axial vector
Ward identy. But it is not hard to see that the Ward identiy for 3-point function with all
axial current hT (AAA)i also has anomaly and there is no choice but to put the anomaly
in the axial current.
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ABJ anomaly for non-Abelian symmetries
The 3-point function for non-Abelian currents of interest is of the form,

T abcµνλ (k1, k2, q) = i
Z
d 4x1d 4x2

D
0
���T �V aµ (x1)V bν (x2)Acλ (0)���� 0E e ik1x1+ik2x2

where
V aµ (x ) =

_
ψ (x ) γµT

aψ (x ) , Abλ (x ) =
_
ψ (x ) γµγ5T

bψ (x )

where T a is the internal symmetry matrix. It is not hard to see that the anomaly in the axial
Ward identity is

qλT abcµνλ = (commutator terms) -
1
2π2

εµναβk
α
1 k

β
2D

abc

where

D abc =
1
2
tr
�n
T a ,T b

o
T c
�
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π0! γγ

Important application of axial anomaly is π0! γγ decay. This amplitude is de�ned as



γ (k1, ε1) γ (k2, ε2) jπ0 (q)

�
= i (2π)4 δ4 (q � k1 � k2) ε

µ
1 (k1) εν

2 (k2) Γµν (k1, k2, q)

with
Γµν (k1, k2, q) = e2

Z
d 4yd 4ze ik1z+ik2y

D
0
���T �J emµ (z ) J emν (y )

����π0 (q)
E

which has structure,
Γµν (k1, k2, q) = i εµναβk

α
1 k

β
2 Γ
�
q2
�

(10)

Consider

Γµνλ (k1, k2, q) =
Z
d 4xd 4ye ik1z+ik2y

D
0
���T �A3λ (x ) J emµ (0) J emν (y )

���� 0E
which satis�es the Ward identity,

qλΓµνλ (k1, k2, q) = �i
Z
d 4xd 4ye iqx+ik2y < 0jT f

�
∂λA3λ (x ) J

em
µ (0) J emν (y )

�
+T δ (x0 � y0)

�
A30 (x ) , J

em
ν (y )

�
J emµ (0) + T δ (x0)

h
A30 (x ) , J

em
µ (0)

i
J emν (y )gj0 >

It is easy to see that the commutators here all vanish,

qλΓµνλ (k1, k2, q) = �i
Z
d 4xd 4ye iqx+ik2y < 0jT f

�
∂λA3λ (x ) J

em
µ (0) J emν (y )

�
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Naively we would identify the right side as π0! γγ amplitude,

Γµν (k1, k2, q) =
�ie2

�
�q2 +m2π

�
fπm2π

Z
d 4xd 4ye iqx+ik2y < 0jT f

�
∂λA3λ (x ) J

em
µ (0) J emν (y )

�
so that

qλΓµνλ (k1, k2, q) =
fπm2π

e2 (�q2 +m2π)
Γµν (k1, k2, q) =

fπm2π
e2 (�q2 +m2π)

i εµναβk
α
1 k

β
2 Γ
�
q2
�

Then as we let q ! 0, the result is
Γ (0) = 0

i.e. amplitude for π0! γγ vanishes as q ! 0. However, one must include the anomaly in the
Ward identity,

qλΓµνλ (k1, k2, q) =
fπm2π

e2 (�q2 +m2π)
Γµν (k1, k2, q)� i

D
2π2

εµναβk
α
1 k

β
2

where D is the coe¢ cient of anomaly. The low energy theorem is

lim
q!0

Γµν (k1, k2, q) = i
e2D
2π2fπ

εµναβk
α
1 k

β
2

or

Γ (0) =
e2D
2π2fπ
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Thus in low energy limit amplitude for π0! γγ comes entirely from anomaly. To compute D ,
we write the currents in terms of quark �elds u, d , s ,

J emµ (x ) =
_
q (x ) γµQq (x ) , A3µ (x ) =

_
q (x ) γµγ5

λ3
2
q (x )

with

Q =
1
3

0@ 2
�1

�1

1A , λ3 =

0@ 1
�1

0

1A
The coe¢ cient D takes the value,

D =
1
2
Tr
�
fQ ,Qg λ3

2

�
=
1
6

yielding
Γ (0) = 0.0123 m�1π

which is about factor 3 smaller than the experimental value Γ
�
m2π
�
= 0.0375 m�1π . This lends

support to the idea that quarks carry color degree of freedom and gives an additional factor of 3
coming from summing over colors

Γ (0) = 0.037 m�1π .

Ling-Fong Li () 21 / 53



Axial vector current in 2-dim
The Lagrangian in 2-dim QED is

L =
_
ψ (x ) iDµγµψ (x )� 1

4
FµνF µν, with Dµ = ∂µ + ieAµ

Choose the γ matrices to be

γ0 =

�
0 �i
i 0

�
, γ1 =

�
0 i
i 0

�
The axial vector current is

J5µ =
_
ψ (x ) γµγ5ψ (x ) , with γ5 = γ0γ1

The equations of motion
/∂ψ = �ie /Aψ, ∂µ

_
ψγµ =

_
ψie /A

J5µ is a composite operator constructed from the fermion �elds. The product of local operators
are often singular so de�ne the product by point spliting,

J5µ (x ) = lim
ε!0

8<:_
ψ
�
x +

ε

2

�
γµγ5 exp

24�ie Z x+
ε

2
x�

ε

2

dz � A (z )

35ψ
�
x � ε

2

�9=;
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The phase factor will make the axial current gauge invariant. Now we can compute the
divergence

∂µJ5µ (x ) = lim
ε!0
f∂µ

_
ψ
�
x +

ε

2

�
γµγ5 exp

24�ie Z x+
ε

2
x�

ε

2

dz � A (z )

35ψ
�
x � ε

2

�

+
_
ψ
�
x +

ε

2

�
γµγ5 exp

24�ie Z x+
ε

2
x�

ε

2

dz � A (z )

35 ∂µψ
�
x � ε

2

�
+
_
ψ
�
x +

ε

2

�
γµγ5

�
�ieεν∂µAν (x )

�
ψ
�
x � ε

2

�
g

Using equations of motion,

∂µJ5µ (x ) = lim
ε!0
f
_
ψ
�
x +

ε

2

� h
ie /A

�
x +

ε

2

�
� ie /A

�
x � ε

2

�
� ieεν∂µAν (x )

i
γ5ψ

�
x � ε

2

�
= lim

ε!0
f
_
ψ
�
x +

ε

2

� �
�ieγµεν

�
∂µAν � ∂νAµ

��
γ5ψ

�
x � ε

2

�
This expression looks like it is going to vanish as ε! 0. However we need take into account the
singularity in the product of fermion �eld. Fermion propagator in 2-dim is

D
0
���T �ψ (y )

_
ψ (z )

���� 0E = Z d 2k

(2π)2
e�ik (y�z )

i /k
k 2
= � /∂

�
i
4π

ln (y � z )2
�
=
�i
2π

γα (y � z )α
(y � z )2
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which is singular as y ! z . Then we have

D
0
���T �_ψ �x + ε

2

�
Γψ
�
x � ε

2

����� 0E = �i
2π
Tr
�

γαεα

ε2
Γ
�

and

∂µJ5µ (x ) = lim
ε!0
f �i
2π
Tr
�

γαεα

ε2
γµγ5

� �
�ieενFµν

�
g

Using Tr (γµγαγ5) = 2εαµ, we get

∂µJ5µ (x ) =
e
2π

lim
ε!0

�
2

εµεν

ε2

�
εµαFνα

or
∂µJ5µ (x ) =

e
2π

εµνFµν

Here we have taken the symmetric limit

lim
ε!0

εµεν

ε2
=
1
2
g µν

In the free fermion theory, the integral of axial vector current conservation law gives,

Z
d 2x∂µAµ (x ) = NR �NL = 0
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Combine this with vector current conservation

NR +NL = 0

we get conservation for NR ,NL separately.
In 2-dim QED, the anomalous term is also a total derivative,

εµνFµν = 2∂µ

�
εµνAµ

�
we still maintain the global conservation law if the quantity εµνAµ falls o¤ su¢ ciently at in�nity.
Let us analyze this problem by studying the fermions in one dim in a backgroun A1 �eld that is
constant in space and has a very slow time dependence. We will assume that the system has a
�nite length L, with periodic boundary condition. The Hamiltonian is

H =
Z
d 2xψ† ��iα1D1�ψ =

Z
d 2xf�iψ†

+

�
∂1 � ieA1

�
ψ+ + iψ

†
�
�
∂1 � ieA1

�
ψ�g

where

ψ =

�
ψ+
ψ�

�
Note that Wilson line

exp
�
�ie

Z L

0
dxA1

�
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forms a gauge invariant loop due to the periodic boundary condition. For constant A1 �eld we
can diagonalize H . The eigenstates of the covariant derivatives are wavefunctions

e iknx , with kn =
2πn
L
, n = �∞, � � �∞

Thus the single particle eigenstates of H have energies

ψ+ : En =
�
kn � eA1

�
ψ� : En = �

�
kn � eA1

�
Each type of fermions has in�nite towers of equally spaced levels. The ground state will have all
negative energy levels �lled and we interpret holes as antiparticles. If the �eld A1 changes by

∆A1 =
2π

eL

which brings the Wilson loop to its original value, the spectrum of H returns to its original form.
In this process, each level of ψ+ moves down to next position and ψ� move up to the next
position as shown.
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Thus one right moving fermion disappears from the vacuum and one extra left moving fermion
appears. At the same time

Z
d 2x

� e
π

εµνFµν

�
=
Z
dxdt

e
π

∂0A1 =
e
π
L
�
�∆A1

�
= 2

Thus the integrated form of the anomalous non-conservation law is indeef satis�ed,

NR �NL =
Z
d 2x

� e
π

εµνFµν

�
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Anomaly in 4-dimension
We now want to derive the axial anomaly in the operator form for the 4-dimensional case. The
steps leading to the �nal result remain the same and most of the equations remain valid except
for the singularity in the fermion propagator which is of the form,

D
0
���T �ψ (y )

_
ψ (z )

���� 0E = Z d 4k

(2π)4
e�ik (y�z )

i /k
k 2
= � /∂

"
i
2π2

1

(y � z )2

#
=
�i
π2

γα (y � z )α
(y � z )4

This is highly singular as y � z ! 0, but it gives zero when traced it with γµγ5. We need to
consider the higher order term

Z d 4k

(2π)4

Z d 4p

(2π)4
e�i (k+p)y e ikz

i ( /k + /p)

(k + p)2
(�ie /A) i /k

k2

This contribution leads to

D
0
���T �_ψ �x + ε

2

�
γµγ5ψ

�
x � ε

2

����� 0E =
Z d 4k

(2π)4

Z d 4p

(2π)4
e�ik εe ipxTr

"
γµγ5

i ( /k + /p)

(k + p)2
(�ie /A (p)) i /k

k 2

#

=
Z d 4k

(2π)4

Z d 4p

(2π)4
e�ik εe ipx

4eεµαβγ (k + p)α Aβ (p) kγ

k 2 (k + p)2
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To evaluate the limit ε! 0, we can expand the integrand for large k . Then

D
0
���T �_ψ �x + ε

2

�
γµγ5ψ

�
x � ε

2

����� 0E � 4eεµαβγ
Z d 4p

(2π)4
e ipxpαAβ (p) e

�ik ε
Z kγ

k 4
d 4k

(2π)4
e�ik ε

= 4eεµαβγ

�
∂αAβ (x )

∂

∂εγ

�
i

16π2
ln
1
ε2

��
= 2eεµαβγFαβ

� �i
8π2

εγ

ε2

�
We then get for the divergence of axial current

∂µJ5µ (x ) =
e
4π2

lim
ε!0
fεαβµγFαβ

��i εγ

ε2

� �
�ieενFµν

�
Again we will take the symmetric limit to get

∂µJ5µ (x ) = �
e2

16π2
εαβµγFαβFµν
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Path integral derivation of axial anomaly
For the fermions, the generating functional can be written as a path integral of the form

Z
�
η,
_
η
�
=
Z
[dψ]

h
d
_
ψ
i
exp

�
i
Z �
L+

_
ηψ+

_
ψη
��

(11)

For simplicity, we will take the Lagrangian to have the form L=
_
ψi /Dψ with

Dµ = ∂µ � igAµ being the covariant derivative, and Aµ the U (1) gauge �eld. One way to de�ne

the integration measure of the path integral is to expand ψ and
_
ψ in terms of a complete set of

orthonormal functions, φn (x ) ,

ψ (x ) = ∑
n
anφn ,

_
ψ (x ) = ∑

n
φ�n (x ) an (12)

where Z
φ�n (x ) φm (x ) d

4x = δnm (13)

and take h
dψ
i �
d
�
ψ

�
= ∏

n
dan ∏

m
dam (14)

We now perform an axial transformation.

ψ! ψ0 = e iαγ5ψ. (15)
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To compute the Jacobian for this transformation we expand the transformed �eld ψ0 = e iαγ5ψ,
in a complete set of basis functions,

ψ0 = ∑
n
bnφn (x ) . (16)

The coe¢ cients of expansion can be projected out by using the orthogonality relation,

bn =
Z
d 4xφ�n (x )ψ0 (x ) =

Z
d 4xφ�n (x ) e

iγ5αψ (x )

=
Z
d 4xφ�n (x ) e

iγ5α ∑
m
amφm (x ) = ∑

m
Cnmam (17)

where
Cnm =

Z
d 4xφ�n (x ) e

iγ5αφm (x ) . (18)

Similarly,
ψ
0
= ∑

n
bnφ�n (x ) , bn = ∑

m
Cnmam . (19)

Thus the Jacobian of the transformation
�
an ,

_
an
�
!
�
bn ,

_
bn
�
is

J = (detC )2 (20)
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For in�nitesimal α, we have

Cnm � δnm + iα
Z
d 4xφ�n (x ) γ5φm (x ) (21)

or in matrix form

C � 1+ iαD with Dnm =
Z
d 4xφ�n (x ) γ5φm (x ) . (22)

Thus we get for the determinant:

detC � det (1+ iαD ) � 1+ iαTrD � exp (iαTrD ) (23)

where
TrD = ∑

n

Z
d 4xφ�n (x ) γ5φn (x ) . (24)

This is just the identity det
�
eA
�
= eTrA . Thus we can write the Jacobian as an exponential:

J = (detC )2 � e2iαTrD = expf2iα ∑
n

Z
d 4xφ�n (x ) γ5φn (x )g. (25)

This means that the e¤ect of an axial transformation can be included as an extra term in the
Lagrangian,

δLα = 2α ∑
n

φ�n (x ) γ5φn (x ) . (26)
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TrD is quite singular: If we take φn (x ) to be the plane wave φn (x ) = u (p, s) e
�ipx , we get

TrD =
Z
d 4xe ipxu† (p, s) γ5u (p, s) e

�ipx = δ4 (0) u† (p, s) γ5u (p, s) (27)

which is not well-de�ne because δ4 (0)! ∞, while u† (p, s) γ5u (p, s)! 0. It has been
suggested by Fugikawa that we can regulate Tr (D ) by Gaussian cuto¤,

Tr (D ) = lim
M!∞

∑
n

Z
d 4x

 
φ�nγ5 exp

 
� λ2n
M 2

!
φn

!
(28)

where λn is the eigenvalue of the operator i /D ,

i /Dχn = λnχn . Dµ = ∂µ � igAµ (29)

Calculate Tr (D ) in the limit M ! ∞.

i /Dχn = λnχn , . (30)

For the special case of g = 0, we have λn = /k , and

exp

 
� λ2n
M 2

!
= exp

�
� k

2

M 2

�
(31)
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and the integral over k is convergent. For the general case we choose φn (x ) to be the
eigenfunctions of the operator i /D and write TrD as

TrD = ∑
n

Z
d 4xφ�n (x ) γ5 exp

 
/D 2

M 2

!
φn (x ) . (32)

Since the trace is invariant under the change of basis (unitary transformation), we can now use
the plane wave state

φn (x ) = e
�ikx ,

 
∑
n
!
Z d 4k

(2π)4

!
(33)

to compute the trace. Simple algebra gives the result

/D /D = γµγνD
µD ν = γµγν(

1
2
[Dµ,D ν] +

1
2
fDµ,D νg)

=
1
4
fγµ,γνgfDµ,D νg+ 1

2
γµγν (�igF µν) (34)

=
1
2
gµνfDµ,D νg � ig

4

h
γµ,γν

i
F µν = D 2 � g

2
σµνF µν

where

F µν = ∂µAν � ∂νAµ, σµν =
i
2

h
γµ,γν

i
(35)

Also,
D 2 =

�
∂µ � igAµ

�
(∂µ � igAµ) = ∂2 � 2igAµ∂µ � ig ∂µAµ + g 2AµAµ
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D 2e�ikx =
h
�
�
kµ + gAµ

�2 � ig ∂µAµ
i
e�ikx (36)

Thus we have

exp
�
� D

2

M 2

�
e�ikx = exp

"
�
�
kµ + gAµ

�2
M 2 �

ig ∂µAµ

M 2

#
e�ikx (37)

Put all these together we get,

TrD =
Z d 4k

(2π)4

Z
d 4xTr

 
γ5 exp

 
/D 2

M 2

!!
=
Z
d 4x

Z d 4k

(2π)4

�Tr
 

γ5 exp

"
�
�
kµ + gAµ

�2
M 2 � g

2
σµνF µν 1

M 2 �
ig
M 2 ∂µAµ

#!

Change the integration variable, kµ � gAµ = k 0µM ,

TrD =
Z
d 4xM 4

Z d 4k 0

(2π)4
e�k

02
Tr
�

γ5 exp
�
� g
2

σµνF µν 1
M 2 �

ig
M 2 ∂µAµ

��
It is clear that last term in exponential, not containing any γ-matrices, will not contribute
as Trγ5 = 0. We can expand the exponential ,

exp
�
� g
2

σµνF µν 1
M 2

�
= exp

�
� ig
2

γµγνF
µν 1
M 2

�
(38)

= 1� ig
2

γµγνF
µν 1
M 2 +

1
2

�
ig
2

�2
γµγνγαγβF

µνF αβ 1
M 4 + ...
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Only the �rst and the M�4 terms will survive as the M�2 term will vanish after taking the trace,
while the higher order terms vanish in the limit M ! ∞. Using the relation,

Tr
�

γ5γµγνγαγβ

�
= 4i εµναβ (39)

we get

TrD = � g
2

8

Z
d 4x

Z d 4k

(2π)4
4i εµναβF

µνF αβe�k
2
. (40)

From Z d 4k

(2π)4
e�k

2
=

i
16π2

(41)

we get

TrD =
g 2

32π2

Z
d 4x εµναβF

µνF αβ. (42)

Thus the e¤ective term in the Lagrangian is of the form,

δL = 2α
g 2

32π2
εµναβF

µνF αβ. (43)

Since the divergence of the axial vector current is just the coe¢ cient of α (x ) in δL under the
axial transformation, we see that the Jacobian here will contribute to ∂µAµ as

∂µAµ =
g 2

16π2
εµναβF

µνF αβ. (44)
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Or, if we de�ne

F̃µν =
1
2

εµναβF
αβ, (45)

this can be written as

∂µAµ =
g 2

8π2
F µνF̃µν, (46)

which is just the axial anomaly equation.
Axial anomaly and η ! γγ

The decay η ! γγ is very similar to π0 ! γγ . Suppose that the process also proceeds, just like
the case for π0, through the axial anomaly. Parametrize the matrix elements for the decays, as
in CL-eqns (6.61) and (6.63),

A [P (q)! γ (k1, ε1) γ (k2, ε2)] = ε
µ
1 (k1) εν

2 (k2) i εµναβk
α
1 k

β
2 ΓP

�
q2
�

(47)

where P stands for either of the pseudoscalar mesons η or π0.
If we assume η is a pure octet, η = φ8, we can show that

Γπ (0)
Γη (0)

=
p
3 (48)

from the theory of anomaly. From CL-eqns (6.69) and (6.72), we see that

Γπ (0) =
e2

4π2fπ
Tr
�
Q 2λ3

�
, and Γη (0) =

e2

4π2fπ
Tr
�
Q 2λ8

�
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Using

Q =
1
3

0@ 2
�1

�1

1A λ3 =

0@ 1
�1

0

1A λ8 =
1p
3

0@ 1
1
�2

1A
we get

Γπ (0)
Γη (0)

=
Tr
�
λ3Q 2

�
Tr (λ8Q 2)

=
p
3 (49)

We can also show that the ratio of decay rates is given by

Γ
�
π0 ! γγ

�
Γ (η ! γγ)

=

�
mπ

mη

�3 24 Γπ

�
m2π
�

Γη

�
m2η
�
352 (50)

Assume that
Γπ

�
m2π
�

Γη

�
m2η
� � Γπ (0)

Γη (0)
(51)

compute the decay ratio, and compare it with the experimental results.Since the amplitude is
proportional to f �1π , and the decay rate _ f �2π . This means that we need m3P in the decay rates
to get the right dimension,

Γ (P ! γγ) _ m3PΓP
�
m2P
�

(52)
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Then we have for the ratio

Γ
�
π0 ! γγ

�
Γ (η ! γγ)

=

�
mπ

mη

�3 24 Γπ

�
m2π
�

Γη

�
m2η
�
352 (53)

If we assume
Γπ

�
m2π
�

Γη

�
m2η
� � Γπ (0)

Γη (0)
=
p
3, (54)

we get
Γ
�
π0 ! γγ

�
Γ (η ! γγ)

=

�
mπ

mη

�3
� 3 = 0.045 (55)

Experimentally, this ratio is about 0.0165. The discrepancy probably is due to the assumption
(51). That m2π � 0.02GeV 2 is quite close to 0, the approximation Γπ

�
m2π
�
� Γπ (0) should be

fairly good, while m2η � 0.3GeV 2 and Γη

�
m2η
�
� Γη (0) is probably not a reliable

approximation. Another possibility is that the η meson does not transform as a pure member of
the SU (3) octet.
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The Ward Identity and Unitarity
In non-Abelian gauge theory, we need to choose a gauge to carry out the quantization. In the
renormalizable Rξ gauge, the gauge boson propagator is of the form,

i∆abµν (k )! �iδab
�
gµν � (1� ξ)

kµkν

k 2

�
1

k 2 + i ε

and has the asymptotic behavior as k ! ∞,

i∆µν (k ) � �i
h gµν

k 2

i
Then the theory is renormalizable by power counting. But in this gauge the ghost �elds are
needed and the propator is of the form,

i∆ab (k ) = �iδab 1
k 2 + i ε

These ghost �elds will give rise to unphysical states which might cause problem in the physical
interpretation of the theory. It turns out that we can use Ward identity to eliminate the ghost
�eld contribution so that the unitarity is preserved.
Consider a simple SU (2) gauge theory with fermion (f ) in a doublet representation. The
requirement that S�matrix must be unitary,

SS † = S †S = 1 or ∑
c
SacS �bc = δab
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implies that the scattering amplitude Tab which is related to Sab by

Sab = δab + i (2π)4 δ4 (pa � pb )Tab

which satisfy the relation

ImTab =
1
2 ∑

c
TacT �bc (2π)4 δ4 (pa � pb )

In other words, the requirement that the S -matrix must be unitary implies that the imaginary
part of the scattering amplitude Tab os directly related to a sum over products of matrix
elements connecting the initial and �nal states to all physical states with the same
energy-momentum as the initial and �nal states. For our caluculation we shall consider the

fermion and anti-fermion scattering amplitude T
�_
f f !

_
f f
�
with the intermediate states being

the two gauge boson states. This is represented schematically in following graph,
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The imaginary part of the scattering amplitude on the left-hand side of Eq() can be calculated
by replacing the propagators in the intermediate states by their imaginary parts and multiplying

them by the on-shell scattering amplitudes T
�_
f f ! AA

�
and T �

�
AA !

_
f f
�
.

For the vector boson propagator we take the �t Hooft-Feynam gauge withe gauge parameter
ξ = 1,

∆abµν = δab
�
�gµν

� 1
k 2 + i ε

It has the imaginary part

πδabgµνδ
�
k 2
�

θ (ω) , with ω =

����!k ���� (56)

Similarly, the imaginary part of the ghost �eld propagator is

πδabδ
�
k 2
�

θ (ω) (57)

The step function in Eqs (56,57) have the e¤ect of constraining the intermediate gauge particle
states and ghost states to the same physical region. The unitarity condition for the 4-th order
amplitude then reads

Z
dρ2

�
1
2
T abµνT

ab�
µ0ν0g

µµ0g νν0 � S abS ab�
�
=
1
2

Z
dρ2

�
1
2
T abµνT

ab�
µ0ν0P

µµ0 (k1)P νν0 �k 2�� (58)
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where T abµν and S
ab are the

_
f f ! AaµA

b
ν and

_
f f ! c a†cb amplitudes where Aaµ and c

a are gauge
and ghost �elds respectively. The ρ2 integration is over 2 (massless)-particle phase space. The
Pµν are the polarization sum of the gauge particles

Pµµ0 (k1) = ∑
σ=1,2

ε
µ
1 (k1, σ) ε

µ0
1 (k1, σ)

P νν0 (k1) = ∑
σ=1,2

εν
2 (k2, σ) εν0

2 (k2, σ)

where ε
µ
1 (k1, σ) and εν

2 (k2, σ) are polarization 4-vector of the gauge bosons.
We note that in this case LHS of Eq (58) receives a contribution coming from ghost �elds while
RHS does not because ghosts are not physical states. This is the feature which makes the
demonstration of unitarity relation non-trivial. As we shall see, what ultimately allows the
unitarity relation to hold is that the polarization sum Pµµ0 (k1) is not just g µµ0and the e¤ect of
the ghost �elds is jut to make up the di¤erence.
We shall carry out the lowest non-trivail order calculation as in Eq (58). The imaginary part of

the amplitude
_
f f !

_
f f
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has been written as squares of the
_
f f ! AA amplitude
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and of
_
f f ! c †c amplitudes
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The factor of
1
2
on the LHS of Eq (58) on the LHS in Eq(58) arises because there are 9

diagrams when one square the
_
f f ! AA amplitude in the Figure, eight of them are just the

twice those of Fig (a)� (d ) and the 9-th one corresponds to (e) with closed gauge boson loop
having a symmetry factor of

1
2
. The FP ghost �eld c behaves like a fermion with c 6= c †; hence

there is a minus sign and no symmetry factor of the SS � term.
The lowest-order diagrams for T abµν and S

ab are shown below

T abµν = �ig 2
_
v (p2)

τb

2
γν

1
( /p1 � /k 1)�m

τa

2
γµu (p1)� ig 2

_
v (p2)

τa

2
γν

1
( /k 1 � /p2)�m

τb

2
γµu (p1)

�g 2εabc
h
(k1 � k2)λ gµν + (k1 + 2k2)µ gλν + (2k1 + k2)ν gµλ

i 1

(k1 + k2)
2

_
v (p2)

τc

2
γλu (p1)

S ab = �ig 2εabc
1

(k1 + k2)
2

_
v (p2)

τb

2
/k 1u (p1)
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Gauge-particle polarization
The gauge particle being massless has only 2 physical polarization states, εµ (k , σ) , σ = 1, 2.
Thus the 3 4-vectors, kµ, ε

µ (k , 1) , εµ (k , 2) do not completely span the 4-dim space. We can
furnish another vector ηµ such that

η � ε (k , σ) = 0, σ = 1, 2

where εµ (k , σ) satisfy

ε (k , 1) � ε (k , 2) = 0, & k � ε (k , σ) = 0

Since k2 = 0 and ηµ can not be portional to kµ we must have k � η = 0. By the usual procedure
of establishing completeness relations, these orthogonality condition and normalization
ε2 (k , σ) = �1, yields for the polarization sum,

Pµν = �gµν +Qµν

with

Qµν =
h
(k � η)

�
kµην + kνηµ

�
� η2kµkν

i 1

(k � η)2

Clearly, the extra terms Qµν substracts out the non-transverse polarization states. The task of
checking the unitarity relation of Eq (58) involves verifying that the FP ghost term percisely
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compensates for the extra projection terms in the polarization sum. To simply the calculation,
we will adopt the convenient choics η2 = 0. Then we get

Q µµ0 (k1, η1) =
h�
kµ
1 η

µ0
1 + k

µ0
1 η

µ
1

�i 1
(k1 � η1)

Q νν0 (k2, η2) =
h�
k ν
2 ην0
2 + k

ν0
2 ην

2

�i 1
(k2 � η2)
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Ward identities from lowest-order diagram
We �rst compute k1T abµν . The �rst two terms

�ig 2
_
v (p2)

τb

2
τa

2
γν

( /p1 � /k 1) +m
(p1 � k1)2 �m2

/k 1u (p1)� ig 2
_
v (p2)

τa

2
τb

2
/k 1
( /k 1 � /p2) +m
(k1 � p2)2 �m2

γµu (p1)

= �ig 2
_
v (p2)

�
τb

2
,

τa

2

�
γνu (p1) = g

2εabc
_
v (p2)

τc

2
γνu (p1)

The last term yields

�g 2εabc [(k1 � k2)λ k1ν + 2k2 � k1gλν + (2k1 + k2)ν k1λ]
1

(k1 + k2)
2

_
v (p2)

τc

2
γλu (p1)

= �g 2εabc
_
v (p2)

τc

2
γλu (p1)� g 2εabc

k1ν

(k1 + k2)
2

_
v (p2) ( /k 1 + /k 2)

τc

2
u (p1)� g 2εabc

k2ν

(k1 + k2)
2

_
v (p2) /k 1

τc

2
u (p1)

Thus we have
kµ
1 T

ab
µν = �iS abk2ν

Similarly,
k ν
2T

ab
µν = �iS abk1µ

These are example of non-Abelian theories.
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It is then easy to check that the unitary condition in Eq (58) is indeed satis�ed as the RHS reads,

1
2

Z
dρ2

�
1
2
T abµνT

ab�
µ0ν0

h
�g µµ0 +

�
kµ
1 η

µ0
1 + k

µ0
1 η

µ
1

�
(k1 � η1)

�1
i h
�g νν0 +

�
k ν
2 ην0
2 + k

ν0
2 ην

2

�
(k2 � η2)

�1
i�

=
1
2

Z
dρ2fTT �gg + [(k1T η2) (η2T

�k2) + (η1Tk2) (k2T
�η2)] (k1η1)

�1 (k2η2)
�1

�[(k1T ) � (η1T �) + (η1T ) � (k1T �)] (k1η1)
�1 � [(Tk2) � (T �η2) + (T η2) � (T �k2)] (k2η2)

�1g

=
1
2

Z
dρ2fTT �gg + 2SS � � 2SS � � 2SS �g =

1
2

Z
dρ2fTT �gg � 2SS �g

To summarize, the unitary condition (58) relateds the LHS where we have used the covariant
guage Feynman rule with their spurious states of longitudinal polarization and FP ghosts, to the
RHS where only the physical transvere polarization states appear because of the (axial) gauge
conditions. The spurious states of covariant gauge on LHS do cancel among themselves and in
the axial gauge on the RHS there are only physical states. In short, the FP ghosts �elds are
needed in order to maintain the unitarity conditon.
The issue of unitarity is particularly relevent for the spontaneous broken gauge theories. In such
theory one encounters further unphysical particles , the would be Goldstone-bosons. One needs
to check their decoupling by using Ward identies. Thus we must be sure that Ward identities
are satis�ed to all orders in perturbation theory. Since there are re�ection of theory�s
symmetries, it is important that we adopt regularization procedure that respect these
symmetries. One of the virtures of the dimensional regularization is that it clearly preserve the
generalized Ward identities.
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Anomaly cancellation in Standard Model
Since the ABJ anomaly spoils the renormalizability of the gauge theory, the fermionic gauge
coupling must not introduce anomalous Ward identity. Thus for the fermion representation R
with representation matrix T a (R ) , the trace Tr (fT a (R ) ,T b (R )gT a (R )) should be zero to
ensure that the Ward identities are anomaly free.
In the Standard model the fermions are either doublets or singlets under SU (2) . The matrix T a

will be either the Pauli matrix τa or the U (1) hypercharge Y . Since the group SU (2) is anomly
free

Tr
�
fτi , τjgτk

�
= 2δijTr

�
τk
�
= 0

we will consider cases where at least on of the T 0s is the hypercharges Y . Because every
member of a given SU (2) multiplet has the same hypercharge, for the case ot two T 0s being a
Y we have,

Tr
�

τiYY
�
� Tr

�
τi
�
= 0

and for the case of one T being a Y we have

Tr
�
fτi , τjgY

�
= 2δijTr (Y )

and
Tr (Y ) = ∑

i
Yi = ∑

lepton
Y + ∑

quark
Y

Explict calculation gives
∑
lepton

Y = �1� 2� 2 = �4
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∑
quark

Y = 3
�
1
3
� 2+ 4

3
� 2
3

�
= 4

For the case when all T 0s are the hypercharge, we have

Tr (YYY ) = 8Tr
�
Q 3 � 3Q 2T3 + 3QT 23 � T 23

�
� Tr

�
Q 2T3 �QT 23

�
where Tr

�
T 33
�
= 0. Explicit calculation gives

∑
lepton

�
Q 2T3 �QT 23

�
= � 1

2
+
1
4
= � 1

4

∑
quark

�
Q 2T3 �QT 23

�
=

�
2
3
� 1
6
� 1
2
+
1
4

�
=
1
4

Thus the anomaly cancels among the fermions.
A simplier condition for anomaly condition is to note that

TrY � TrQ

and
Tr
�
Q 2T3 �QT 23

�
� Tr (T3QY ) � Tr

�
T 23 Y

�
� TrQ

Thus the ABJ anomaly is proportional to

TrQ = ∑
i
Qi = 0

Lepton and quark charges cancel when 3 colors are taken into account.
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