
QCD

Ling-Fong Li

(Institute) Deep Inelastic Scattering 1 / 41



Deep Inelastic Scattering
Introduction
Many important development comes from studies of proton Mp = 938.3 Mev/c2. Proton is
important as a projectile as well as target in scattering experiments. But proton has strong
interaction which can not be handled by perturbation which was successful in QED. In earlier
days we do not know what the right theory looks like. A series of experiments in late 60�s and
early 70�on elecron proton scatterings has led to the formulation of strong interaction in the
form of QCD. Even though QCD works quite well in high energies, it is still hampered by large
coupling constants at low erengies.
Structure of proton
Electron proton scattering
In ep scattereing, probe structure of p with e which is well described by QED. To reveal the
structure of proton on some scale depends on the wavelength or energy of the probe. Here we
list in the in the order of increasing enegy the description used to describe this reaction.
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1 Rutherford formula
When Ee is low, it can be treated as non-relativistic particle and proton treated as a point
particle and neglect the recoil of proton. The di¤erential cross section is,

�
dσ

dΩ

�
Rutherford

=
α2

4E 2 sin4 θ
2

E : incident energy. θ : scattering angle. α: �ne structure constant

This is derived from classcial mechanics. In fact, Rutherford used this formula to infer
that atom has a nucleus.

2 Mott fromula
Take into account of the spin of electron and relativistic nature of electron, we get Mott
cross section �

dσ

dΩ

�
Mott

=

�
dσ

dΩ

�
Ruth erf ord

�
1� β2 sin2

θ

2

�
, β = v

Here proton is still treated as a point particle with no structure.
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3 Rosenbluth formula
As Ee is large enough, need to take consider strong interaction. Here we parametrize the
strong interaction e¤ect of the proton in terms of form factors because em current of
proton is local even when strong interaction is included.
If proton were a pointed particle, interaction of proton with photon is,D

p 0jJ emµ jp
E
= ū(p 0)γµu(p)

Include strong interaction of proton, we can parametrize this interaction as

hp 0jJ emµ jpi = ū(p 0)
�

γµF1(q
2) + i

σµνqν

2m
F2(q2)

�
u(p)

where we have used the Lornetz covariance and current conservation to deduce this simple
form. Here q = p � p 0, and F1(q2),F2(q2) are functions which includes strong interaction
are called form factors . Di¤erential cross section is,

dσ

dΩ
=

�
dσ

dΩ

�
Mott

�
G 2E (Q

2) + τG 2M (Q
2)

1+ τ
+ 2τG 2M (Q

2) tan2
θ

2

�
,

This is Rosenbluth formula. Here τ = Q2

4M 2 and Q
2 = �q2. The combinations

GE (q
2) = F1 + τF2

GM (q
2) = F1 + F2
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are electric and magnetic form factors repectively and they satisfy

GE (0) = F1(0) = 1 total charge

GM (0) = F1(0) + F2(0) = 1+ F2(0) magnetic moment

Experimental measurements

G pM (0) = 2.79µN G nM (0) = �1.91µN µN =
e
2Mp

nuclear magneton

are the anomalous magnetic moments of nucleons,

G pE (Q
2) =

G PM (q
2)

2.79
=
GMn (Q

2)

�1.91 � 1
(1� q2/0.7Gev 2)2

These are known as the dipole form factor. F1
�
q2
�
can be related to Fourier transform of

charge distribution,

F (q2) =
Z
e i~q�~x ρ(x )d 3x �! ρ(x ) =

Z d 3q
(2π)3

e i~q�~xF (q2)

The measurement of form factor will give information about the charge distribution. For
spherical charge distribution, we can write

F (q2) = 1� 1
6
~q2hr 2i+ � � �
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where

hr 2i = 4π
Z ∞

0
r 2f (r )r 2dr , charge radius,

For proton
hr 2iproton ' (0.86 fm)2

Note that for �q2 large, form factors decrease very fast � 1
q4

Summary:

1 Proton is not a point particle and has structure

2 The structure of proton can be described by two form factors F1
�
q2
�
, F2

�
q2
�

The charge distribution of proton gives charge radius about 0.86 fm.

(Institute) Deep Inelastic Scattering 6 / 41



Deep Inelastic ep scattering
As energy of electron gets large, the inelastic channels become more important. As number of
particles in the �nal state increase the form factors approach is no longer useful. It is remarkable
that description becomes simple when we add up all the �nal states in the inelastic channels. To
describ this, wrtie the inelastic scattering as

e + p ! e + X

where X denotes generic �nal state. The cross section where the �nal state is summed over is
called the inclusive cross section. For example the inclusive di¤erential cross section is of the
form,

d 2σ

dΩdE 0
(inclusive) = ∑

X

d 2σ

dΩdE 0
(e + p ! e + X )

E 0 energy of �nal state electron. Denote the momenta of this reaction as

e (k ) + p (p)! e (k ) + X (pn)
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De�ne kinematic variables by

q = k � k 0, ν =
p � q
M

, W 2 = p2n = (p + q)
2

In the lab-frame,

pµ = (M , 0, 0, 0) , kµ = (E ,
!
k ), k

0
µ = (E

0,
!
k
0
)

Then
ν = E � E 0
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is the energy lost of lepton and,

q2 = (k � k 0)2 = �4EE 0 sin2 θ

2
� 0, Q 2 = �q2

θ is scattering angle. The scattering amplitude is,

Tn = e2
_
u(k 0,λ0)γµu(k ,λ)

1
q2

D
n
���J emµ

��� p, σE
where we have used J emµ to denote the interaction of photon with hadronic states. From
Feynman rule for QED, we get the unpolarized di¤erential cross section,

dσn =
1���!v ��� 1
2M

1
2E

d 3k 0

(2π)3 2k 00

n

∏
i=1

"
d 3pi

(2π)3 2pi0

#

� 1
4 ∑

σλλ0
jTn j2 (2π)4 δ4

�
p + k � k 0 � pn

�
where pn = ∑n

i=1 pi . If we sum over all possible hadronic �nal states, we get inclusive cross
section,

d 2σ

dΩdE 0
=

α2

q4

�
E 0

E

�
lµνWµν
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The leptonic tensor lµν is,

lµν =
1
2
tr
�
/k 0γµ /kγν

�
= 2

�
kµk 0ν + k

0
µkν +

q2

2
gµν

�
and the hadronic tensor W µν can be written as

Wµν (p, q) =
1
4M ∑

σ
∑
n

Z n

∏
i=1

"
d 3pi

(2π)3 2pi0

# D
p, σ

���J emµ

��� nE hn jJ emν j p, σi (2π)3 δ4 (pn � q � p)

=
1
4M ∑

σ

Z d 4x
2π

e iq�x
D
p, σ

���J emµ (x ) J emν (0)
��� p, σE

where we have used completeness. It is convenient to cast this in the form of matrix element of
a commutator. To achieve this we note that the term with two current operators in reverse
order can be written in the form,

Z d 4x
2π

e iq�x
D
p, σ

���J emν (0) J emµ (x )
��� p, σE = ∑

n
(2π)3 δ4 (pn + q � p) hp, σ jJ emν j ni

D
n
���J emµ

��� p, σE
The δ� function reqires the intermediate state jni to have enegy with En = M � q0 in order to
have nonzero result. But since q0 > 0 and the proton is stable, we can not satisfy the
δ� function constraint and this matrix element is zero. We can therefore write

Wµν (p, q) =
1
4M ∑

σ

Z d 4x
2π

e iq�x
D
p, σ

���hJ emµ (x ) , J emν (0)
i��� p, σE
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The reason we write this as matrix element of commutator of currents is that the commuator
will have the property that it will vanish outside the light-cone. From current conservation
∂µJ emµ = 0,

qµ
D
n
���J emµ

��� p, σE = 0
which implies that

qµWµν (p, q) = qνWµν (p, q) = 0

From the fact that Wµν is a second rank Lorentz tensor and depends on momenta p, q, one can
deduce its covariant decomposition as,

Wµν (p, q) =
�
�W1

�
gµν �

qµqν

q2

�
+
W2

M 2

�
pµ �

p � q
q2

qµ

��
pν �

p � q
q2

qν

��

where W1(q2, ν) , W2(q2, ν) are Lorentz invariant structure functions of the target proton. We
can compute di¤erential cross section in terms of the structure functions,

d 2σ

dΩdE 0
=

α2

4E 02 sin4
θ

2

�
2W1 sin2

θ

2
+W2 cos2

θ

2

�

By measuring di¤erential cross section at di¤erent angles and energies, we can extract the
structure functions, W1 and W2.
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Bjorken scaling
Elastic ep scattering falls o¤ very rapidly as

�
�q2

�
increases due to the compositness of proton.

If this persists for other hadronic state, the total inelastic cross section will fall o¤ rapidly as
well. The surprise is that experimentally these cross section seems quite sizable instead of falling
o¤ rapidly for large q
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De�ne scaling variable

x =
�q2
2Mv

=
Q 2

2Mv
, Q 2 = �q2

The range for x is
0 � x < 1

because invariant mass of �nal hadronic state is

W 2 = (p + q)2 = q2 + 2Mν+M 2 � M 2

Also de�ne

y =
ν

E
= 1� E

0

E

the fraction of initial energy transfered to hadrons. De�ne

MW1(Q 2, ν) = F1(x , q2/M 2)

νW2(Q 2, ν) = F2(x , q2/M 2)

Write the inclusive cross section as

d 2σ

dxdy
=

8πα2

MEx 2y 2

�
xy 2F1 +

�
1� y � M

2E
xy
�
F2

�
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Bjorken scaling : in the large Q 2 limit the F 0i s are functions of x only, ,It turns out that all
structure functions have the limiting behavior

lim
jq2 j!∞, x �xed

Fi (x , q
2/M 2) = Fi (x )

Experimentally for Q 2 � 2GeV 2 Bjorken scaling seems to be a good approximation. This seems
to suggest that there are point-like constituents inside the proton.
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Neutrino-nucleon scattering
Here we consider a very similar reaction,

νl (k ) +N (p) �! l�
�
k 0
�
+ X (pn)

where we have weak interaction with

Le¤ = �
GFp
2
JλJ

λ + h.c .

where GF is the Fermi constant. The charged weak current Jλ can be separated into leptonic
and hadronic parts,

Jλ = Jλ
l + J

λ
h

The leptonic part is
Jλ
l =

_
νeγλ (1� γ5) e +

_
νµγλ (1� γ5) µ

The di¤erential cross sections are

d 2σ(ν)

dΩdE 0
=
G 2F
2π
E 02

�
2 sin2

θ

2
W (ν)
1 + cos2

θ

2
W (ν)
2 � (E + E

0)
M

sin2
θ

2
W (ν)
3

�

d 2σ(
_
ν)

dΩdE 0
=
G 2F
2π
E 02

�
2 sin2

θ

2
W
(
_
ν)

1 + cos2
θ

2
W
(
_
ν)

2 +
(E + E 0)
M

sin2
θ

2
W
(
_
ν)

3

�
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where structure functions are de�ned as

W (ν)
µν (p, q) =

1
4M ∑

σ

Z d 4x
2π

e iq�x
D
p, σ

���hJhµ (x ) , J
†
hν (0)

i��� p, σE
= �W (ν)

1 gµν +
W (ν)
2 pµpν

M 2 � iW (ν)
3

εαβµνpαqβ

M 2 +W (ν)
4
qµqν

M 2 � � �

+W (ν)
5

�
pµqν + pνqµ

�
M 2 + iW (ν)

6

�
pµqν � pνqµ

�
M 2

Bjorken Scaling for these structure functions are ,

MW (ν)
1 (q2, ν) �! F (ν)1 (x )

νW (ν)
2 (q2, ν) �! F (ν)2 (x )

νW (ν)
3 (q2, ν) �! F (ν)3 (x )

It is useful to use structure functions with de�nite helicities. In the laboratory frame, choose the
z-axis such that

pµ = (M , 0, 0, 0), qµ = (q0, 0, 0, q3)

The longitudinal polarization of the virtural photon is

ε
(s)
µ =

1p
�q2

(q3, 0, 0, q0)
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and the corresponding structure function is

Ws = ε
(s)�
µ W µνε

(s)
µ = �W1 �

q23
q2W2

=

�
1� ν2

q2

�
W2 �W1

The right- and left-handed polarization vectors are

ε
(R )
µ =

1p
2
(0, 1, i , 0) , ε

(L)
µ =

1p
2
(0, 1,�i , 0)

and their structure functions are

WR = W1 +
1
2M

p
ν2 � q2W3, WL = W1 �

1
2M

p
ν2 � q2W3

In the scaling limit we get,

2MWs �! FS =
1
x
F2 � 2F1

MWL �! F1 �
1
2
F3

MWR �! F1 +
1
2
F3

The di¤erential cross sections can be written as

d 2σ(ν)

dxdy
= G 2F

MEx
π

h
(1� y ) F (ν)S + F (ν)L + (1� y )2 F (ν)R

i
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d 2σ(
_
ν)

dxdy
= G 2F

MEx
π

�
(1� y ) F (

_
ν)

S + F
(
_
ν)

R + (1� y )2 F (
_
ν)

L

�
Note that the cross sections increase linearly with energy.
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Parton model
Feynman (1969): deep inelastic scattering is due to incoherent elastic scattering from point-like
constitents inside the neucleon : Parton.
Assuming parton has spin 1/2 and carries a fraction of proton momentum, ξ with 0 � ξ � 1.
Then contribution to hadronic tensor is

Kµν (ξ) = Wµν (p, q) =
1

4ξM ∑
σσ0

Z " d 3p 0

(2π)3 2p 00

# D
ξp, σ

���J emµ

��� p 0, σ0E 
p 0, σ0 jJ emν j ξp, σ
�

(2π)3 δ4
�
p 0 � q � ξp

�
=

1
4ξM ∑

σσ0

_
u (ξp, σ) γµu

�
p 0, σ0

� _
u
�
p 0, σ0

�
γνu (ξp, σ) δ

�
p 00 � q0 � ξp0

�
/2p 00
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The δ-function can be written as

δ
�
p 00 � q0 � ξp0

�
/2p 00 = θ

�
p 00
�

δ
h
p 02 � (q � ξp)2

i
= θ (q0 + ξp0) δ

�
2Mνξ + q2

�
= θ (q0 + ξp0)

δ (ξ � x )
2Mν

For the spin sum,

1
2 ∑

σσ0

_
u (ξp, σ) γµu

�
p 0, σ0

� _
u
�
p 0, σ0

�
γνu (ξp, σ)

=
ξ

2
tr
h
/pγµ (ξ /p + /q) γν

i
= 2ξ

h
pµ (ξp + q)ν + pν (ξp + q)µ � p � (ξp + q) gµν

i
= 4M 2ξ2

� pµpν

M 2

�
� 2Mνξgµν + � � �

where we neglect parton mass. The parton tensor is,

Kµν (ξ) = δ (ξ � x )
�

ξpµpν

M 2ν
� 1
2M

gµν + � � �
�
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Let f (ξ) d ξ be the number of partons with momentum between ξ and ξ + d ξ (weighted by the
squared charges). Then hadronic tensor is

Wµν =
Z 1

0
f (ξ)Kµν (ξ) d ξ

=
xf (x )

ν

pµpν

M 2 �
f (x )
2M

gµν + � � �

We can read out the structure functions,

MW1 ! F1 (x ) =
1
2
f (x ) (1)

νW2 ! F2 (x ) = xf (x ) (2)

Thus F1,2 are the measures of momentum distribution of the partons insdie the target proton.
Note that Eqs (1,2) implies that

2xF1 (x ) = F2 (x )

which is known as Callan-Gross relation and is a consequence of partion has spin
1
2
.

Note that for spin 0 parton, we would have

Kµν ∝
D
xp
���J emµ

��� xp + qE hxp + q jJ emν j xpi

∝ (2xp + q)µ (2xp + q)ν
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Since there is no gµν term,
F1 (x ) = 0

In terms of helicity structure functions

FS = 0 for spin 1/2 parton
FT = 0 for spin 0 parton

There is a simple explanation for this.
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Sum rules and application of parton model
Identiy the parton with the quarks? The quarks are bounded togather by gluons. For a primitive

model of 3 free quarks inside the proton, the structure function is f (x ) ~δ

�
x � 1

3

�
. As we turn

on interacton this distribution will be smeared and gluons can produce q
_
q pairs and quarks can

bremsstrahlung gluons. All these processes will produce a "q
_
q" at small x . Write em current as

J emµ =
2
3
ūγµu �

1
3
d̄γµd �

1
3
s̄γµs

Structure function is

F ep1 (x ) =
4
9
(u + ū) +

1
9
(d + d̄ ) +

1
9
(s + s̄)

qi (x ) probability of �nding a parton with longitudinal momentum fraction x with quantum
member of quark q in the proton. (Parton distribution function). From isospin symmetry, we
get en structure functions by u $ d

F en1 (x ) =
4
9
(d + d̄ ) +

1
9
(u + ū) +

1
9
(s + s̄)

These parton distribution functions are contrained by the quantum numbers of proton. For
example,

Isospin:
1
2

Z 1

0

n
[u (x )� ū (x )]�

h
d (x )�

_
d (x )

io
dx =

1
2

Strangeness:
Z 1

0

�
s (x )�

_
s (x )

�
= 0
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Charge:
Z 1

0

2
3
[u (x )� ū (x )]� 1

3

Z 1

0

h
d (x )�

_
d (x )

i
� 1
3

Z 1

0

�
s (x )�

_
s (x )

�
dx = 1

Neutrino deep inelastic scattering
νµ +N ! µ+ X

νe +N ! e + X

JWµ � cos θc ūγµ(1� γ5)d + sin θc ūγµ(1� γ5)s + � � �

Here structure functions can also be expressed in terms of parton distribution functions qi (x )
All data are consistent with partons carrying quark quantum numbers.
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Light-cone Singularity and Bjorke Scaling
Bjorken scaling is connected with the light-cone behavior in �eld theory. Recall hadronic tensors
can be written as

Wµν (p, q) =
1
4M ∑

σ

Z d 4x
2π

e iq�x
D
p, σ

���hJ emµ (x ) , J emν (0)
i��� p, σE (3)

The exponential can be written as

q � x = (q0 + q3)p
2

(x0 � x3)p
2

+
(q0 � q3)p

2

(x0 + x3)p
2

�!q T �
!
x T

where
!
q T = (q1, q2) ,

!
x T = (x1, x2) . In rest frame of nucleon,

pµ = (M , 0, 0, 0), qµ = (ν, 0, 0,
p

ν2 � q2)

In scaling limit �q2, ν! ∞ with �q2/2Mν �xed

q0 + q3 � 2ν, q0 � q3 �
q2

2ν

We expect dominant contribution to the integral in Eq(3) comes from regions with less rapid
oscillations i.e. q � x = O (1) , which implies that

x0 � x3 � O
�
1
ν

�
, and x0 + x3 � O

�
1
xM

�
(Institute) Deep Inelastic Scattering 27 / 41



Or

x 20 � x 23 � O
�

1
�q2

�

Thus x 2 = x 20 � x 23 �
!
x
2
T � x 20 � x 23 � O

�
1
�q2

�
which vanishes as �q2 ! ∞. So in scaling

limit we are probing the current product near the light cone.
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Free Field Light-cone Singularity
1) Product of �elds
In free �eld theory, product of �elds are singular on the light-cone

�
x 2 � 0

�
and the leading

singularities are independent of masses. Consider

h0 jT (φ (x ) φ (0))j 0i = i∆F (x ) = i
Z d 4k

(2π)4
e�ikx

k 2 �m2 + i ε

Carry out the integration

∆F (x ) =
�1
4π

δ
�
x 2
�
+

m

8π
p
x 2

θ
�
x 2
� h
J1(m

p
x 2)� iN1(m

p
x 2)
i
� im

4π2
p
x 2

θ
�
�x 2

�
K1(m

p
�x 2)

where Jn ,Nn and Kn are Bessel functions. For x 2 � 0, we have

∆F (x ) =
i
4π2

1
(x 2 � i ε) +O

�
m2x 2

�
One can also show

[φ (x ) , φ (0)] = i∆ (x ) =
1

(2π)3

Z
d 4ke�ik �x ε (k0) δ

�
k 2 �m2

�
=

�i
2π

ε (x0) δ
�
x 2
�

for x 2 � 0
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Setting m2 ! 0, we get,

i
Z
d 4ke�ik �x ε (k0) δ

�
k 2
�
= (2π)2 ε (x0) δ

�
x 2
�

Thus light-cone singularties of the commutator ∆ (x ) and propagator function ∆F (x ) are
directly related,

∆ (x ) = 2ε (x0) Im (i∆F (x ))

This re�ects the singular function identity

1
�x 2 + i ε �

1
�x 2 � i ε = �2πi ε (x0) δ

�
x 2
�

which is a special case of general identity�
1

�x 2 + i ε

�n
�
�

1
�x 2 � i ε

�n
= � 2πi

(n � 1)! ε (x0) δ(n�1)
�
x 2
�

In the following we shall obtain the commuator singularities from those of propagators by the
replacement, �

1
�x 2 + i ε

�n
�! 2πi

(n � 1)! ε (x0) δ(n�1)
�
x 2
�

For the fermions the results aren
ψα (x ) ,

_
ψβ (y )

o
= iSαβ (x � y ) , Sαβ (x ) = (iγ � ∂+m)αβ ∆ (x )
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D
0
���T (ψα (x ) ,

_
ψβ (y )

��� 0E = iSFαβ (x � y ) , SFαβ (x ) = (iγ � ∂+m)αβ ∆F (x )

For x 2 � 0, we have

Sαβ (x ) � (iγ � ∂)αβ

�
1
2π

ε (x0) δ
�
x 2
��

SFαβ (x ) � (iγ � ∂)αβ

�
1
2π

1
x 2 � i ε

�
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2) Product of scalar currents
Consider composite operators like scalar current ,

J (x ) =: φ2 (x ) :

Note normal ordering remove the singularities in the product φ (x + ζ) φ (x � ζ) as ζµ ! 0. To
see this we write the �eld operator in terms of creation and annihilation operators,

φ (x ) =
Z
k

h
a (k ) e�ik �x + a† (k ) e ik �x

i
where Z

k
�
Z d 3kq

(2π)3 2ωk

The product of �eld operators is then

φ (x ) φ (y ) =
Z
k 0

Z
k

h
a (k ) e�ik �x + a† (k ) e ik �x

i h
a
�
k 0
�
e�ik

0 �y + a† �k 0� e ik 0 �y i
=

Z
k

Z
k 0

h
a (k ) a

�
k 0
�
e�i(kx+k

0y) + a† (k ) a† �k 0� e i(kx+k 0y) + a† (k ) a
�
k 0
�
e�i(kx�k

0y) + a (k ) a† �k 0� e�i(�kx+k 0y)i
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We see that only the last term is not normal ordered. In the normal ordered form, so the
annihilation operators will act on the initial states and creation operators acting on the �nal
states. When we normal ordered this last term we get an extra term,

Z
k

Z
k 0

h
a† (k ) a

�
k 0
�
+ δ3

�
k � k 0

�i
e�i(�kx+k

0y)

=
Z
k

Z
k 0
[a† (k ) a

�
k 0
�
e�i(�kx+k

0y)] +
Z d 3k

(2π)3 2ωk
e�ik (x�y )

Thus the extra term is a c# and is singular in the limit x ! y . It is not hard to see that the
normal ordered operators when acting on the initial or �nal states will not produce this kind of
singularity because the momenta are all di¤erent.
The singularities in product of the currents can be worked out by using Wick�s therem,

T (J (x ) J (0)) = T (: φ2 (x ) :: φ2 (0) :) = 2 [h0 jT (φ (x ) φ (0))j 0i]2

+4 h0 jT (φ (x ) φ (0))j 0i : φ (x ) φ (0) : + : φ2 (x ) φ2 (0) :

= �2 [∆F (x ,m)]2 + 4i∆F (x ,m) : φ (x ) φ (0) : + : φ2 (x ) φ2 (0) :

Hence for x 2 � 0, we get

T (J (x ) J (0)) � 1

8π4 (x 2 � i ε)2
� : φ (x ) φ (0) :

π2 (x 2 � i ε) + : φ2 (x ) φ2 (0) :
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In this expansion the singularitis as x 2 � 0 are all contained in the c -number functions which are
independent of the initial or �nal states. If we take this between 2 arbitrary states,

hA jT (J (x ) J (0))jB i � hAjB i
8π4 (x 2 � i ε)2

� hA j: φ (x ) φ (0) :jB i
π2 (x 2 � i ε) +



A
��: φ2 (x ) φ2 (0) :

��B�
which corresponds to diagrams below.
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Free Field Singularities and Scaling
Consider the electromagnetic current given by

Jµ (x ) =:
_
ψ (x ) γµQψ (x ) :

where Q is the electric charge operator. We will �rst calculate the time-ordered product by
Wick�s theorem,

T
�
Jµ (x ) Jν (0)

�
= T

�
:
_
ψ (x ) γµQψ (x ) ::

_
ψ (0) γνQψ (0) :

�
(4)

= Tr
h
iSF (�x ) γµ iSF (x ) γνQ

2
i
+ :

_
ψ (x ) γµQSF (x ) γνQψ (0) :

+ :
_
ψ (0) γνQSF (�x ) γµQψ (x ) : + :

_
ψ (x ) γµQψ (x )

_
ψ (0) γνQψ (0) :

Using the identity

γµγνγλ =
�
Sµνλρ + i εµνλργ5

�
γρ, where Sµνλρ = gµνgλρ + gµρgνλ � gµλgνρ

we can write Eq(4) in the limit x 2 � 0 as

T
�
Jµ (x ) Jν (0)

�
�

�
trQ 2

� �x 2gµν � xµxν

�
π4 (x 2 � i ε)4

+
ix α

2π2 (x 2 � i ε)2n
Sµανβ

h
V β (x , 0)� V β (0, x )

i
+ i εµανβ

h
Aβ (x , 0)� Aβ (0, x )

io
+ :

_
ψ (x ) γµQψ (x )

_
ψ (0) γνQψ (0) :
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where
V β (x , y ) =:

_
ψ (x ) γβQ 2ψ (y ) :

Aβ (x , y ) =:
_
ψ (x ) γβγ5Q

2ψ (y ) :

If we write
x 2gµν � 2xµxν

(x 2 � i ε)4
=
2
3

gµν

(x 2 � i ε)3
� 1
12

∂µ∂ν
1

(x 2 � i ε)2

and
x α

(x 2 � i ε)2
= � 1

2
∂α

�
1

x 2 � i ε

�
we get for the commutator,

�
Jµ (x ) , Jν (0)

�
� itrQ 2

π3

�
2
3
gµνδ"

�
x 2
�

ε (x0) +
1
6

∂µ∂ν

�
δ0
�
x 2
�

ε (x0)
��

(5)

+
n
Sµανβ

h
V β (x , 0)� V β (0, x )

i
+ i εµανβ

h
Aβ (x , 0)� Aβ (0, x )

io
∂α

�
δ
�
x 2
�

ε (x0)
�

2π
+ :

_
ψ (x ) γµQψ (x )

_
ψ (0) γνQψ (0) : (6)

We can then apply these to the cross sections of e+e� annihilation and inelastic eN scattering.
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1 e+e�! hadrons
Following the same procedure as in the discussion of inelastic eN scattering, it is
straightforward to show that the total hadronic cross section for e+e� annihilation can be
written as a current commutator,

σ
�
e+e� ! hadrons

�
=
8π2α2

3 (q2)2

Z
d 4xe iq�x



0
���Jµ (x ) , Jµ (0)

��� 0�
The most singular light-cone term comes from the �rst term on the right-handed side of
Eq (5) and we get from this term

σ
�
e+e� ! hadrons

�
�
8π2α2 i

�
trQ 2

�
3π3 (q2)2

Z
d 4xe iq�x

�
8
3

δ"
�
x 2
�

ε (x0) +
1
6

∂2
�
δ0
�
x 2
�

ε (x0)
��

in the large q2 limit. Using the identity

i
Z
d 4xe�iq�x ε

�
q0
�

δ
�
q2
�
= (2π)2 ε

�
x 0
�

δ
�
x 2
�

we get

σ
�
e+e� ! hadrons

�
�

8π2α2 i
�
trQ 2

�
3π3 (q2)2

�
8
3
q2

4
� q

2

6

�
ε
�
q0
�

δ
�
q2
�

=
4πα2

3q2
tr
�
Q 2
�
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Recall that

σ
�
e+e� ! µ+µ�

�
=
4πα2

3q2

Thus we get the simple result

σ (e+e� ! hadrons)
σ (e+e� ! µ+µ�)

= tr
�
Q 2
�

This justify the simple naive picture that in the deep inelastic limit, q2 ! ∞, the virtural
photon will �rst produce quarks where is coupling is point like and then quarks trun into
hadrons through some strong interaction which is di¢ cult to compute.

2 Lepton-hadron scattering
For deep inelastic lN scattering the �rst term on the right-handed side of Eq (5) will not
contribute since it is a c -number and the non-trivial leading singular term will be the
second term which for convenience is written in the form,

h
Jµ(

x
2
), Jν(�

x
2
)
i
�

8<: Sµανβ

h
:
_
ψ
� x
2

�
γβQ 2ψ

�
� x
2

�
: � :

_
ψ
�
� x
2

�
γβQ 2ψ

� x
2

�
:
i

+i εµανβ

h
:
_
ψ
� x
2

�
γβγ5Q

2ψ
�
� x
2

�
: � :

_
ψ
�
� x
2

�
γβγ5Q

2ψ
� x
2

�
:
i 9=;(7)

∂α

�
δ
�
x 2
�

ε (x0)
�

2π
(8)
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We can expand the bilocal operator

_
ψ
� x
2

�
ψ
�
� x
2

�
=

_
ψ (0)

�
1+

 
∂ µ1

xµ1

2
+
1
2!

 
∂ µ1

 
∂ µ2

xµ1

2
xµ2

2
+ � � �

�
��

1� x
ν1

2

!
∂ ν1 +

1
2!
x ν1

2
x ν2

2

!
∂ ν1

!
∂ ν2 + � � �

�
ψ (0)

= ∑
n

1
n!
xµ1

2
xµ2

2
� � � x

µn

2

_
ψ (0)

$
∂ µ1

$
∂ µ2
� � �
$
∂ µn

ψ (0)

to get

h
Jµ

� x
2

�
, Jν

�
� x
2

�i
= ∑

n= odd

1
n!
xµ1

2
xµ2

2
� � � x

µn

2
O (n+1)βµ1µ2 ���µn

(0) Sµανβ∂α

�
δ
�
x 2
�

ε (x0)
�

2π

+ ∑
n=even

1
n!
xµ1

2
xµ2

2
� � � x

µn

2
O 0(n+1)βµ1µ2 ���µn

(0) i εµανβ∂α

�
δ
�
x 2
�

ε (x0)
�

2π

where

O (n+1)βµ1µ2 ���µn
(0) =

_
ψ (0)

$
∂ µ1

$
∂ µ2
� � �
$
∂ µn

γβQ
2ψ (0)

O 0(n+1)βµ1µ2 ���µn
(0) =

_
ψ (0)

$
∂ µ1

$
∂ µ2
� � �
$
∂ µn

γβγ5Q
2ψ (0)
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To calculate the structure function we write,

1
2 ∑

σ

D
pσ
���O (n+1)βµ1µ2 ���µn

(0)
��� pσ

E
= A(n+1)pβpµ1

pµ2
� � � pµn

+ trace terms

where A(n+1) is some constant and trace terms contain one or more gµi µj
factors. Also

O 0(n+1) tetm will not contribute to the spin average structure functions due to the
antisymmetric property of εµανβ. We then have for the structure function,

Wµν (p, q) �
1
2M

Z d 4x
2π

e iq�x
∞

∑
odd n

� x � p
2

�n pβ

n!
A(n+1)Sµανβ∂α

�
δ
�
x 2
�

ε (x0)
�

2π

De�ne
∞

∑
odd n

� x � p
2

�n A(n+1)
n!

=
Z
d ξe ix �ξp f (ξ)

then

Wµν (p, q) �
1
2M

Z d 4x
2π

e iq�x
Z
d ξe ix �ξp f (ξ) Sµανβ (q + ξp)α pβ

�
δ
�
x 2
�

ε (x0)
�

2π

Using the identity,

i
Z d 4x
2π

e ix �(q+ξp)δ
�
x 2
�

ε (x0) = δ
�
(q + ξp)2

�
ε (q0 + ξp0)
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we have

Wµν (p, q) � 1
M

Z
d ξf (ξ) δ

�
q2 + 2Mνξ

� �
gµαgβν + gµβgαν � gµνgαβ

�
(q + ξp)α pβ

=
1

2M 2ν

Z
d ξf (ξ) δ

�
ξ +

q2

2Mν

� �
�Mνgµν + 2ξpµpν + � � �

�
= f (x )

h
�
gµν

2M
+
x
ν

pµpν

M 2 + � � �
i

for x = � q2

2Mν
. Thus we recover the parton modle results

MW1 �! F1 (x ) =
1
2
f (x )

νW2 �! F2 (x ) = xf (x )

This implies that the assumption of canonical free-�eld light-cone structure is equivalent
to that of parton model.
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