

Homework set 1, Due Fri Oct 12

- 1. Consider the symmetry group of the proper covering operations of a square (D_4) . There are 8 elements in the group, E : identity,
 - A, B, C, D: rotations by π about the axes as shown in the figure

F, G, H : rotations in the plane of the square by $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$ respectively.

- (a) How many inequivalent irreps are there? What are their dimensionalities?
- (b) Work out the representation matrice by considering their effects on the coordiantes, x, y, z.
- (c) Consider the function $f(x,y) = x^2 y^2$, Work out $P_{A_i}f(\vec{x}) = f(A_i^{-1}\vec{x})$ for all elements of the group.
- (d) Construct all the inequivalent classes.
- 2. Consider the group S_3 , the permutation group of 3 objects.
 - (a) Show that the collection of even permutations form a subgroup, called A_{3} .
 - (b) Show that A_3 is an invariant subgroup.
 - (c) Find the quotient group S_3/A_3 .
- 3. Consider a group with 4 elements $\{e, a, b, c\}$ with the properties;

$$a^2 = b^2 = c^2 = e,$$
 $e:$ identity
 $ab = c,$ $bc = a,$ $ca = b$

Show that this group is Abelian.

- 4. In the symmetry group D_3 of the regular triangle, we have worked out the transfomation properties of the coordinates, (x, y, z) under this group.
 - (a) Compute the transformation properties of $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z},$
 - (b) Work out the transformation properties of the combinations, $x_i \frac{\partial}{\partial x_j}$, where $x_i = (x, y, z)$, $\frac{\partial}{\partial x_j} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.

5. If $\phi_i^{(\lambda)}(x)$, for $i = 1, 2, \dots l_{\lambda}$ are the basis functions for unitary irrep $D^{(\lambda)}$ with dimension l_{λ} . Show that

$$\psi\left(x\right) = \sum_{i=1}^{l_{\lambda}} \left|\phi_i^{(\lambda)}\left(x\right)\right|^2$$

is invariant under the group transformation, i.e.

$$P_R\psi(x) = \psi(x)$$
, for all $R \in G$.