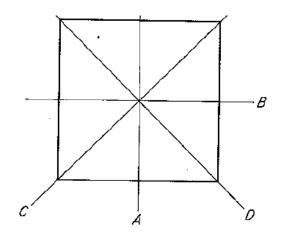
Homework set 2, Due Fri Oct 26

1. Consider the symmetry group of the proper covering operations of a square (D_4) again. There are 8 elements in the group,



E : identity,

A, B, C, D: rotations by π about the axes as shown in the figure F, G, H : rotations in the plane of the square by $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$ respectively.

- (a) Work out the character table.
- (b) Write these rotations in terms of permutations of 4 objects in the cycle notation.
- (c) Work out the classes in terms of permutations.
- 2. Show in general that

$$\sum_{R} \chi^{(j)}\left(R\right) = 0$$

for all representations except the identity representation $\Gamma^{(1)}.$

- 3. Z_n is the cyclic group of order n.
 - (a) Work out the character table for the group Z_3 .
 - (b) Work out the character table for the group Z_4 .
- 4. Consider the group D_3 . Work out all the direct product

$$\Gamma^{(i)\times}\Gamma^{(j)} = \sum_{k} c_{ijk} \Gamma^{(k)}$$

of the irreducible representations.

5. Consider again the group with 4 elements $\{e, a, b, c\}$ with the properties;

$$a^2 = b^2 = c^2 = e,$$
 $e:$ identity
 $ab = c,$ $bc = a,$ $ca = b$

Work out the character table.