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1 Molecular Vibration

Molecules consists of many atoms can execute vibrational motions. In these motions we can treat the atoms as
point particles moving slightly away from their equilibrium positions. Let

!
x = (x1; x2; � � �xn) be the generalized

coordinates for describing the atoms in the molecule. Then the small deviations from the equilibrium position can
be described by expanding their potential energy V around the equilibrium position,

V
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x
�
= V
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Here
!
x0 is the equilibrium position and @V

@xi

���
x=x0

= 0: We can write the potential energy as

V = V0 +
1

2
uijqiqj

where

V0 = V
�!
x0

�
; qi = (xi � xi0) ; uij =

@2V

@xi@j

����
x=x0

Write the kinatic energy as

T =
1

2
Mij

�
qi
�
qj ; where Mij = mi�ij (no sum over i)

The Lagrangian is then
L = T � V

From Euler-Lagrange equation we get,
Mij

��
qj = �uijqj

We are interested in the normal mode solution of the form, qi = �i exp (�i!t) : Equation of motion then gives
!2Mij�j = uij�j (1)

Or in matrix notation,
!2M� = U� (2)

where

(M)ij =Mij ; (U)ij = uij ; � =

0B@ �1
...
�n

1CA
This is very similar to the eigenvalue equation except for the presence of the mass matrix M: Non-trivial solution
exists only if

det j!2M � U j = 0
whose solutions give normal mode frequencies, !(1); !(2); � � � ; !(n): For each normal mode frequency, we get normal
mode con�guration, �(1); �(2); � � � ; �(n):
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1.1 Orthogonality of normal modes

From
!(�)2Mij�

(�)
j = uij�

(�)
j

!(�)2Mij�
(�)
j = uij�

(�)
j

we get �
!(�)2 � !(�)2

�
�(�)Mij�

(�)
j = 0

Thus, normal modes are orthogonal with repect to M;

�(�)Mij�
(�)
j = ���

General solution

q =
nX
i=1

c(i)�(i) cos
h
!(i)t+ �(i)

i

1.2 Normal model coordinates

De�ne Rj� = �
(�)
j then �

RtMR
�
��
= RT�iMijRj� = �

(�)
i Mij�

(�)
j = ����

RtuR
�
��
= RT�iuijRj� = !

(�)2�
(�)
i Mij�

(�)
j = ���!

(�)2

This means that in the new coordinates de�ned by

xj = Rj�z�

the kinetic and potential energies are all diagonal

T =
1

2

�
xiMij

�
xj =

1

2

�
z�

�
z�; V =

1

2
xiuijxj =

1

2
!(�)2z2�

Thus in terms of z�;the normal mode coordinates, the oscillators decouple.
Example 1: Linear triatomic molecule
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1

2

�
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�
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1 +M
�
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�
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3

�
V =

k

2

h
(x1 � x2)2 + (x2 � x3)2

i
The corresponding mass matrix and potential matrix are

M =

0@ m
M

m

1A ; u =

0@ k �k 0
�k 2k �k
0 �k k

1A
Normal mode frequencies ������

k �m!2 �k 0
�k 2k �m!2 �k
0 �k k �m!2

������ = 0
or

!2
�
k �m!2

� �
mM!2 � km (2m+M)

�
= 0

2



1. ! = 0; translational mode

�(1) =
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1
1

1A
2. ! =

q
k
m ; spring frequency
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3. ! =
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�
1

1A
1.3 Symmetries and Normal modes

This system is symmetric under the interchange, x1 $ x3; which can be represented by the operator with matrix,

� =

0@ 1
1

1

1A
The eigenvectors are

v1 =

0@ 1
0
1

1A ; v2 =

0@ 0
1
0

1A ; with eigenvalue 1

v3 =

0@ 1
0
�1

1A ; with eigenvalue � 1

By inspection, v3 is a normal mode. Since the zero mode of translation is proportional to v1 + v2; the remaining
mode can be obtained by orthogonality.
Example: 4-chain

T =
m

2

�
�
x
2

1 +
�
x
2

2 +
�
x
2

3 +
�
x
2

4

�
V =

k

2

h
(x1 � x2)2 + (x2 � x3)2 + (x3 � x4)2

i
=
1

2
(xiuijxj)

where

u = k

0BB@
1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

1CCA
The translational zero mode is clearly of the form,

�(1) =

0BB@
1
1
1
1

1CCA

3



Note that the system is symmetric under x1 $ x4; x3 $ x4 which can be represented by the matrix

� =

0BB@
1

1
1

1

1CCA
The eigenvectors are

�(1) =
1

2

0BB@
1
1
1
1

1CCA ; �(2) =
1

2

0BB@
1
�1
�1
1

1CCA with eigenvalue 1

and

�(3) =
1

2

0BB@
1
1
�1
�1

1CCA ; �(4) =
1

2

0BB@
1
�1
�1
1

1CCA with eigenvalue � 1

By inspection, we see that
u�(2) = 2k�(2)

Thus �(2) is a normal mode with frequency !2 = 2k
m : Now in the space expanded by �

(3); and �(4); we get

u�(3) = k
�
�(3) � �(4)

�
u�(4) = k

�
��(3) + 3�(4)

�
or

u0 = k

�
1 �1
�1 3

�
It is straightforward to diagonalize this martrix. The eigenvalues are k

�
2�

p
2
�
and the eigenvectors are �(3) ��

1 +
p
2
�
�(4); and

�
1 +

p
2
�
�(3) + �(4):

Example: 4-ring

m

m

m

m

The potential energy is given by,

u = k

0BB@
2 �1 0 �1
�1 2 �1 0
0 �1 2 �1
�1 0 �1 2

1CCA
Clearly the zero mode is of the form

�(1) =
1

2

0BB@
1
1
1
1

1CCA
Symmetry: x1 $ x3; x2 $ x4: The latter one can be represented by

�y =

0BB@
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1CCA
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The eigenvectors are

�(1) =
1

2

0BB@
1
1
1
1

1CCA ; �(2) =
1

2

0BB@
1
�1
1
�1

1CCA ; � = 1

�(3) =
1

2

0BB@
1
1
�1
�1

1CCA ; �(4) =
1

2

0BB@
1
�1
�1
1

1CCA ; � = �1

It can be checked that these are all nomal modes.

1.4 Group Theory and Moleculer Vibration

For a molecule with symmetry G; both the kinetic energy and potential energy are invariant under the group
transformation,b

[T;M ] = 0; [T;U ] = 0

Then from eigenvalue equation in Eq(2) we get

TU� = U (T�) = T!2M� = !2M (T�)

This means � and T� have the same frequency !: If we run the transformation T over the whole group and select
a linear independent set, �1; �2; � � ��r; then this set will form a basis for the transformation Ti 2 G: It is then clear
that if we put togather all these linear independent sets, we will get a representation matrix in the block diagonal
form with each block representing an irrep.
As we have discussed before, coordinate vector,

!
x = (x1; x2; � � �xn) ; will give a reducible representation of group

G;
Tixa = xbXba (Ti) ; and X (Tj)X (Ti) = X (TjTi)

Therefore if we can �nd out how the representation of coordinate vector,
!
x = (x1; x2; � � �xn) ; reduces in terms of

irrep we can �nd the degenercies and structure of the normal modes,

X =
X
i

kiD
(i)

where D(i) are the irrep and the coe¢ cient ki is the number of time each irrep D(i) appears in this reduction. The
coe¢ cient ni can be calculated in terms of the characters of the representations,

ki =
1

g

X
i

nP�
(i)�
p �(X)p

In this formula, we only need to know the trace of each group element. Thus the only contributions to �(X)p come
from those atoms which are unmoved by transformation of the symmetry group G because each atom which is moved
to some other site will not have diagonal elements in the representation matrix. For a proper rotation of angle �;
R (�) ;a unmoved atom will contribute (1 + 2 cos �) to the trace and the total trace is

�(X) (R (�)) = NR(�) (1 + 2 cos �)

where NR(�) is the number of atoms which are not moved by the rotation R (�) : Similarly, for an improper rotation
of angle �; S (�) ;a rotation of angle � followed by a re�ection on a plan perpendicular to the axis of rotation, the
trace is,

�(X) (S (�)) = NS(�) (�1 + 2 cos �)

where NS(�) is the number of atoms which are not moved by the rotation S (�) : However, for any molecular vibration,
there are always 6 zero modes, 3 for translation of molecule as a whole and 3 for rotation. We need to remove these

zero modes to get the real vibrational mode. We can used center of mass coordinates
!
R to describe these motions.

So under proper rotation, and improper rotation we have,

�
(X)
trans (R (�)) = (1 + 2 cos �) ; �

(X)
trans (S (�)) = (�1 + 2 cos �)

For the rotational modes, we can describe it in terms of an axial vector
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�
(X)
rot (R (�)) = (1 + 2 cos �) ; �

(X)
rot (S (�)) = � (�1 + 2 cos �)

Thus if we substract the translational and rotational zero modes, we get the trace for the pure vibrational modes,

�
(X)
vib (R (�)) =

�
NR(�) � 2

�
(1 + 2 cos �)

�
(X)
vib (S (�)) = NS(�) (�1 + 2 cos �)

As a illustration, we will study the water molecule H2O; which has C2v symmetry. The vibrational characters are

E (proper; � = 0; NE = 3) �vib (E) = 3
C2 (proper; � = �; NC2 = 1) �vib (C2) = 1
�v (improper; � = 0; N�v = 3) �vib (�v) = 3
�0v
�
improper; � = 0; N�0v = 1

�
�vib (�

0
v) = 1

We can use the character table for C2v to see how the vibrational modes reduced in terms of irrep of C2v:

C2v E C2 �v �0v
A1 (z) 1 1 1 1
A2 (Rz) 1 1 �1 �1
B1 (x) 1 �1 1 �1
B2 (y) 1 �1 �1 1
�vib 3 1 3 1

We take �v to be the re�ection in the plane of the molecule and �0v to be re�ection in the perpendicular plane
bisecting the HOH bond angle. The C2 axis is z and y axis.We see that the reduction is

�vib = 2A1 +B1

Thus the vibrational modes are given by 2 A1 modes which are invariant under C2v and 1 B1 mode which is invariant
under C2 rotation and change sign under �v:

Another example : NH3 molecule

This molecule has D3 symmetry. The characters for vibrational modes are

D3 E 2C3 3C2
A1 1 1 1
A2 1 1 �1
E 2 �1 0
�vib 6 0 2

We see that the reduction of vibrational modes are

�vib = 2A1 + 2E

Thus there are 2 non-degenerate and 2 doubly degenerate modes.
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