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1 Molecular Vibration

Molecules consists of many atoms can execute vibrational motions. In these motions we can treat the atoms as

point particles moving slightly away from their equilibrium positions. Let x = (z1,z2,--x,) be the generalized

coordinates for describing the atoms in the molecule. Then the small deviations from the equilibrium position can

be described by expanding their potential energy V around the equilibrium position,
v (5) =1 (@) o O

oz, + 5 @i = mio0) (75 — wjo) 5—-

T=xQ T=T0

Here g is the equilibrium position and %‘ = 0. We can write the potential energy as
=z

1
Vi=Vo+ uijaig;

where 52
- %4
VW=V ( ) , i = (% — Ti0) , G =
’ 0 % = (% = ) Y97 o0, —
Write the kinatic energy as
1 .

T = §Mijqiqj, where  M;; = m;6;; (no sum over i)

The Lagrangian is then
L=T-V

From Euler-Lagrange equation we get,

Mijqj = —uijq
We are interested in the normal mode solution of the form, g; = 1, exp (—iwt) . Equation of motion then gives

w?Mijn; = uign; (1)
Or in matrix notation,

w?Mn = Un (2)

where
T

(M);; = Mij,  (U); =uwij, 1=

ij ij :
M,
This is very similar to the eigenvalue equation except for the presence of the mass matrix M. Non-trivial solution
exists only if

det |w?*M —U| =0
whose solutions give normal mode frequencies, w™), w® ... w() For each normal mode frequency, we get normal
mode configuration, (), ) ... p(),



1.1 Orthogonality of normal modes

From ()
w(a)QMij,r];a) _ u?]"] @
WMy = wigng”

we get
(w<a>2 _ ww)z) ) My =0

Thus, normal modes are orthogonal with repect to M,
n® M, 77 = bop

General solution

q= Zc(”n(” oS [wmt + ¢<i)}

i=1

1.2 Normal model coordinates
Define Rj, = nga) then
(R'MR),, = RL,M;;Rjs = )M”nﬁ) = Sup
(RtuR)aB = RluisRyg = w0 M, 77 = Jagw??
This means that in the new coordinates defined by
rj = Rjaza

the kinetic and potential energies are all diagonal

1. L 1
T= ST M”xj = 5%a%a; V= STl = §w(a)2zi

Thus in terms of z,,the normal mode coordinates, the oscillators decouple.
Example 1: Linear triatomic molecule

m M m
1 .2 .2 .2
T = 5 {mxl + Mz, +mm3}
k
V= 5 [(331 —29)” + (22 — 963)2}

The corresponding mass matrix and potential matrix are

m k -k O
M = M , u=| —k 2k -k
m 0 -k k
Normal mode frequencies
k —mw? —k 0
—k 2k — mw? -k =0
0 —k k —mw?

or

w? (k — mw?) [mMw? — km (2m + M)] =0



1. w = 0, translational mode

— =

2. w= \/%, spring frequency

1

@=L |

2m -1

3. w= ﬁ (2+ %)
1
1
0 = 2 (3)

2m (14257 1

1.3 Symmetries and Normal modes

This system is symmetric under the interchange, x; < 3, which can be represented by the operator with matrix,

1
o= 1
1
The eigenvectors are
1 0
vy=1 01, Vg = 1], with eigenvalue 1

1 0

1

vy = 0 , with eigenvalue — 1
-1

By inspection, vs is a normal mode. Since the zero mode of translation is proportional to v; + v, the remaining
mode can be obtained by orthogonality.

Example: 4-chain

m[.2 .2 .2 .2
T:§ T+ Ty + T3+ Ty

N |

[(961 — 22)° + (w2 — 3)° + (23 — 964)2} = % (ziuijz;)

where
1 -1 0 0

The translational zero mode is clearly of the form,

77(1) —

— =



Note that the system is symmetric under x; <> x4, 3 <> x4 which can be represented by the matrix

1
- 1
7= 1
1
The eigenvectors are
1 1
1 1 —
77(1) =3 1 , 77(2) =3 _} with eigenvalue 1
1 1
and
1 1
1 11 —
n® == _11 , ¥ = 3 _1 with eigenvalue — 1
-1 1
By inspection, we see that
un® = 2kn®

Thus 17® is a normal mode with frequency w? = % Now in the space expanded by ), and (¥, we get

un® =k (,7<3> _ 77(4))
un™® = (777<3> n 371(4))
;o 1 -1
u = k( 13 )
It is straightforward to diagonalize this martrix. The eigenvalues are k (2 + \/5) and the eigenvectors are n(3) —

(1+v2)n®, and (1+v2)n® +n@.
Example: 4-ring

or

The potential energy is given by,

Clearly the zero mode is of the form

1
1 1
CO
N
1
Symmetry: z1 <> x3, o < 4. The latter one can be represented by
00 10
{0001
%y 1000
01 0O



The eigenvectors are

1 1
11 1| -1
w_1 @_1 -
1 -1
1 1
1| 1 1 -1
@1 @_1 _
=yl | T Ty | AT
-1 1

It can be checked that these are all nomal modes.

1.4 Group Theory and Moleculer Vibration

For a molecule with symmetry G, both the kinetic energy and potential energy are invariant under the group
transformation,
[T, M] =0, [T,U] =0

Then from eigenvalue equation in Eq(2) we get
TUn=U (Tn) = Tw>*Mn = w?>M (Tn)

This means 7 and T'np have the same frequency w. If we run the transformation 7" over the whole group and select
a linear independent set, ¢, ¢y, - - @,., then this set will form a basis for the transformation 7; € G. It is then clear
that if we put togather all these linear independent sets, we will get a representation matrix in the block diagonal
form with each block representing an irrep.
As we have discussed before, coordinate vector, £ = (z1,22, - xy,), will give a reducible representation of group
G7
Tz, = o Xpa (T3) and X (T3) X (T;) = X (T;T5)

Therefore if we can find out how the representation of coordinate vector, z = (x1,22, - xy,), reduces in terms of
irrep we can find the degenercies and structure of the normal modes,

X=> kDY

where D are the irrep and the coefficient k; is the number of time each irrep D®) appears in this reduction. The
coefficient n; can be calculated in terms of the characters of the representations,

1 SE
k=2 2 nex g

In this formula, we only need to know the trace of each group element. Thus the only contributions to XISX) come

from those atoms which are unmoved by transformation of the symmetry group G because each atom which is moved
to some other site will not have diagonal elements in the representation matrix. For a proper rotation of angle 6,
R (#) ,a unmoved atom will contribute (1 + 2cos#) to the trace and the total trace is

X(X) (R(0)) = Npg) (1 +2cosb)

where Npg) is the number of atoms which are not moved by the rotation R (#). Similarly, for an improper rotation
of angle 6, S () ,a rotation of angle 6 followed by a reflection on a plan perpendicular to the axis of rotation, the
trace is,

X(X) (S(0)) = Ns) (=14 2cos0)

where Ng(g) is the number of atoms which are not moved by the rotation S (¢) . However, for any molecular vibration,
there are always 6 zero modes, 3 for translation of molecule as a whole and 3 for rotation. We need to remove these

zero modes to get the real vibrational mode. We can used center of mass coordinates R to describe these motions.
So under proper rotation, and improper rotation we have,

X J(R(0)) = (14+2c0s0), x4 (5(6)) = (=1 +2cosb)

For the rotational modes, we can describe it in terms of an axial vector



YE(RO) = (1+2c0s0), X (S(0) =—(=1+2cosh)

Thus if we substract the translational and rotational zero modes, we get the trace for the pure vibrational modes,

Xfﬁ;) (R(0)) = (Nr) —2) (1+2cosb)

ij? (S(0)) = Nsy (=1 +2cos0)

As a illustration, we will study the water molecule HoO, which has Cy, symmetry. The vibrational characters are
E (proper,6 =0, Ng =3) Xy (E) =3
oy (improper,0 =0, No, =3) Xy (00) =3
o (improper, 0 =0, Noy = 1) Xuip (00) =1

We can use the character table for Cy, to see how the vibrational modes reduced in terms of irrep of Co,.

Coy E Cs Oy O';)
A (Z) 1 1 1 1
Az (R,) 1 1 -1 ~1
By (a?) 1 —1 1 -1
B (y) 1 -1 -1 1
Yot 3 | 3 1

We take o, to be the reflection in the plane of the molecule and ¢/, to be reflection in the perpendicular plane
bisecting the HOH bond angle. The C5 axis is z and y axis.We see that the reduction is

Xoviv = 241+ By

A A A

Fig. T-8.  Norural modes of water molecule.  (al-(5) Symmetry Ay; (c) symmeiry B,

Thus the vibrational modes are given by 2 A; modes which are invariant under Cs, and 1 B; mode which is invariant
under C; rotation and change sign under o,,.

Another example : N H3z molecule

N
H H
H
This molecule has D3 symmetry. The characters for vibrational modes are

D3 E 2Cs 3Cy
Ay 1 1 1

Agy 1 1 -1

E 2 -1 0
Xvib 6 0 2

We see that the reduction of vibrational modes are
X’U’ib = 2A1 + 2E

Thus there are 2 non-degenerate and 2 doubly degenerate modes.



