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1 INTRODUCTION

Group theory is the framework for studying physical system with symmetry. In particular, the representation theory
of the group simpli�es the physical analysis. For example, suppose that an one-dimensional Hamiltonian has the
symmetry x! �x; i.e.

H(x) = H(�x)

Then from the time-independent Schrödinger�s equation,

H(x) (x) = E (x)

we get
H(�x) (�x) = H(x) (�x) = E (�x)

which means that  (�x) is also an eigenstate with same eigenvalue E. Thus we can form the linear combinations of
these two states,

 � =
1p
2
( (x)�  (�x))

which are parity eigenstates and are either symmetric or anti-symmetric under x! �x. These are the consequences
of symmetry. Note that this means only that the eigenstates can be chosen to be either symmetric or antisymmetric
and does not necessarily mply that the system has degenerate eigenstates. For example, in the case of one-dimensional
harmonic oscillator potential, the enegy eigenstate is either symmetric or antisymmetric but not both
REMARK: The symmetry ofH does not necessarily imply the symmetry of the eigenfunctions. It only says that

given an eigenfunction, the symmetry operation will generate other solutions which may or may not be independent
of the original eigenfunction. If they are independent, then there will be degeneracy. As we will discuss later, in fact
eigenfunctions form irreducible representations of the symmetry group.
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1.1 Examples OF Symmetry Groups in Physics

1. Finite groups

(a) Crystallographic groups (symmetry group of crystals)

Symmetry operations
�
translations - periodic
rotations - space group

�
Example:

i. NaCl

ii. Molecules

(b) Permutation group
In quantum mechanics, the wavefunctions of identical particles are required to be either symmetric of
antisymmetric under the permutation of the coordinates. These permutations form a group, permutation
group Sn: Permutation group also plays an important role in the study of representations of unitary
groups.

2. Continuous groups

(a) O(3) or SU(2)�Rotation group in 3�dimension
This group forms the basis for the theory of angular momentum in quantum mechanics. The structure of
this group also provides the foundation for describing other more complicated groups.

(b) SU(3)�Special unitary 3� 3 matrices
This group is used to describe the spectrum of hadrons in the quark model. But the symmetry here is
only approximate. SU(3) has also been used to formulate the theory of strong interaction, QCD. Here
the symmetry is exact but has the peculiarity of con�nement.

(c) SU(2)L � U(1)Y
This is group has beeb used to describe the standard model of electromagnetic and weak interactions.
However the symmetry here is also broken (spontaneously).

(d) SU(5); SO(10); E(6)
These symmetries have beeb used to unify electromagnetic, weak and strong interactions, grand uni�ed
theories (GUT). Of course these groups are badly broken.
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(e) SL(2; C) Lorentz group
This is the group which provides the description of space-time structure in special relativity. It is a central
dogma to any formulation of relativistic system. In particular, it plays a crucial role in the relativistic
�eld theory.

2 ELEMENT OF GROUP THEORY

2.1 De�nition of Group

A group G is set of elements (a; b; c : : :) with an operstion * satisfying following properties:

(i) Closure : If a; b;2, this implies c = a � b is also in G.

(ii) Associative: a � (b � c) = (a � b) � c

(iii) Identity : 9 an element e such that a � e = e � a = a 8 a 2 G

(iv) Inverse : for every a 2 G; 9 an element a�1 such that a � a�1 = a�1 � a = e

To simplify the notation, we will denote the group operation a � b by the simple product ab:
Examples of Group

1. All real numbers under \ + "

2. All real numbers without \0" under \� "

3. All integers under \ + "

4. All rotations in 3-dimensional space: O(3)

5. All n� n matrices under \ + "

6. All non-singular n� n matrices under \� ": GL(n) (General Linear Group in n-dimension)

7. All n� n matrices with determinant 1: SL(n) (Special Linear Group in n-dimension)

8. All n� n unitary matrices under \� ": U(n) (Unitary Group in n-dimension)

9. All n� n unitary matrices with determinant 1: SU(n) (Special Unitary Group in n-dimension)

10. All n� n orthogonal matrices: O(n)

11. All n� n orthogonal matrices with determinant 1: SO(n)

12. Permutations of n objects: Sn

Abelian Group - If the group multiplication is commutative, i.e. ab = ba 8 a; b 2 G.
Finite Group - If the number of elements in G is �nite.
Order of the Group - # of elements in the group.
Subgroup - a subset of the group which is also a group. e.g. SL(n) is a subgroup of GL(n).
Simple Example : Symmetry of a regular triangle ( called D3 group)
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Operations
A: rotation y by 120�in the plane of triangle
B: rotation y by 240�in the plane of triangle
K: rotation y by 180� about zz0

L: rotation y by 180� about yy0

M: rotation y by 180� about xx0

E: no rotation
Group Multiplication : consider the product KA

Thus we have KA = L
This way we can work out the multiplication of any 2 group elements and summarize the result inmultiplication

table.

E A B K L M
E E A B K L M
A A B E M K L
B B E A L M K
K K L M E A B
L L M K B E A
M M K L A B E

Clearly fE;A;Bg ; fE;Lg ; fE;Kg ; fE;Mg are subgroups

Isomorphism: Two groups G = fx1; x2; : : :g and G0 = fx01; x02; : : :g are isomorphic if
9 a one-to-one mapping xi ! x0i such that

xixj = xk =) x0ix
0
j = x0k

In other words, the groups G and G
0
; which might operate on di¤erent physical system, have the same structure as

far as group theory is concerned.
Symmetry group S3 : permutation symmetry of 3 objects. S3 has 6 group elements.�

123
123

�
;

�
123
231

�
;

�
123
312

�
;

�
123
132

�
;

�
123
321

�
;

�
123
213

�
We can show that S3 is isomorphic to D3 by associate the vertices of the triangle with 1; 2 and 3:

2.2 Rearrangement Theorem

Theorem : Each element of G appears exactly once in each row or column of the multiplication table.
Proof: Take group elements to be E; A2; A3; : : : ; Ah.

Multiply by arbitrary group element Ak on the left AkE; AkA2; AkA3; : : : ; AkAh. Suppose 2 elements in this set are
the same, e.g. AkAi = AkAj where Ai 6= Aj . Multiply this by A

�1
k to get Ai = Aj which contradicts the initial

assumption. Hence all elements in each row after multiplication are di¤erent. But there are exactly h elements in
each row. Therefore, each group element occurs only once in each row. In other words, multiplication of the group
by a �xed element of the group, simply rearrange them. This is why it is called the rearrangement theorem. �
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2.3 Applications of Rearrangement Theorem

1. Suppose we are summing over the group elements of some functions of group elements, �
Ai

f(Ai) . Then

rearrangement theorem implies that
�
Ai

f(Ai) = �
Ai

f(AiAk)

for any Ak 2 G. This result is central to many important result of the representation theory of �nite groups.
The validity of this theorem for the case of continuous group is then an important requirement in generalizing
the results from the �nite groups to continuous groups.

2. Using this theorem, we can show that there is only one group of order 3. This can be seen by using multiplication
table

E A B
E E A B
A A B E
B B E A

In fact, this group is of the form A;B = A2; E = A3. This is an example of cyclic group of order 3.

Cyclic Group of order n; is of the form, Zn =
�
A;A2A3; : : : An = E

	
Clearly, all cyclic groups are Abelian.
Examples of cyclic groups:

1. 4th roots of unity; 1;�1; i;�i =
�
i; i2 = �1; i3 = �i; i4 = 1;

	
2. Benzene molecule

Z6 =
�
A;A2 : : : A6 = E

	
A = rotation by

�

3

2.4 Group Induced Transformations

For many groups in physics, we are dealing with geometric �gures. In these cases, the group transfomations can
be represented as operations in the coordinate space. As an example, take a coordinate system for the triangle as
shown,

If we keep the triangle �xed and rotate the coordinate system, we get the relations between the old and new
coordinates as

x0 = cos
2�

3
x+ sin

2�

3
y = �1

2
x+

p
3

2
y

y0 = � sin 2�
3
x+ cos

2�

3
y = �

p
3

2
x� 1

2
y

or �
x

y0

0
�
=

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!�
x

y

�
or ~x0 = A~x A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
; ~x =

�
x

y

�
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Thus group element A can be represented by matrix A acting on the coordinate system (x; y). We can do this for
other group elements to get,

B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
E =

�
1 0
0 1

�
K =

�
�1 0
0 1

�
L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
M =

 
1
2

p
3
2p

3
2

1
2

!

The product of the group elements can also be expressed in terms of matrices, e.g

~x0 = A~x ~x00 = K~x0 =) ~x00 = KA~x

K =

�
�1 0
0 1

�
A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
KA =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
= L

Thus, the matrix multiplication gives the same result as the multiplication table, isomorphism between the symmetry
group and the set of 6 matrices. This is an example of representation - group elements are represented by a set of
matrices (does not have to be 1-1 correspondence). From now on, for the simplicity of notation, we will denote the
matrices by the same symbols as the group elements.

2.5 Transformation of Functions

We can generalize the transformations of coordinates to functions f(x; y).

(i) Take any group element A of G, which generate matrix A on (x; y).

(ii) Replace ~x by A�1x0. This de�nes a new function g(x0; y0). We will denote g(x; y) by g(x; y) = PAf(x; y) or
more simply PAf (x) = f

�
A�1x

�
:

Example: f(x; y) = x2 � y2; take

A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
then

x0 = � 1
2x+

p
3
2 y

y0 = �
p
3
2 x�

1
2y

or
x = � 1

2x
0 �

p
3
2 y

0

y =
p
3
2 x

0 � 1
2y
0

and

f(x; y) =

 
1

2
x0 +

p
3

2
y0

!2
�
 p

3

2
x0 � 1

2
y0

!2
= �1

2

�
x0

2

� y0
2
�
+
p
3x0y0 = g (x0; y0)

Or
g (x; y) = �1

2

�
x2 � y2

�
+
p
3xy = PAf (x; y)

Symbolically, we have
f (~x)! f

�
A�1~x

�
= g (~x) or PAf (~x) = g (~x) = f

�
A�1~x

�
Theorem: If A�s form a group G, the PA�s de�ned on certain function f (~x) also form a group GP .
Proof:

PAf (~x) = f
�
A�1x

�
= g (~x)

PBPAf (~x; ) = PBg (~x) = g
�
B�1~x

�
= f

�
A�1

�
B�1~x

��
= f

�
A�1B�1~x

�
= f

�
(BA)

�1
~x
�
= PBAf (~x)

Thus we have PBPA = PBA =) G is homomorphic to GP : But the correspondence A! PA is not necessarily
one-to-one.
Note that we de�ne PA in terms of A�1 in order to get the homomorphism PBPA = PBA:
For example if we have the function f (x; y) = x2 + y2 =) PA = PB = PE = : : : = 1.
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2.6 Coset

Coset of a group is a useful tool to decompose the group into disconnect sets. Let H = fE;S2; S3 : : : Sggbe a subgroup
of G:
For x 2 G but x =2 H; if we multiply the whoe subgroup by x on the right we get

fEx; S2x; S3x; : : : Sgxg right coset of x, denoted by Hx

and the left multiplication gives,

fxE; xS2;xS3; : : : xSgg left coset of x, denoted by xH

Note that a coset can not form a group, because identity is not in the set.

Properties of Cosets

(i) Hx and H have no elements in common.

Suppose there is one element in common,

Sk = Sjx; where x =2 H

then
x = S�1j Sk 2 H

This is a contradiction because x =2 H by construction.

(ii) Two right (or left) cosets either are identical or have no element in common.

Consider Hx and Hy; with x 6= y:Suppose there is one element in common between these 2 cosets

Skx = Sjy

then
xy�1 = S�1k Sj 2 H

But Hxy�1 = H by rearrangement theorem which implies that Hx = Hy

Theorem: If H is a subgroup of G, then the order of H is a factor of order of G.
Proof: Consider all distinct right cosets

H; Hx2; Hx3; : : : ;Hxl

Each element of G must appear in exactly one of these cosets. Since there are no elements in common among
these cosets, we must have g = l � h where h the order of H, l some integer and g order of G.�
Remark: This theorm severely limits the possible subgroup of a �nite group. For example, a group of order 6,

like D3; the only non-trivial subgroups are those with orde 2 or 3:
Example: Consider the symmetry group of the regular triangle (D3) and the subgroup H = fE; A;Bg
From the group multiplication table we see that

KH = fK;L;Mg ; LH = fL;M;Kg ; MH = fM;K;Lg

Here there is only one left coset besides the subgroup itself. Now choose the subgroup to be H 0 = fE; Kg then the
cosets are

AH 0 = f A;Mg ; BH 0 = f B;Lg

Here we have 2 di¤erent left cosets.
Conjugate: B and A are conjugate to each other if 9 x 2 G such that

xAx�1 = B (similarity transformation)

Remark: Replacing each element by its conjugate under some �xed element x is an isomorphism of G to G under
x. This can be seen as follows. From

A0 = xAx�1 B0 = xBx�1

A0B0 =
�
xAx�1

� �
xBx�1

�
= xABx�1 = (AB)

0
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we see that gi ! g0i = xgix
�1 is an isomorphism because the correspondence is one-to-one.

In coordinate transformations, similarity transformations correspond to change of basis and do not represennt a
intrinsically di¤erent operation.

Coset Space
G=H = fcosets Hx, x 2 G but not in Hg
Roughly speaking, coset space is obtained by grouping together elements which are related by left (or right)

multiplication of elements in the subgroup H. This decomposition is useful in reducing the structure of the group to
a smaller structure.

2.7 Class

All group elements which are conjugate to a given element is called a class. Roughly speaking these are group
elements which are essentially the same operation with di¤erenent basis and these basis can be tranformed into one
another by the group transformation.
Denote the group elements by G = fE; x2; : : : ; xng
Take A 2 G, then
EAE�1

x2Ax
�1
2

...
xhAx

�1
h

9>>>=>>>; class (all group elements conjugate to A). Note that these elements are not necessarily all di¤erent.

Example: symmetry group of triangle D3 From the multiplication table, we see that

AAA�1 = A AKA�1 = L

BAB�1 = A BKB�1 =M

KAK�1 = B KKK�1 = K

LAL�1 = B LKL�1 =M

MAM�1 = B MKM�1 = L

Hence the classes are fEg ; fA;Bg ; fK;L;Mg.
Note: E is always in a class by itself because A�1i EAi = EA�1i Ai = E; 8Ai 2 G. In this example, fA;Bg�
rotations by 2�3 and fK;L;Mg� rotations by �. This is a very general feature�all elements in the same class have
same angle of rotation. Thus roughly speaking elements in the same class have the same physical operation.
Invariant Subgroup: If a subgroup H of G consists entirely of complete classes. For example H = fE;A;Bg

is an invariant subgroup while fE;Kg is not. Invariant subgroup is also called normal subgroup or normal
divisor. Symbolically for invariant subgroups, we have xHx�1 = H for any x 2 G. which implies xH = Hx; i.e. left
cosets are the same as right cosets.

For every group G, there is at least two trivial invariant subgroups, fEg and the group G itself. If a group only
has these two invariant subgroups, then it is called a simple group. Examples of simple groups are cyclic groups of
prime order.
Factor Group (or Quotient Group)
Consider the invariant subgroup H = fE; h : : : h`g of G and the collection of all distinct left (or right) cosets

[a] � aH; [b] � bH; : : : (where in this notation [E] = H).
De�ne the multiplication of cosets as follows: Suppose r1 2 [a] ; r2 2 [b] and r1r2 = R0. Then we de�ne

[a] [b] = [R0]. Let a; b 2 G but not in H, then the product of elements from these two cosets can be written as

(ahi) (bhj) = ab
�
b�1hib

�
hj = ab (hkhj) 2 coset containing ab

where we have set hk = b�1hib. Notation: If C1 and C2 are two classes, then C1 = C2 means that C1 and C2 have
same collection of group elements. Thus the coset multiplication is well-de�ned and is analogous to multiplication of
the group elements. It is not hard to see that the collection of these cosets of H forms a group, called the Quotient
Group and is denoted by G=H.

Example: For the simple case of D3 group, the only non-trivial invariant subgroup is H = fE; A;Bg and the
left coset is KH = fK;L;Mg : It is easy to see that

(H) (H) = fE;A;B;A;B;E;B;E;Ag = (H)
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(KH) (H) = fK;L;M;L;M;K;M;K;Lg = (KH)

(KH) (KH) = fE;A;B;B;E;A;A;B;Eg = (H)

Thus the set f(H) ; (KH)g forms a group of order 2.
Theorem: If C is a class, then for any x 2 G, we have x Cx�1 = C.
Proof: Write C = fA1; A2; : : : ; Ajg then x Cx�1 =

�
xA1x

�1; xA2x
�1; : : : ; xAjx

�1	.
Take any element in x Cx�1 say xAix�1. This is an element related to Ai by conjugation. xAix�1 is in the class

containing Ai and hence xAix�1 2 C. Thus, each element in x Cx�1 must appear in C because C is a class. But all
elements in x Cx�1 are di¤erent. Therefore x Cx�1 = C.

Theorem: Any collection C which satis�es x Cx�1 = C for all x 2 G consists wholly of complete classes.
Proof: First we can subtract out all complete classes from both sides of the equation. Denote the remainder by

R. So we have xRx�1 = R. Suppose R is not a complete class. This means that there exists some element Ai which
is related to some element Rj 2 R by conjugate and Ai =2 R; i.e.

Ai = yRjy
�1 and Ai =2 R

But this violates the assumption xRx�1 = R for all x 2 G.

2.8 Class Multiplication

For 2 classes Ci; Cj in G; we have from the previous theorems

Ci Cj =
�
x�1 Cix

� �
x�1 Cjx

�
= x�1 (Ci Cj)x 8 x 2 G:

Thus Ci Cj consists of complete classes, and we can write

Ci Cj =
X
k

cijk Ck

where cijk are some integers indicating how many times Ck appears in the product .Ci Cj .
Example: D3 group
Here there are 3 classes C1 = fEg ; C2 = fA;Bg ; C3 = fK;L;Mg : From the group multiplication table we see

that
C1 Cj = Cj ; C2 C3 = fK;L;M;K;L;Mg = 2C3

C2 C2 = fE;E;A;Bg = 2C1 + C2; C3C3 = fE;E;E;A;B;A;B;A;Bg = 3C1 + 3C2
Direct Product of Two Groups
Given two groups G = fxi; i = 1; : : : ; ng ; G0 = fyj ; j = 1; : : : ;mg, the direct product group is de�ned as

G
G0 = f(xi; yj) ; i = 1; : : : n; j = 1; : : : ;mg

with group multiplication de�ned by

(xi; yj)� (xi0 ; yj0) = (xixi0 ; yjyj0)

It is clear that G
G0 forms a group. Note that

(E; yj)� (xi; E0) = (xi; yj) = (xi; E0)� (E; yj)

In some sense, this means that G and G0 are subgroups of G 
 G0 with the property that group elements from G
commutes with group elements from G0.

We can generalize this to de�ne direct product of 2 subgroups. Let S and T be subgroups of G such that S and
T commute with each other,

sitj = tjsi 8 si 2 S; tj 2 T:

Then we can de�ne the direct product S 
 T as

S 
 T = fsitj j si 2 S; tj 2 Tg

Example:

Z2 = f1;�1g Z3 =
n
1; e2�i=3; e4�i=3

o
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Z2 
 Z3 =
n
1; e2�i=3; e4�i=3;�1;�e2�i=3;�e4�i=3

o
=
n
1; e2�i=3; e4�i=3; ei�; e5�i=3; e�i=3

o
Clearly, this is isomorphic to Z6.

There is an interesting connection between direct product of groups and quotient group. Sometimes it is possible
to reconstruct a group G by taking the direct product of G=H and H (where H is an invariant subgroup of G). The
question of whether this reconstruction is possible or not is called the extension problem.
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