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1 Infinite Group

Infinite group : group which contains infinite number of elements.
It is convenient to label the group elements by one or more real parameters (group parameters)

Aoy, ag, - ap), Q1,Q,- - q, group parameters

Continuous group : group parameters take continuous values.
Compact group: group parameters vary over some compact domain.
For example, 3-dimensional rotational group is compact because the group parametes, the angles of rotation,

U
varies over compact interval [0,27], while Lorentz group is not compact because it has a group parameter, § = —
c

which varies over the non-compact interval, [0,1).

Example: SO (2), set of rotations about a fixed axis( or 2 x 2 real orthogonal matrices with unit determinant) and
is an one-parameter continuous group. We can choose the group parameter to be the angle of rotation ¢, 0 < ¢ < 27.
Thus it is a compact group. Denote the group elements by, R (¢). The group multiplication is then

R(¢1) R(¢2) = R(¢1 + ¢5)

We can visualize the group elements as points on the unit circle and are labeled by the angle. This is called the
group parameter space.



2 Group Integration

2.1 Group invariant measure

In the theory of finite group, the rearrangement theorem,
Zf(Aj):Zf(AJB): f(BAJ)7 B7AJGG
j=1 j=1 1

n

J

plays an essential role in proving important theorems on the representation theory. In the continuous group, the
summation over group elements is replaced by the group integration which is defined on the group parameter space,

/dAE/W(al,---an)dal---dan

where W (aq, - - - @) is a measure (or weight function). In order to carry over the useful results of the finite group we
want to define the group integration (or choose a measure W) in such a way that that the rearrangement theorem is
still true. This is called the group invariant integration (measure). This means that the measure W (aq, - - o)
should be chosen such that for arbitrary group element B and arbitrary continuous function u(A) = u (g, ay)
defined over the group parameter space, we require

/u(A)dA:/u(AB)dA:/u(BA)dA

where

/U(A)dAE /u(oq,---an)W(al,---an)dal~--do¢n
We shall adopt the notation,

—

A=Afara)=A(3), B—A(ﬂl,mﬂn)—A(E)
BAA(E)A(&’)A(?)
7=7 (5.)

are some functions of group parameters, @ , B . These functions are determined by the group multiplication and
contains all the information about the structure of the group. We write the integrations as,

Then

where

dA:W(a) d"a =W (a1, ap)day - do,

d(BA) :W(7) A"y =W (1, 7n) dyy - dyy

Thus group invariant measure should have the property
dA=d(BA), o W (5) o =W (7) A"y

Note that left (or right) multiplication by a fixed group element, say B, is a 1-1 mapping of G onto itself. Thus
giving a set of group elements in some region V of the parameter space, under the left (or right) multiplication by
B, these elements will move to other region V’. Since the total number of element in V is the same as those in V',
we get the relation,

pV =p'V',
where p (p') is the density of elements at V (V’). This means that if we take the measure W (a1, - - @, ) to be the
density of the group elements at « we will have

W (a) d"a =W (’—y)) d"~, where 7 = v (E, E)

. — . . .
ie. W (a) is a group invariant measure.



To get the density of elements W (52) we consider an infinitesmal volume element Vy = daj ---da,, in the
neighborhood of the origin(identity) i.e. I = A (0). Under left multiplication by B, they move to Vi,

w (@) ve=w(7)v

Thus the ratio of the weight functions are determined by the ratio of the volume elements. We will normalize the
density such that W (0) =1, i.e. density is 1 at origin. Setting o = 0, we get

W(E):W(S):l, and W(?)_W(E>

()=

Recall that the change in the volume elements under the transformation induced by B = A ( I} ) is given by the

Then

Jacobian of the change of the variables o@ — ? (E, E) . Thus we get

0 (aq, - ay)

Vi
8(717771) '

a=0

8(0513 o 'a7z)
dﬂ)/ ...dr}/n: - - 7
a7 (Y15 Yn)

—1
3_6}

Thus to find the group invariant measure we need to know the change of group parameters under the multiplication
of group element.

Vo =day - - day, =

Thus the invariant group measure is given by

w (7) - [

2.2 SO (2) group.

The group multiplication is given by
R(@)R(B)=R(y), withy=a+p

where «, 3,7 are angles of rotations. The group invariant measure is

W (B) = [g’g}*:l

Note that the group elements of SO (2) are uniformly populated along the unit circle. This means that the points
per unit length is same everywhere. This explains the feature W () = 1 in this case. The the group integration is

then
27
/ do
0

Since this is an Abelian group, all irreps are one-dimensional and of the form

etima m = integer s

The great orthogonality theorem is of the form,

2 ) -, «
da e"™® (e”" a) = O/ 27
0

If we had chosen any other measure f («) # constant, then we would not have the great orthogonality theorem.



2.3 SU(2)

This is the group consists of 2 X 2 unitary matrice with determinant=1,

vut=Uutu=1, detU=1
a b
v=(t 1)

1 d -b a* c*
-1 _ T
v _detU<c a > U_(b* d*)

U '=U", and detU =1

Write the unitary matrix U as

then

Then the conditions

imply that ) ,
a* =d, " = —b, la|” + b]" =1

The most general form a 2 x 2 unitary matrix can have is

—b .
LF(% *) with Ja? + b’ = 1
b* a
If we parametrize a and b in terms of real variables,
a = uy + ius, b = usz + iuy, u; real
then we have the constraint
u%—i—u%—i—u%—i—ui =1

Thus group elementss of SU (2) can be represented by points on the surface of a sphere in 4-dimensional space. This
suggests the choice of invariant measure as

/dR:/du1-~-du46(u§+u%+u§+ui—1)

It is intuitively clear that multiplication by an SU (2) corresponds to a rotation on the surface of the sphere and this
measure is invariant. To show this explicitly, we need to prove that

[ars )= [ arsm),
where R’ = SR and [ is some arbitrary function. Using the parametrizations,

l ! / )] . . ; .
R — Uy + Uy —Uz — Uy g — S1+ 18S9 —S83 — 184 R— Uy + U2 —U3 — U4
- ) - ) - )

uh —duy  uj —iub S3— 184 81 — 189 U — Uy U — U2

we get from the relation R’ = SR,

Uy = S1UT — S2U2 — S3U3 — S4U4
Uy = Sol] + S1U2 — SaU3 + S3U4
U3z = S3U1 + SaUz + S1U3 — SaU4
) = s4u1 — S3Ug + Sauz + S1U4

The Jacobian of the transformation is then

S§1 —S2 —S3 —S84
li / / /
J= 0 (uy, uy, uj, uj) _|S2 s —814 83
0 (u1,ug,us, ug) 53 S4 51 S
Sq S3 —S9 S1

It is easy to see that J = 1 because it is the determinant of an orthogonal matrix using the fact that s?+s3+s2+s3 = 1
. Then we have
0 (ufy, ub, ub,
duf - duld (uf +uf +uf +uf —1) = Mdul---dud(u% +uj +uj +uj — 1)
a (ula U2, U3, Usq

= dul--~du45(uf—i—u§+u§+ui—1)



3 Rotation Group O (3)

3.1 Homomorphism to SU (2) Group
The group elements of rotation group O (3) will be denoted by P-. (6), the operator which rotates the system by

angle 6 about the axis n. If we write
0J -n

P (0) = i
= (0) =exp | —i -

then J will be called the generator of rotation. we can also parametrize the rotation operator in terms of the familiar
Euler rotations,

R(@,5.7) = P (@) P () P. () = exp (e ) oxp (=528 ) exp (55,

where 0 < a,y < 27, 0 < 8 < w. We will now show that O (3) is homomorphic to SU (2) group. For any vector
T = (z,y, 2) define a 2 x 2 hermitian matrix by

_o o z T — 1y
h=o-r (x—l—z'y —z )

where o are the Pauli matrices. It is easy to see that h has the properties
Tr(h) =0, deth = — (2° +y* + 2°) = —r?
Let U any 2 X 2 unitary matrix U and define a new matrix h’ by
B =UhUT (1)
It is clear that A’ is also hermitan, traceless and has the same determinant as h,
K=m), Tr()=0  deth' =deth

If we expand A’ in terms of Pauli matrices,
[—

W=0c-r
then the relation between 7 and ?I is just a 3-dimensional rotation. This is due to the equality of the determinants,
deth = — (2 +y* +2°) =deth’ = — (2" +y* + 2)
In other words, the relation between 7 and ?/ is a linear transformation and can be written as
T, = Ri;r;

and R is an orthogonal matrix. This establishes the correspondence between 2 x 2 unitary matrix with unit deter-
minant and 3-dimensional rotation.
Note that from Eq(1) we see that U and —U, give the same A’ and hence the same rotation. So the correspondence

+U — R

is a homomorphism rather than isomorphism.

3.2 Rotation about z-axis

Suppose U is diagonal. Then the general form is given by,

eia/2 0
U= ( 0 e—ia/2 )

. 2’ =y ) i z (z —iy) '
h = ( ' +iy =2 > = Uhut = ( (x +iy)e @ —z

This gives the relation

and

' = cosazx + sin ay
y = —sinax + cos ay
2=z

which is clearly a rotation around z — azis. Thus a diagonal U corresponds to rotation about z-axis.



3.3 Rotation about y-axis

For the case U is real, we can write

cosé sin —
U= 2
—sin§ cos§
Then we get
, cos§ sin — P z— iy cosé —sin —
" —siné cos% <m—|—iy F ) siné cosé2
2 2 2 2
_ zcos B+ xsin xcosf —iy — zsin g
o W +xzcosB—zsinf3  —zcosB — xsinf3
and

' = cos Bx — sin Bz
Y=y
z' = sin Bz + cos Bz

which is clearly a rotation about y — azis. In other words, a real orthogonal matrix correspong to rotation about
y—axis.

3.4 Euler Rotation

The 2 x 2 unitary matrix corresponding to rotation characterized by Euler angles, is then of the form,

—ia/2 CcOS — sin — _ia/2
v = r@rero=( 0 2 ) T () WLe) @

—sin 5 cos —
e~ Ha+7)/2 og é —_e—Ha—=7)/2 Sing ( 0 —b > a = e~ Ha+7)/2 o é
T B e P e N L
2 2 2
If we write
a=uy+ituy = efi(a+y)/2 cos 27 b= Uz + tuy = efi(o‘*'Y)/2 sin ﬁ

the group invariant integration can be converted to the integration over Euler angles by computing the Jacobian as
follows. First we write

1
/dR:/dul---dud(u%—&—u%—i—ug—!—ui—1) :/dRz/duldquuz),m
4

and

/dulduzdu;g = /dadﬁd’y,]

The Jacobian is then of the form

8 (ur,us,ug) 1 —sin (a4 ) /2cosB/2 —cos(y+7)/2sin3/2 —sin(a+7)/2cos5/2
7= Sl o ) —cos(atq) 2e0s /2 sin(a-+9) /2sinf/2  —con(a-+) [2e0s /2
& 5 —sin(a—7)/2sinf/2  cos(a—7)/2cos(/2 sin (@ — 7y) /2sin §/2

é?sin(a—’y)/Q [cosﬁ/Qsm /2]

The integration measure in terms of Euler angles is of the form,

1 2m T 2m
/dR:/dul..~du45(u%+u§+u§+ui—1):1—6/ da/ sinﬂd,@’/ dry
0 0 0

1
The factor 6 is an overall normalization factor and is usually neglected for conveience.



4 Irreducible Representation of SU (2)

The 2 x 2 matrice of SU (2) can be viewed as a rotations in the complex 2—dimensional space Cz. We will use the
induced transformation on functions of these 2—-dimensional coordinates to generate other representations. Let & and
7 be the basis vector for the 2 x 2 matrice of SU (2). Then under the SU (2) transformation, we have

f)=M&mwr%+fm

a

Rt = €U = e -

i.e.
¢ =Pyé=al+b*n
n' = Pyn = —b§ 4 a*n

Consider the action of Py on the mononomial £*n#, with X + y = 24, where j is an integer or half integer. As an
example, take j = 1. There are 3 different monomials,

& o
Then under the induced transformation we get
§% = (ag +b'n)° = a’€” + 2ab"¢n + b7’
€' = (a& +b*n) (=b€ + a*n) = —ab€® + (aa™ — bb*) &n + a*b*n?
2 = (=b€ + a*n)? = b** — 2a*bEn + a7’

We can write this in the matrix notation as

é»/2 52
/9 a? 2ab* b /2
o I S N B I
&'n = V2ab  (aa* —bb*) /2a*b &n
n'? b? —/2a*b a®* LQ

V2

S

1
We have inserted the factor of \ﬁ in order to get a unitary matrix. As we have discussed before these matrices for

different values of a,b will form the representation matrices of the SU (2) group. We now want to generalize this to
arbitrary mononomials. It is more convenient to write it as

_ 1 " - o ,
¢in:7(£)J m(n)j m7 m:_]v_]+17"'7]
Tjm
where nj,, is a normalization factor to be determined later. Since the transformation from (&, n) to (f', n ) is linear
and homogeneous the transform of ¢/, will have the same value of j but different m.More explicitly,

j 1 j+m * j—m
Pudh, = — (a&+bn)"" (~bE +a"n)’
jm
41 R <‘7 +m)' (-7 — m)' S *\J—M—8 1 (3x\J+M—T srss Jj+m—r j—m—s
- D3 [ [ v e e ey e 0
Define m’ by
s=j+m' —r, j<m/ <j
Then
j Njm’ (.] + m)' (.7 - m)‘ (_1)j+m’—7‘ j+m—r j+m —r r—m—m’ ,j
P, J J T (L*\] J * Wi ,
= 2 () [ oG s OO @

In terms of Euler angles we have

a = e Hot/2 ¢og é7 b=e UM/ 2gin g

and we can write

PU¢ZYL = Z d)Zn/D‘Zn,’m (Oé, 57 7)

m’



where

with

D, (a,B,7) = e ™odi(B)e~im -
7 M) = m) g (_1)j+m'—k

2k—m—m' 2j—2k+m+m’
cos é sin é
2 2

Note that the sum over k covers all thos values for which the argument of the factorial functions are positive.

4.1
1.

Properties of Df}b/m (o, B,7)

D, (a,B,7) s form (2] + 1) dimensional representation of SU (2) . This follows from the fact that the group
induced transformation always generates a representation of the group as discussed in Note 2.

Dfn,m (0,0,0) = dsnm, the identiy matrix. To see this we set 8 =0 in Eq(4) and the non-zero term is where
2k = 2j + m + m’. This implies that

1 1
j+m—k:§(m—m’), j+m’—k:§(m’—m)

and the positivity of the arguments of the factorial functions gives m = m’ and dfn,m (0) = Spmmy-

For the matrix Dfn,m (a, B8,7) to be unitary, we require

Di@'m (O‘7ﬂa7>T :Dgn’m (_’7’ —/B,—OZ) = dzn'm (_/B) :dznm’ (/B>

It is straightforward to show that this fixes the constant n;,, to be

nim = /(G +m)! (G —m)!
and the d—finction is then

j _ (1) GEmI G —m) G+ m) (= m)! g\ g 2 2kmegm!
o (F) K +m—k)(G+m —k) (k—m—m) <COSQ> (Sm>

(5)

For each value of j, the representation Dfn,m (a, B,7) is irreducible. This can seen as follows. Suppose there
exists a matrix M such that ‘ .
MD’ (a, 8,7) = D’ (a, 8,7) M (6)

We consider following cases:

(a) a#0,=7=0
From Eq(5), we see that as before only non-zero term in the summation is where

2 —2k+m+m' =0
which gives 4
dl o (0) = Oy

Then ‘ »

DI, (@,0,0) = e G,
and Eq(6) implies that

(e—ima _ e—im/a) Mmm’ =0
Thus M, = 0 if m #m/, i.e. M is diagonal.

(b) a#0,8#0,7#0

Since we have already shown that M is diagonal, Eq(6) gives

My D2, =D My (no sum)

But for arbitrary («,f3,7), D’

) rim is not zero. Thus M,y = My, or M is a multiple of identity.
Schur’s lemma implies that D

7 (a, B,7) is irreducible.

m’'m



5. If we replace 8 by 8 + 27, we see that from Eq(2) that the 2 x 2 matrix U has the property,
U—-U
For the representation matrice this implies that
@ (B+2m) = (-D)¥d (B), or DI (-U)=(-1)" D)(U)

Thus for j =integer DI (-U) =D (U) single valued representation
j = half integer DI (=U) =D (U) double valued representation

6. Representation of the generators J;, i = 1,2,3

Recall that . . .
R (e, B,7) = exp <Zhoz> exp <Zhyﬁ) exp <th v)
Take 5 =v=0, a < 1, we get
Rl = (1- o)

D7 (,0,0) ~ (1 — —im' @) G

m’m

From

we get '
D!, (J.) = hmbym

Similarly, take o = —y = —g, and 8 small, we can get D (J,)

a=y=0 and 3 small, we can get D (Jy)
In particular, for j = 1/2, we have

h(i0 1 h(0 — h(1 0
1/2 (. _ e 1/2 ¢ _ 1/2 ¢ _ v
D (jac) - 2 ( 1 O )7 D (.7?!) 2 < i O >a D (Jw) 2 ( 0 71 )

h
which are just the Pauli matrices up to the factor ok

7. Great Orthogonality Theorem reads

foh do foﬂ sin Bdf foﬂ dry
(27 +1)

21
/ da / sin BB / dvD?, (0, 8,7) DE (0 B,7) = 810 manborn

Using Dm m (a
relation on

a, B,7) given in Eq(3) we can integrate over angles « and 3 to reduce the integral to orthogonality

261
(2+1)

& (B), / sin BdBd,,., (B) iy () =
0

8. Character of irreps
Since all rotations of same angle about any axis are in the same class, we can choose the rotation about the
z-axis to compute the trace

j sin (] + 2) 0
X9 (0) = Tr [D] (n,&)} Tr [DJ (6,0,0)] Z e~ md — —
m=—j sin —
2
Note that

X9 (0) = xY=Y () = 2cos jO

Theorem: There are no irreps of SU (2) group other than D7 (o, 3,7).
Proof: Suppose D is another irrep with charactery () and not contained in D7. Then we have y () = x (—0) since
both rotations having the same angle are in the same class. Then from orhogonality theorem ¥ () is perpendicular
to x7) () for all j. This also implies that x (8) is perpendicular to ) (8) — xU=1 (8) = 2 cos jO. From the property
of Fourier series, we know that cos j6, 25 = 1,2,3,--- form a complete set of even functions in the range 0 < 6 < 7.
Thus x (#) =0. for all 6. &



4.2 Basis Functions

Suppose we define for j = [ =integer

@) dr m
Dom (@:8,7) =1/ 577 (B,7)
then we have
1) m dr Y
Diy (e 8,7) = (~1)" | g Vi (5. )

Suppose we have the following relation for the multiplication of group elements

R(QQaﬂQaVQ)R(alaﬂla'yl) = R(O[,B,’Y)

The corresponding representation matrices will satisfy

l
D'En)’m ( ZD'HL 'm” OéQ? 52772) 771) m (051,51,’)/1)

Setting m’ = 0, the relation is

ZYVZ ﬁ27’y2 () (041’/317’71)

Thus the functions {Y;™ (8,7)} form the basis for the irrep D' («,3,v). We can rewrite this in a more familiar
spherical angles notation as,

PRY™ (0,) =Y, ZY’” (0,6) DS\, (av, B,7) (7)
where

cos ' = cosf cos B + sinfsin ¢ cos (¢ — )
Example : [ =1

3 . 3 (z+1y 3 3z
0.9 = fgpinoe = [ TEED w00 = o= 22
— 3 . —q 3 (x—1

1(97¢):_\/8:Sln96 ¢:_\/8:(1~y)

For the special case of m = 0 we have

20+1

Y (0.9) =\ =1

Py (cos )
and from Eq(7) we get the addition theorem,

P{eost’) = (557 ) W 0.0 (5)

where
cos ' = cosf cos B + sin fsin ¢ cos (¢ — )
5 Product Representations

5.1 Addition of Angular Momentum

Suppose DU1) and DU2) are 2 irreps of SU (2) group. We want to know how to reduce the product representation
DU DU2) = DU1x72) e, write DU*92) as direct sum of irreps. Using the characters of irreps (take j; > 72), we

10



have

1 1
sin<j1+)95in<j2+)9 Ny _
YUrxi2) () = U (9) xU2) (9) = 2 5 2)  _cos(jr—jo)0 CO;(Jl +j2+1)0
Sin2 § Sin2 5

_ 1 { [cos (j1 — j2) O — cos (j1 — j2 + 1) 0] + [cos (j1 — j2 + 1) 0 — cos (j1 — ja + 2) 0] }

81112? +---[cos (j1 + j2) 8 — cos (j1 + j2 + 1) 6]

2
1 . 3 o

— 9{sm<j1—]2+ )9—1—8m<]1—32+ >0+ s1n(31+]2)0}

sin§

We see that the character of the product representation DU ® D2) has the decomposition,

o Jj1+7j2
xU1%32) () = Z X (0)
J=|j1—32]
which implies the following reduction,
Jiti2
pU1xs2) — plU1) ® pU2) — Z D) (8)
J=|j1—7j2|

Thus we get the relation
lj1 = Jo| < J <1+ 2
We can relate this to the addition of angular momenta as follows. Let f;"* (#) be the basis for DU irrep and

sz (#) be the basis for DU2). Then the product fi () f12 () are the basis for the representation DU @ DU2)
ie.

PR [fjl J2 ] [PRf ] PRf Z feri)m/l Z mgm

For infinitesmal rotation around, say z-axis, we can write, (setting h=1)
Prp =e % ~ (1 —ial,), a<1

miy ma2 ma

Let J1 be the operator acting on f
alone.
Then we can write

and leaving f;* alone and J 2 be the operator acting on f;* and leaving f;? !

Pr [fjl 1 j’;”] = [(1 —iald,) fﬂ“] [(1 —iald,) f;;”] [1—ia(Jrz + J2z)] fj1 1 ij;z
= (L—ial.) [0
where
Jz = le + J2z

We can extend this to other components to write

—

J=Ji+Js
which is just the total angular momentum. This means that the infinitesmal transformation of the product of the

basis can be written in terms of total angular momenta. From Eq(8) we see that decomposition of the product of
irreps is related to the additon of angular momenta.

5.2 Clebsch-Gordon Coefficients

In the decomposition of product representations we have

pUi1xs2) — pGU1) ® DU2) — pli—sal) o pli—ga+1) DD plitiz)

11



This means that the representation matrices D1%72) can be transform by a similarity transformation into a direct
sum of irreps D7. In terms of matrice elements we have

D(jl Xj2) _ D(jl) D(j2)
mimbi;myme mym} " maml
On the other hand,
Dji—d2l)
Dd1—g2]+1)
ZD‘]EA: . EAJ/M/;JMZ(SJJ/D}\]/[M/
b .
Di1+iz)

where J, J' label the boxes and M, M’ labels the row and colums within each box. Let A be the unitary matrix
which transform A into DU?) @ DU2)
DU @ DU2) — ATAA

Writing out in terms of matrix elements this reads,
(1 %42) _ .
Dmim;ﬂnm2 - [AT] 7n/1m/2 WM A']/M;JM [A] JMimima (9)
We adopt a new notation for the matrix elements of the similarity transformation,
[A]JM;mlmz = <JM|j1m1j2m2>
These are usually called Clebsch-Gordon coefficients. Since A is unitary, AAT" =1, and ATA = 1 we have

> (Gimigamb|J M) (' M |jima joma) = Spmrm, Srmpms
J'M’

Z (JM|jimyjama) (Gimajame|J' M) = 6,550 mme

maimo

Note that the unitary matrix A is not uniquely defined. Let B be a unitary matrix which commutes with A,
BA = AB, or  A=B'AB

Then
D =A'AA = (BA) ABA

This means that if A block diagonalizes D, so does A’ = BA. Since A is of the form

D)
D(J2)
A =
D
From Schur’s lemma, B must be of the form,
01[1
cals .
B = , where ¢; = "
I
Or '
Byntyar =655 0mare'®
and

0
[A/]JM;ml'mg = e’ [A]JM;ml'mg

Thus the similarity transformation is defined up to J dependent phases.
Condon-Shortly convention : If we choose

(JJ|j1j1g2d — jr)

to be real and positive, then it turns out that all Clebsch-Gordon coefficients are real.
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In terms of Clebsch-Gordon coefficients Eq 9) becomes

DYV DY) = N DY (M jimljamb) (JM | jima jams)

mim} " mami
J, M, M’

Theorem: Let ¢ () be the basis for DU irrep and Y12 () be the basis for DU2), Then

d1r =Y (TM|jimajams) ] 40

mima
are basisi for D”.
Proof:
Preiy = > (JM|jimyjams) (Pr™) (Pre?) = Y <JM|j1m1j2m2>foli)m,ngz)Tné@[;}’fl IS

mimse mimsa

= Z (JM|jrmyjams) Z Dgner (J' M| jimyjamsy) (J' M| jima jama) 95 45
mimsz J,M,M’

= Y Dipa (IM[jimigamb) ) )

M”ml’mz

Thus ¢]‘{4 does transform according to the representation D7 .l
As a consequence if j5 = j; + j, then
Z YUY (jimajama|js, —ms) (J3, —m3jzms|00)
mimaoms

is invariant under SU (2) transformations.

5.3 Rotation group and Quantum Mechanics

In quantum mechanics, we implement symmetry transformations by unitary operator U on the states |1))
lv) — W/> =Uly), for all states

so that
(&'19") = (o)

Alternatively we can put the unitary operator on the hermitian operators which correspond to physical observables,
A— A =UAU!

If U = U, or [U, A] = 0, we say that A is invariant under the transformation U. In particular if Hamiltonian H is
invariant under the symmetry transformation U we have

[U,H| =0 (10)
Suppose we have two such operators U; and Uy,
[U1,H] =0, [Uz, H =0
then
[U1Uy, H) = [Uy, H| Uz + Uy [Ua, H) =0

So the collection of all such operators which leave hamiltonian H invariant form a group. Suppose |¢) is an eigenstate
of H with energy F,

H[y) = El¢)
Then from Eq(10) we see that
HU[¢) =UH |¢) = E(U [¢))

which means that U |¢) is also an eigenstate of H with same energy E. If we run the operator U through the whole
group G, we get
U |¢> ) U |"/)> ) Us |¢> )

13



If we select a linear independent set out of these, then we have degeneracy of energy levels.On the other hands, if we
consider the eigenfunction 4 (z) of time independent Schrodinger equation,

Hy (z) = By (x)
we can use induced tranformation on this eignefunctions to get
P, (x) = (Ry'z),  Pry () =9 (By'x),

As we have discussed before, if we select a linearly independent set out of these transformed function, they will form
a basis of irreducible representation. Since they are also eigenfunctions of Hamiltonian with same energy, we get the
result,

deg enercy = dimof irrep

6 Wigner-Eckart Theorem

6.1 Tensor operators

Suppose D@ is an irrep of group G and dimension of D(®) is d,,. A set of operators Ti(a),i =1,2,---dg, transforming
under the symmetry group G as
PrT P! ZT (@l (

is said to be irreducible tensor operators corresponding to D("‘) irreps.
For the case of SO (3) (or SU (2) group) , if the operators 7", m = —j, —j + 1, - - j satisfy the relation,

PR (avﬂa’V)TimPR « Bv ZTm Ol ﬁ 7)

then we say 1" are irreducible tensors of rank j in SO (3) . For example,
Tl(l) N$+Zy, To(l) ~ Zz, Tﬁll) Ni[,'—'l,y
are tensor operators of rank 1.In terms of generators, we have

[J.,T}] = KT}

Zr=yg

[T, Tf] = /(G Fk)(j £ k+ 1T+
Remarks :
1. If Tfl“ are irreducible tensor of rank j; and TJZLQ are irreducible tensor of rank j, then

Y (mljimyjeme) TjT7

my,ma2
are irreducible tensor of rank j. In particular, since
(00[jmj —m) =
we see that the combination
SIS 1)

m

is an invariant operator under rotations. Here S7" is another tensor operator of rank j.

2. If 7" are irreducible tensor operator of rank j, so is

This follows from the fact that
mm(a Ba )*( )m* D]—*m’—m( 3577)

3. Combining remarks (1) and (2) we get that
m (m T
> T (T

is a SO (3) invariant operator.
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6.2 Theorem(Wigner — Eckart)

If ¢}” are basis for D7 | ¢m/ are basis for D/ and T} are irreducible tensor operator of rank k, then

j/
(65| Tll )
V25 +1
where <¢>j, ||Tk\|r,z5j> are the reduced matrix elements and are independent of m,m/, q.

Proof:
Since T} are irreducible tensor operator, we can write
k )

(o5 178107 ) = (5'mo lkgjm)

o' | TH o Pro} |PRT PR | Pro)!
{ ) =« )

" Dl (R) D, (R) (8417 16 ) DS, (R)
Li'q,

= Y DI (R)Dipar (R) (UM kq/it') (I M kgjm) (o1 T 6} )
J,M,M'Llq,

Summing over all group elements in SU (2), we get

[an{symior) = (o' iriop) [ar= [ar 3= Dl (8) D (R) (M k' ') (I agm) (o1 115 )

J,M,M'Llq,

we have used the fact <¢;-'f/ |T g|¢;”> is independent of R. Using great orthogonality theorem

/dRDlJ-’trL' (R) D]L@/M (R) - §Jj’5l’M’5m’M /dR

we get
(o7 [Tloy) = G kagm) > (0 kq'j1) (o4 ITY 16} )
l,l’q’
N C | o[
= (J’m’lk‘qjm><] : i)
V25 +1
where

(G IITllo;) = V27 +1 3 G0 Ikd'j1) (61T 16 )

ING

is the reduced matrix element and is independent of m,m/, q.

Remarks:

1. The m,m/, q dependence in the matrix element <¢;’7'|qu|¢;”> are all contained in the Clebsch-Gordon coeffi-

cients (j'm'|[kgjm) which are universal and independent of the details of ¢", ¢§7/ and 7). In other words, in
the ratios of matrix elements we have

(SFIT2067 ) (grmalbggms)

my m: j ]
<¢j, \Tg\¢js> (3'malkgjms)

Thus , we can just calculate only one such matrix element explicitly and use Clebsch-Gordon coefficients to
obatin other matrix elements with same j, j’ and k.

2. Since Clebsch-Gordon coefficients (j'm’|kgjm) has the property that it vanishes unless |k — j| < 7' < j + k,
and m' = ¢ + m, the matrix elements will satify the same selection rules independent of the nature of the
wavefunctions ¢7", ¢/ or the operator Tj .

Example: Dipole matrix elements <¢)§-7/ |?|¢)§”> T = (z,y,2). Note that the linear combinations,
(o) (o)
ry =——(z+1iy), To = 2, r_=—(x—1
RV A ’ vz

15



are the basis for the irrep D} . Thus we have the selection rules: matrix elements vanish unless
j=j%1, but if j =0 then j =1

and
m =morm=+1
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