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Algerbric Approach
For groups larger than SU (2) ; it is more e¢ cient to take the algebric approach. This is the study of the structure

of group in terms of commutation relation of the generators, similar to the study of rotaion group in terms of the
angular momentum algebra. In fact, the angular momentum algebra forms the basis for the more general groups.

0.1 Lie Algebra

It is usually convenient to paremetrize the group elements in the exponential form,

g = ei�aXa

where �1; �2; � � � are group parameters and X1; X2; � � � are generators of the group. We can write the group multi-
plication as

ei�aXaei�bXb = ei�aXa

Clearly �0as are functions of � and �: To explore these relations we write

i�aXa = ln
�
ei�aXaei�bXb + 1� 1

�
= ln (1 +K)

where
K = ei�aXaei�bXb � 1

Consider the case where � and � are small and expand K to second order terms,

K =

�
1 + i�aXa �

1

2
(�aXa)

2
+ � � �

�
�
�
1 + i�bXb �

1

2
(�bXb)

2
+ � � �

�
� 1

= i�aXa + i�bXb � �aXa�bXb �
1

2
(�aXa)

2 � 1
2
(�bXb)

2
+ � � �

This gives

i�aXa = K � 1
2
K2 + � � �

= i�aXa + i�bXb � �aXa�bXb �
1

2
(�aXa)

2 � 1
2
(�bXb)

2
+
1

2
(�aXa + �bXb)

2
+ � � �

= i�aXa + i�bXb �
1

2
[�aXa; �bXb] + � � �
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and
[�aXa; �bXb] = �2i (�c � �c � �c)Xc + � � � � i
cXc

Since this must be true for all � and �; we must have


c = �a�bfabc; fabc some constant

and
[Xa; Xb] = ifabcXc

Thus generators form an algebra under commutation.
One simply way to see that the structure of the group is controlled by the commutation between generators is to

note that in general,
ei�aXaei�bXb 6= ei�aXa+i�bXb

The equality holds only for Abelian group where all generators commute with each other. So for non-Abelian group
the commutators of generators are non zero and responsible for non-commuting property of group multiplication.
Furthermore, from the Baker-Campell-Hausdro¤ formula

exp (A) exp (B) = exp

�
A+B +

1

2
[A;B] +

1

12
[A; [A;B]]� 1

12
[B; [A;B]]

�
+ � � �

we see that if the commuatator gives back a linear combination of generators then the result of multiplication of 2
group elements in the exponentiatl form produce another element in the exponential form.

1 SU(n) Algebra

We will now study the SU (2) in terms of their generators. More generally SU (n) is the group formed by n � n
unitary matrices with unit determinant. We now �nd independent real group parameters needed to represent the
group elements. The unitary condition UUy = 1; impliesX

k

UikU
�
jk = �ij

De�ne n-dimensional vectors in n-dimensional complex vector space by

!
Ui = (Ui1; Ui2; : : : Uin) ; i = 1; 2; 3; : : : ; n

Then unitary conditions can be written as �
!
Ui;

!
Uj

�
=
X
k

UikU
�
jk = �ij

This means
!
Ui
0
s form an orthonomal set and �

!
Ui;

!
Ui

�
= 1

gives n conditions on the real components of matrix elements and�
!
Ui;

!
Uj

�
= 0 for i 6= j give

n (n� 1)
2

� 2 = n2 � n conditions

detU = 1 gives one condition

Hence, the number of independent real parameters in SU (n) is

2n2 �
�
n2 � n

�
� n� 1 = n2 � 1

Another way is to explore the relation between unitaty matrix U hermitian matrix H by writing,

U = eiH

Using the identity
det

�
eA
�
= eTrA

we can see that
detU = 1; TrH = 0

It is easy to see that in terms of n2 � 1 traceless hermitian matrices, SU (n) has n2 � 1 parameters.
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2 SU(2) Algebra

We now study the case of SU(2). Physical examples of SU (2) group are the rotation group in 3-dimension and isospin
symmetry in the strong interaction. There are 3 parameters for this group. Parametrize 2� 2 unitary matrices by

U ("1; "2; "3) = exp (i"i�i)

where "1; "2; "3 are real group parameters, and �1; �2; �3 are the ususal Pauli matrices,

�1 =

�
0 1
1 0

�
; �2 =

�
0 �i
i 0

�
; �3 =

�
1 0
0 �1

�
;

The commutation relations for Pauli matrices are of the form,h�i
2
;
�j
2

i
= i"ijk

�k
2
; i; j; k = 1; 2; 3

where "ijk is the totally anti-symmetric Levi-Civita symbol with "123 = 1: The operators J1; J2; J3 which satisfy the
same commutation relation

[Ji; Jj ] = i"ijkJk (1)

are called the generators of SU (2) and the commutation relations are called the Lie algebra of SU (2) : Clearly

these commutation relations are the same as those of the angular momentum operators
!
L =

!
r �!

p;

[Li; Lj ] = i"ijkLk (2)

Thus these two algebras (1)(2) are in one to one correspondance(isomorphism). Here we have set ~ = 1 for conveience.
Recall that the angular momentum operators are given by

L1 = �i
�
x2

@

@x3
� x3

@

@x2

�
; L2 = �i

�
x3

@

@x1
� x1

@

@x3

�
; L3 = �i

�
x1

@

@x2
� x2

@

@x1

�
It is clear that these operator will leave the quadratic form,

x21 + x
2
2 + x

2
3

invariant. For example,

L1
�
x21 + x

2
2 + x

2
3

�
= �i

�
x2

@

@x3
� x3

@

@x2

��
x21 + x

2
2 + x

2
3

�
= �i (x22x3 � x32x2) = 0

3 Representation of SU (2) algebra

Any set of matrices D1; D2; D3 which satisfy the same algebra,

[Di; Dj ] = i"ijkDk

are called the representation of generators J1; J2; J3: For exampleDi =
�i
2
is a representation (de�ng representation

or fundamental representation)
To �nd all other representations, we de�ne

J� = J1 � iJ2
Then we get

[J�; J3] = �J�; [J+; J�] = 2J3

Suppose jmi is an eigenstate of J3 with eigenvalue m;

J3 jmi = m jmi

then we get from these commutation relations,

J3 (J+ jmi) = (m+ 1) (J+ jmi) ; J3 (J� jmi) = (m� 1) (J� jmi)
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Thus J+ (J�) is the raising(lowering) operator which increases(decrease) the eigenvalues by one unit. De�ne the
total angular momentum operator by,

J2 � J21 + J
2
2 + J

2
3 =

1

2

�
J+J� + J�J+ + J

2
3

�
� 0 (3)

Then we get �
J2; Ji

�
= 0; for i = 1; 2; 3

and J2 is called Casmir operator, the operator which commutes with all the generators in the group. From Schur�s
lemma we know that the Casmir operators will represented by a multiple of identit matrix in any irreps. Choose the
states to be eigenstates of J2; J3; with eigenvalues, �;m

J2 j�;mi = � j�;mi ; J3 j�;mi = m j�;mi

with normalization 

�0;m0 j�;m

�
= ���0�mm0 (4)

Note that from Eq(3) we see that m; the eigenvalue of J3 is bounded by

m2 � �

This will make the representation matrice �nite dimensional. Since J� j�;mi are eigenstates of J3 with eigenvalues
m� 1; we can write

J� j�;mi = C� (�;m) j�;m� 1i ;
Here C� (�;m) are constants to be determined by the normalization conditions in Eq(4). Since J2� J23 � 0; we get
��m2 � 0; i.e. eigenvalue m2 is bounded. This means that for largest value of m; say m = j; we have

J+ j�; ji = 0;

We can write J2 operator as

J2 =
1

2

�
J+J� + J�J+ + J

2
3

�
= J�J+ + J

2
3 + J3

Applying this on the state j�; ji ; we get�
�� j2 � j

�
j�; ji = 0; ) � = j (j + 1)

Similarly, for smallest value of m; say m = j0; we have

J� j�; j0i = 0; and � = j0 (j0 � 1)

Combing these two cases, we get

j (j + 1) = j
0
(j0 � 1) ; ) j = �j0; or j0 = j + 1

The solution j0 = j + 1 violates the assumption that j is the largest value of m: Thus we will take j = �j0: Since
J� decreases value of m by 1 each time it acts on the eigenstate of J3; this implies that the maximum and minimum
values of m should di¤er by an integer,

j � j0 = 2j = integer, ) j integer or half integer

We will now use the parameter j to label the state instead of �; with

J2 jj;mi = j (j + 1) jj;mi

The coe¢ cients C� (�;m) can be calculated as follows,

J+ jj;mi = C+ (j;m) jj;m+ 1i ; hj;mj J� = hj;m+ 1jC�+ (j;m)

hj;mj J�J+ jj;mi = jC+ (j;m) j2

On the other hand,

hj;mj J�J+ jj;mi = hj;mj
�
J2 � J23 � J3

�
jj;mi =

�
j (j + 1)�m2 �m

�
= (j �m) (j +m+ 1)

We can then take
C+ (j;m) =

p
(j �m) (j +m+ 1)
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Similarly,
C� (j;m) =

p
(j +m) (j �m+ 1)

To summarize, the states jj;mi ; m = �j;�j + 1; : : : j � 1; j form the basis of the irreducible representation charac-
terized by j: These states have the following properties,

J2 jj;mi = j (j + 1) jj;mi ; J3 jj;mi = m jj;mi (5)

J+ jj;mi =
p
(j �m) (j +m+ 1) jj;m+ 1i ; J� jj;mi =

p
(j +m) (j �m+ 1) jj;m� 1i (6)

Note that we can get the matrix elements of J1; J2 by using the relations,

J1 =
1

2
(J+ + J�) ; J2 =

1

2i
(J+ � J�)

Thus for a given value of j; the matrices contructed for J1; J2 and J3 will satisfy the angular momentum algebra
given in Eq(1) and they are the irreps of SU(2) group.
Remark:
For the case of Lorentz group in 2 dimensions, the generators are,

L3 = �i
�
x1

@

@x2
� x2

@

@x1

�
; K1 = �i

�
x0

@

@x1
+ x1

@

@x0

�
; K2 = �i

�
x0

@

@x2
+ x2

@

@x0

�
These are the operators which leave the quadratic form,

x21 + x
2
2 � x20

invariant. From these generators we get the commutation relations,

[L3;K1] = iK2; [L3;K2] = �iK1; [K1;K2] = �iL3

We can also de�ne the raising and lowering operators by

K+ = K1 + iK2; K� = K1 � iK2

to get the commutation relations,
[L3;K�] = �K�; [K+;K�] = 2L3

We also get that�
K2
1 +K

2
2 � L23; L3

�
= 0;

�
K2
1 +K

2
2 � L23;K1

�
= 0;

�
K2
1 +K

2
2 � L23;K2

�
= 0

The Casmir operator is now of the form B = K2
1 +K2

2 � L23: In this case the eigenvalue of L3 is no longer bounded
by that of B: The main di¤erence between Lorentz group in 2 dimension and the 3-dimensional rotation group O (3)
is that O (3) is a compact group while the Lorentz group is non-compact.
We can realize this algebra by using a boson harmonic oscillator,

K+ =
1

2
p
2
ayay; K� =

1

2
p
2
aa

which gives

[K+;K�] =
1

8

�
ayay; aa

�
= �1

4

�
1 + 2aya

�
� �2L3

Or
L3 =

1

8

�
1 + 2aya

�
The state with lowest L3 eigenvalue is de�ned by

a j0i = 0

Then
K+ j0i =

1

2
j2i

and

(K+)
n j0i =

p
2n!

2
p
2
j2ni ; L3 j2ni =

(1 + 4n)

4
j2ni

This in�nite tower of states j0i ; j2i ; � � � j2ni ; � � � generates an in�nite dimensional unitary representation of the
algebra.
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4 Product Representation

In the physical application of SU (2) group, we need to deal with product representations. For example, if we have
2 spin 1=2 particles, we want to know the total spin J of the product of the two wavefunctions. In this simple case,
the answer is J = 0; or 1: We now want to study this problem in terms of group theory. Denote the spin-up and
spin-down states of the �rst particle by r1 and r2; and for the second particles, s1 and s2: Under SU (2) matrices,
they transform according to

r0i = U
�!
�
�
ij
rj ; s0k = U

�!
�
�
kl
sl

where

U
�!
�
�
= exp

�
i
!
� �

!
J

�
; and

!
J =

!
�

2

Then the product will transform as

(r0is
0
k) = U

�!
�
�
ij
U
�!
�
�
kl
(rjsl) = D

�!
�
�
ik;jl

(rjsl)

where
D
�!
�
�
ik;jl

= U
�!
�
�
ij
U
�!
�
�
kl

Geneally, D
�!
�
�
is reducible. To see what irreducible representation it decomposes into, it is easier to work with

the generators directly by taking "i � 1;

r0i '
�
1 + i

!
� �

!
J

�
ij

rj =

�
1 + i

!
� �

!
J
(1)
�
ij

rj

s0k '
�
1 + i

!
� �

!
J

�
kl

sl =

�
1 + i

!
� �

!
J
(2)
�
kl

sl

where
!
J
(1)

is de�ned to operate on ri and does not a¤ect sk; while
!
J
(2)

operates on si and does not a¤ect rk: De�ne
the total angular mometum operator as

!
J =

!
J
(1)

+
!
J
(2)

We now change to more familiar notation. Let �i denote the spin-up state of the ith particle and �i the spin-down
state of the ith particle. There are four combinations of two-particle states : �1�2; �1�2; �1�2; �1�2: We start with
state with largest value of J3;

J3 j�1�2i = J
(1)
3 j�1�2i+ J (2)3 j�1�2i = j�1�2i

To �nd the total angular momentum, we write�
!
J

�2
=

�
!
J
(1)
�2
+

�
!
J
(2)
�2
+
h�
J
(1)
+ J

(2)
� + J

(1)
� J

(2)
+

�
+ 2J

(1)
3 J

(2)
3

i
and �nd that �

!
J

�2
j�1�2i = 2 j�1�2i

This means the state j�1�2i has J = 1 and J3 = 1;

j1; 1i = j�1�2i (7)

We can use the lowering operator J� = J
(1)
� + J

(2)
� ; to reach all other states in the J = 1 irrep,

J� j1; 1i = J� j�1�2i =
�
J
(1)
� + J

(2)
�

�
j�1�2i = j�1�2i+ j�1�2i

On the other hand, from Eq(6) we get,
J� j1; 1i =

p
2 j1; 0i

Then

j1; 0i = 1p
2
(j�1�2i+ j�1�2i) (8)
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Obviously,

j1;�1i = j�1�2i

The remaining independent state with J = 0 can be obtained by orthogonality with respect to the state j1; 0i given
in Eq(8),

j0; 0i = 1p
2
(j�1�2i � j�1�2i)

More generally, the product representations, jj1;m1i � jj2;m2i can be combined into eigenstates jJ;Mi of total

angular momentum,
!
J =

!
J
(1)

+
!
J
(2)

;

jJ;Mi =
X
m1;m2

jj1;m1i jj2;m2i hj1;m1; j2;m2jJMi

The coe¢ cients hj1;m1; j2;m2jJ;Mi are called Clebsch-Gordon coe¢ cients. Thus for the above case (Eqs(7,8))�
1

2
;
1

2
;
1

2
;
1

2
j1; 1

�
= 1;

�
1

2
;�1
2
;
1

2
;�1
2
j1; 0

�
=

1p
2
; etc

Note that the J3 quantum number is additive,

M = m1 +m2

The procedure of working out the irrep of the product representations can be summarized as follows.

1. Start with the combination of states with largest J3: Clearly this is also an eigenstate with largest total J.

2. Use the lowering operator J� = J
(1)
� + J

(2)
� to get all the other states in the same irrep.

3. Find the orthogonal combination to jJm; Jm � 1i where Jm is the maximum value of J in the product. This
orthogonal state should be jJm � 1; Jm � 1i : Then use the lowering operator to reach othe other J = Jm � 1
states.

4. Repeat these steps until J = jj1 � j2j :

5 SU (3) Algebra

Physical example of this group is the eightfold way of mesons and baryons. Moreover this forms the basis for the
quark model in particle physics. Denote the group parameters by �i; i = 1; 2; : : : 8 and write the group elements as

U (�i) = exp (i�i�i) ; �i : hermitian traceless 3� 3 matrices

The standard form of �i are those �rst given by Gell-Mann,

�1 =

0@ 0 1 0
1 0 0
0 0 0

1A ; �2 =

0@ 0 �i 0
i 0 0
0 0 0

1A ; �3 =

0@ 1 0 0
0 �1 0
0 0 0

1A ;

�4 =

0@ 0 0 1
0 0 0
1 0 0

1A ; �5 =

0@ 0 0 �i
0 0 0
i 0 0

1A ; �6 =

0@ 0 0 0
0 0 1
0 1 0

1A ; �7 =

0@ 0 0 0
0 0 �i
0 i 0

1A ;

�8 =

r
1

3

0@ 1 0 0
0 1 0
0 0 �2

1A ;

Note that these matrices are normalized as
Tr (�i�j) = 2�ij

The commutators for these matrices, the Lie algebrs, are of the form,�
�i
2
;
�j
2

�
= ifijk

�
�k
2

�
;
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where fijk are the totally anti-symmetric structure constants and those which are non-zero are given by,

f123 = 1; f147 = �f156 = f246 = f257 = f345 = �f367 =
1

2
; f458 = f678 =

p
3

2

Thus the generators Fi of SU (3) satisfy the same commutators,

[Fi; Fj ] = ifijkFk

From the fact that �3 and �8 are diagonal, we have

[�3; �8] = 0

which implies that
[F3;F8] = 0

Hence, F3 and F8 can be diagonalized simultaneously and their eigenvalues, up to some scaling factor, will be used
to label states in the representation. The largest number of mutually commuting generators in the algebra is called
the rank of the algebra. Thus SU (3) is a rank 2 group while SU (2) is a rank 1 group. This is also the number
of eigenvalues needed to label the states in a given irreps.

6 Representation of SU (3)

De�ne the raising and lowering operators by

T� = F1 � iF2; U� = F6 � iF7; V� = F4 � iF5

If we write T3 = F3; Y =
2p
3
F8; where T3 is the usual isospin and Y is the hypercharge, the commutation relations

become
[T3; T�] = �T� [Y; T�] = 0 [T+; T�] = 2T3

[T3; U�] = �
1

2
U� [Y;U�] = �U� [U+; U�] =

3

2
Y � T3 � 2U3

[T3; V�] = �
1

2
V� [Y; V�] = �V� [V+; V�] =

3

2
Y + T3 � 2V3

[T+; V+] = 0 [T+; U�] = 0 [U+; V+] = 0
[T+; V�] = �U� [T+; U+] = V+ [U+; V�] = T�

Clearly, these raising and lowering operators move the states on the plane labeled by (T3; Y ) ;

T+ raises T3 by 1 unit and leaves y unchanged;

U+ raises T3 by
1

2
unit and raises y by 1 unit;

V+ raises T3 by
1

2
unit and raises y by 1 unit; etc � � �

If the units of T3 and Y are appropriately scaled in the graph, these raising and lowering operators connect points
along lines that are multiple of 600 with repsect to each other.
Each irrep of SU (3) is characterized by a set of two integers (p; q) : Graphically it shows up as a �gure with

a hexagonal boundary on the T3 � Y plane: three sides having p units of length and other sides having q units:
the hexagon collapses into an equilateral triangle when either p or q vanishes. The boundary is symmetric under
re�ection about Y�axis. We recall that an SU (2) irreps is characterized by one integer j; graphically it is a straight
line of 2j length. There are 2j + 1 sites, each of them singly occupied by one state. For the SU (3) representation

8



(p; q) the multiplicity of states on each site in the T3�Y plane form the following pattern : the sites in the boundary
are singly occupied, on the next layer they are doubly occupied, on the third layer they are triply occupied, etc.,
until a triangular layer is reached beyond which the multiplicity ceases to increase and remians to be q+1 for p > q
(p+ 1 for q > p).
To get all the states within a given irrep, start with state with largest value of T3;  max; which can be characterized

as
T+ max = V+ max = U_ max = 0

Repeatly apply V� on  max; it has to vanish at some point, say after p+ 1 steps,

(V�)
p+1

 max = 0

At the step (V�)
p
 max; we can apply T� until it reach another corner,

(T�)
q+1

(V�)
p
 max = 0

Then we use U+; V+; T+; U� until it comes back  max: This completes the outer layer of the representation. For the
next layer we can start with state  0max which has same properties as  max; i:e:

T+ 
0
max = V+ 

0
max = U_ 

0
max = 0

but with T3 quantum number one unit less than  max: Repeat the procedures as described above.
Remarks :

1. The boundary is always convex.
This can be seen as follows. If there is a state at site C as shown in the �gure, we can write

U+ C = � A; � some constant and  A = V� B

Then
� ( A;  A) = (V� B ; U+ C) = ( B ; V+U+ C) = ( B ; U+V+ C) = 0

This implies � = 0 and there is no state at site C:

2. The boundary will in general be a six-sided �gure and is symmetric under rotation of 1200: The boundary is
also symmetric with repect to re�ection in Y � axis:

3. There is one state at each site on the boundary, 2 states at each site on the next layer, 3 states at each site on
the next layer, etc, until a triangluar layer is reached, beyond which the multiplicity ceases to increase. Denote
the representation by the integers (p; q)Then the number of states in the inner most triangle is

p�q+1X
l=1

l =
1

2
(p� q + 1) (p� q + 2)

and the multiplicity for each state in the triangle is (q + 1) : The number of states in the next layer is 3 (p� q + 2)
with multiplicity q: Contiuing the counting of states in this fashsion, we can get the dimensionality of the irrep
as

d (p; q) =
1

2
(q + 1) (p� q + 1) (p+ q + 2) + 3

qX
�=0

(q � �) (p� q + 2� + 2)

=
1

2
(p+ 1) (q + 1) (p+ q + 2)
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4. In general, there will be several states for a given value of (T3; Y ) : The states on the Y = constant line form

isospin multiplet. For example, there are p+ 1 states on the top line and the isospin of these states is T =
p

2
:

Simliarly the next line will have isospin T =
1

2
(p� 1) ; etc. It is not hard to see that (T3)max =

1

2
(p+ q)
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