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Algerbric Approach
For groups larger than SU (2) , it is more e¢ cient to use the algebric approach, in terms of
commutators of the generators, similar to the study of rotaion group in terms of the angular
momentum algebra. In fact, the angular momentum algebra forms the basis for the more
general groups.
Lie Algebra
Paremetrize group elements in the exponential form,

g = e iαaXa

where α1, α2, � � � group parameters and X1,X2, � � � are generators . Write the group
multiplication as

e iαaXa e iβbXb = e iδaXa

Clearly δ0as are functions of α and β. To explore these relations we write

iδaXa = ln
�
e iαaXa e iβbXb + 1� 1

�
= ln (1+K )

where
K = e iαaXa e iβbXb � 1
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Suppose α and β are small and expand K to second order terms,

K =

�
1+ iαaXa �

1
2
(αaXa)

2 + � � �
�
�
�
1+ iβbXb �

1
2
(βbXb )

2 + � � �
�
� 1

= iαaXa + iβbXb � αaXaβbXb �
1
2
(αaXa)

2 � 1
2
(βbXb )

2 + � � �

This gives

iδaXa = K � 1
2
K 2 + � � �

= iαaXa + iβbXb � αaXaβbXb �
1
2
(αaXa)

2 � 1
2
(βbXb )

2 +
1
2
(αaXa + βbXb )

2 + � � �

= iαaXa + iβbXb �
1
2
[αaXa , βbXb ] + � � �

and
[αaXa , βbXb ] = �2i (δc � αc � βc )Xc + � � � � iγcXc

Since this must be true for all α and β, we must have

γc = αaβb fabc , fabc some constant

and
[Xa ,Xb ] = ifabcXc

(Institute) Group 3 / 27



Thus generators form an algebra under commutation.
One simply way to see that the structure of the group is controlled by the commutation is to
note that

e iαaXa e iβbXb 6= e iαaXa+iβbXb

The equality holds only for Abelian group. So for non-Abelian group the commutators of
generators are non zero and responsible for non-commuting property of group multiplication.
Furthermore, from the Baker-Campell-Hausdro¤ formula

exp (A) exp (B ) = exp
�
A + B +

1
2
[A,B ] +

1
12
[A, [A,B ]]� 1

12
[B , [A,B ]]

�
+ � � �

if the commuatator gives back a linear combination of generators then the result of
multiplication of 2 group elements in the exponentiatl form produce another element in the
exponential form.
SU(n) Algebra
The SU (n) is the group formed by n � n unitary matrices with det = 1. The number of
independent real group parameters needed to for group elements can be calculated as follows.
Condition UU † = 1, implies

∑
k
UikU

�
jk = δij

De�ne n-dim vectors by

!
Ui = (Ui1,Ui2, . . .Uin) , i = 1, 2, 3, . . . , n
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Then unitary conditions =) �!
Ui ,

!
Uj

�
= ∑

k
UikU

�
jk = δij

!
Ui
0
s form an orthonomal set in n-dim complex vector space. From the magnitudes�!

Ui ,
!
Ui

�
= 1

gives n conditions on the real components of matrix elements and�!
Ui ,

!
Uj

�
= 0 for i 6= j give n (n � 1)

2
� 2 = n2 � n conditions

detU = 1 gives one condition

Hence, independent real parameters in SU (n) is

2n2 �
�
n2 � n

�
� n � 1 = n2 � 1

Another way is to explore the relation between unitaty matrix U hermitian matrix H by writing

U = e iH

Using the identity

det
�
eA
�
= eTrA

we get
detU = 1, TrH = 0

Since there are n2 � 1 traceless hermitian matrices, SU (n) has n2 � 1 parameters.
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SU(2) Algebra
Physical examples of SU (2) group are the rotation group in 3-dimension and isospin symmetry
in strong interaction. Since there are 3 group parameters. Parametrize 2� 2 unitary matrices by

U (ε1, ε2, ε3) = exp (i εiσi )

where ε1, ε2, ε3 are real parameters, and σ1, σ2, σ3 are the ususal Pauli matrices

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�
,

The commutation relations for Pauli matrices are of the form,h σi
2
,

σj
2

i
= i εijk

σk
2
, i , j , k = 1, 2, 3

where εijk is the totally anti-symmetric Levi-Civita symbol with ε123 = 1. The operators J1, J2, J3
which satisfy the same commutation relations

[Ji , Jj ] = i εijk Jk (1)

are called the generators of SU (2) and the commutation relations are called the Lie algebra of

SU (2) . These commutation relations are the same as angular momentum operators
!
L =

!
r � !

p,

[Li , Lj ] = i εijkLk (2)

(Institute) Group 6 / 27



Thus these two algebras (1)(2) are in one to one correspondance (isomorphism).
Recall that in coordinate space, angular momentum operators are of the form,

L1 = �i
�
x2

∂

∂x3
� x3

∂

∂x2

�
, L2 = �i

�
x3

∂

∂x1
� x1

∂

∂x3

�
, L3 = �i

�
x1

∂

∂x2
� x2

∂

∂x1

�

It is clear that these operator will leave the quadratic form,

x 21 + x
2
2 + x

2
3

invariant. For example,

L1
�
x 21 + x

2
2 + x

2
3
�

= �i
�
x2

∂

∂x3
� x3

∂

∂x2

� �
x 21 + x

2
2 + x

2
3
�

= �i (x22x3 � x32x2) = 0
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Representation of SU (2) algebra
Any set of matrices D1,D2,D3 satisfying the same algebra,

[Di ,Dj ] = i εijkDk

are called the representation of generators J1, J2, J3. For example Di =
σi
2
is a representation

(de�ng representation or fundamental representation)
To �nother representations, de�ne

J� = J1 � iJ2

then
[J�, J3 ] = �J�, [J+, J�] = 2J3

Suppose
J3 jmi = m jmi

then from these commutation relations,

J3 (J+ jmi) = (m + 1) (J+ jmi) , J3 (J� jmi) = (m � 1) (J� jmi)

=) J+ (J�) is the raising(lowering) operator which increases (decrease) the eigenvalues of J3 by
one unit. De�ne

J2 � J21 + J22 + J23 =
1
2
(J+J� + J�J+) + J23 � 0 (3)

Then �
J2, Ji

�
= 0, for i = 1, 2, 3
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and J2 is called Casmir operator, the operator which commutes with all generators in the group.
From Schur�s lemma, the Casmir operators will be represented by a multiple of identity matrix in
any irreps. Choose the states to be eigenstates of J2, J3, with eigenvalues, λ,m

J2 jλ,mi = λ jλ,mi , J3 jλ,mi = m jλ,mi

with normalization 

λ0,m 0 jλ,m

�
= δλλ0 δmm 0 (4)

From Eq(3) m, the eigenvalue of J3, is bounded by

m2 � λ

Thus representation matrices are �nite dimensional. Since J� jλ,mi are eigenstates of J3 with
eigenvalues m � 1, we can write

J� jλ,mi = C� (λ,m) jλ,m � 1i ,

C� (λ,m) are to be determined by the normalization conditions in Eq(4). Since J2 � J23 � 0,
we get λ�m2 � 0, i.e. eigenvalue m2 is bounded. Thus largest value of m, say m = j , will have
the property,

J+ jλ, ji = 0,

Write J2 operator as

J2 =
1
2
J+J� + J�J+) + J23 = J�J+ + J

2
3 + J3
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Applying this to jλ, ji , �
λ� j2 � j

�
jλ, ji = 0, ) λ = j (j + 1)

Similarly, for smallest value of m, say m = j 0,

J�
��λ, j 0� = 0, and λ = j 0

�
j 0 � 1

�
Combing these two, we get

j (j + 1) = j
0 �
j 0 � 1

�
, ) j = �j 0, or j 0 = j + 1

The solution j 0 = j + 1 violates the assumption that j is the largest value of m. Thus we will take

j = �j 0.

Since J� decreases value of m by 1 each time it acts on the eigenstate of J3, the maximum and
minimum values of m should di¤er by an integer,

j � j 0 = 2j = integer, ) j integer or half integer

We will use the parameter j to label the state instead of λ, with

J2 jj ,mi = j (j + 1) jj ,mi
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The coe¢ cients C� (λ,m) can be calculated as follows,

J+ jj ,mi = C+ (j ,m) jj ,m + 1i , hj ,mj J� = hj ,m + 1jC �+ (j ,m)

hj ,mj J�J+ jj ,mi = jC+ (j ,m) j2

On the other hand,

hj ,mj J�J+ jj ,mi = hj ,mj
�
J2 � J23 � J3

�
jj ,mi =

�
j (j + 1)�m2 �m

�
= (j �m) (j +m + 1)

We can then take
C+ (j ,m) =

q
(j �m) (j +m + 1)

Similarly,

C� (j ,m) =
q
(j +m) (j �m + 1)

To summarize, the states jj ,mi , m = �j ,�j + 1, . . . j � 1, j form the basis of the irreducible
representation characterized by j . These states have the following properties,

J2 jj ,mi = j (j + 1) jj ,mi , J3 jj ,mi = m jj ,mi (5)

J+ jj ,mi =
q
(j �m) (j +m + 1) jj ,m + 1i , J� jj ,mi =

q
(j +m) (j �m + 1) jj ,m � 1i

(6)
We can get the matrix elements of J1, J2 by using,
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J1 =
1
2
(J+ + J�) , J2 =

1
2i
(J+ � J�)

Thus for a given j , the matrices contructed for J1, J2 and J3 will satisfy the angular momentum
algebra given in Eq(1) and they are the irreps of SU (2) group.
Remark:
For Lorentz group in 2-dim, the generators are,

L3 = �i
�
x1

∂

∂x2
� x2

∂

∂x1

�
, K1 = �i

�
x0

∂

∂x1
+ x1

∂

∂x0

�
, K2 = �i

�
x0

∂

∂x2
+ x2

∂

∂x0

�
These operators leave the quadratic form,

x 21 + x
2
2 � x 20

invariant. Commutators for these generators are,

[L3,K1 ] = iK2, [L3,K2 ] = �iK1, [K1,K2 ] = �iL3

We can also de�ne the raising and lowering operators by

K+ = K1 + iK2, K� = K1 � iK2

to get the
[L3,K�] = �K�, [K+,K�] = 2L3
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We also get that

�
K 21 +K

2
2 � L23, L3

�
= 0,

�
K 21 +K

2
2 � L23, K1

�
= 0,

�
K 21 +K

2
2 � L23, K2

�
= 0

The Casmir operator is now of the form B = K 21 +K
2
2 � L23. Now the eigenvalue of L3 is no

longer bounded by that of B . The main di¤erence between Lorentz group in 2 dimension and
the 3-dimensional rotation group O (3) is that O (3) is a compact group while the Lorentz group
is non-compact.
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Product Representation
Back to SU (2) group to study product representations. Consider, 2 spin 1/2 particles, we want
to know the total spin J of the product of the two wavefunctions. In this simple case, the
answer is J = 0, or 1. We now want to study this problem in terms of group theory. Denote the
spin-up and spin-down states of the �rst particle by r1 and r2, and for the second particles, s1
and s2. Under SU (2) matrices, they transform according to

r 0i = U
�!

ε
�
ij
rj , s 0k = U

�!
ε
�
kl
sl

where

U
�!

ε
�
= exp

�
i
!
ε �

!
J
�
, and

!
J =

!
σ

2

Then for the product

�
r 0i s

0
k
�
= U

�!
ε
�
ij
U
�!

ε
�
kl
(rj sl ) = D

�!
ε
�
ik ,jl

(rj sl )

where
D
�!

ε
�
ik ,jl

= U
�!

ε
�
ij
U
�!

ε
�
kl

In general, D
�!

ε
�
is reducible. To see the decomposition, work with the generators directly by

taking εi � 1,

r 0i '
�
1+ i

!
ε �

!
J
�
ij
rj =

�
1+ i

!
ε �

!
J
(1)�

ij
rj
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s 0k '
�
1+ i

!
ε �

!
J
�
kl
sl =

�
1+ i

!
ε �

!
J
(2)�

kl
sl

where
!
J
(1)
operates only on ri and does not a¤ect sk ; while

!
J
(2)
operates on si . De�ne the total

angular mometum operator as
!
J =

!
J
(1)
+
!
J
(2)

Let αi (βi ) denote the spin-up (spin-down) state of the i th particle. There are four combinations
of two-particle states :

α1α2, α1β2, β1α2, β1β2

Start with state with largest value of J3,

J3 jα1α2i = J (1)3 jα1α2i+ J (2)3 jα1α2i = jα1α2i

To �nd the total J , we write

�!
J
�2
=

�!
J
(1)�2

+

�!
J
(2)�2

+
h�
J (1)+ J (2)� + J (1)� J (2)+

�
+ 2J (1)3 J (2)3

i
and �nd that �!

J
�2
jα1α2i = 2 jα1α2i
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=) the state jα1α2i has J = 1 and J3 = 1,

j1, 1i = jα1α2i (7)

Use the lowering operator J� = J
(1)
� + J (2)� , to reach all other states in the J = 1 irrep,

J� j1, 1i = J� jα1α2i =
�
J (1)� + J (2)�

�
jα1α2i = jα1β2i+ jβ1α2i

On the other hand, from Eq(6) we get,

J� j1, 1i =
p
2 j1, 0i

Then

j1, 0i = 1p
2
(jα1β2i+ jβ1α2i) (8)

Obviously,

j1,�1i = jβ1β2i

The remaining state with J = 0 can be obtained by orthogonality with respect to the state j1, 0i
given in Eq(8),

j0, 0i = 1p
2
(jα1β2i � jβ1α2i)
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More generally, the product representations, jj1,m1i � jj2,m2i can be combined into eigenstates

jJ ,M i of total angular momentum,
!
J =

!
J
(1)
+
!
J
(2)
,

jJ ,M i = ∑
m1 ,m2

jj1,m1i jj2,m2i hj1,m1, j2,m2 jJM i

The coe¢ cients hj1,m1, j2,m2 jJ ,M i are called Clebsch-Gordon coe¢ cients. Thus for the above
case (Eqs(7,8)) �

1
2
,
1
2
,
1
2
,
1
2
j1, 1

�
= 1,

�
1
2
,� 1
2
,
1
2
,� 1
2
j1, 0

�
=

1p
2
, etc

Note that the J3 quantum number is additive,

M = m1 +m2

The procedure of working out the irrep of the product representations can be summarized as
follows.

1 Start with the combination of states with largest J3. Clearly this is also an eigenstate with
largest total J.

2 Use the lowering operator J� = J
(1)
� + J (2)� to get all the other states in the same irrep.

3 Find the orthogonal combination to jJm , Jm � 1i where Jm is the maximum value of J in
the product. This orthogonal state should be jJm � 1, Jm � 1i . Then use the lowering
operator to reach othe other J = Jm � 1 states.

4 Repeat these steps until J = jj1 � j2 j .
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SU (3) Algebra
Physical example of this group is the "eightfold way" of mesons and baryons. This also forms
the basis for the quark model. Denote the group parameters by αi , i = 1, 2, . . . 8 and write the
group elements as

U (αi ) = exp (iαiλi ) , λi : hermitian traceless 3� 3 matrices

The standard form of λi are given by Gell-Mann,

λ1 =

0@ 0 1 0
1 0 0
0 0 0

1A , λ2 =

0@ 0 �i 0
i 0 0
0 0 0

1A , λ3 =

0@ 1 0 0
0 �1 0
0 0 0

1A ,

λ4 =

0@ 0 0 1
0 0 0
1 0 0

1A , λ5 =

0@ 0 0 �i
0 0 0
i 0 0

1A , λ6 =

0@ 0 0 0
0 0 1
0 1 0

1A , λ7 =

0@ 0 0 0
0 0 �i
0 i 0

1A ,

λ8 =

r
1
3

0@ 1 0 0
0 1 0
0 0 �2

1A ,
These matrices are normalized as

Tr (λiλj ) = 2δij
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The commutators for these matrices, the Lie algebrs, are�
λi
2
,

λj
2

�
= ifijk

�
λk
2

�
,

where fijk are the totally anti-symmetric structure constants and those which are non-zero are,

f123 = 1, f147 = �f156 = f246 = f257 = f345 = �f367 =
1
2
, f458 = f678 =

p
3
2

Generators Fi of SU (3) satisfy the same commutators,

[Fi ,Fj ] = ifijkFk

Since λ3 and λ8 are diagonal, we have

[λ3,λ8 ] = 0

which implies that
[F3,F8 ] = 0

Hence, F3 and F8 can be diagonalized simultaneously and their eigenvalues, will be used to label
states in the representation. The largest number of mutually commuting generators in the
algebra is called the rank of the algebra. Thus SU (3) is a rank 2 group while SU (2) is a rank 1
group. .
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Representation of SU (3)
De�ne the raising and lowering operators by

T� = F1 � iF2, U� = F6 � iF7, V� = F4 � iF5

If we write T3 = F3, Y =
2p
3
F8, where T3 is the usual isospin and Y is the hypercharge, the

commutation relations become

[T3,T�] = �T� [Y ,T�] = 0 [T+,T�] = 2T3

[T3,U�] = �
1
2
U� [Y ,U�] = �U� [U+,U�] =

3
2
Y � T3 � 2U3

[T3,V�] = �
1
2
V� [Y ,V�] = �V� [V+,V�] =

3
2
Y + T3 � 2V3

[T+,V+] = 0 [T+,U�] = 0 [U+,V+] = 0
[T+,V�] = �U� [T+,U+] = V+ [U+,V�] = T�

Clearly, these raising and lowering operators move the states on the plane labeled by (T3,Y ) ,

T+ raises T3 by 1 unit and leaves y unchanged;

U+ raises T3 by
1
2
unit and raises y by 1 unit;

V+ raises T3 by
1
2
unit and raises y by 1 unit; etc � � �

If the units of T3 and Y are appropriately scaled in the graph, these raising and lowering
operators connect points along lines that are multiple of 600 with repsect to each other.
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Each irrep of SU (3) is characterized by a set of two integers (p, q) . Graphically it shows up as a
�gure with a hexagonal boundary on the T3 � Y plane: three sides having p units of length and
other sides having q units: the hexagon collapses into an equilateral triangle when either p or q
vanishes. The boundary is symmetric under re�ection about Y�axis. We recall that an SU (2)
irreps is characterized by one integer j ; graphically it is a straight line of 2j length. There are
2j + 1 sites, each of them singly occupied by one state. For the SU (3) representation (p, q) the
multiplicity of states on each site in the T3 � Y plane form the following pattern : the sites in
the boundary are singly occupied, on the next layer they are doubly occupied, on the third layer
they are triply occupied, etc., until a triangular layer is reached beyond which the multiplicity
ceases to increase and remians to be q + 1 for p > q (p + 1 for q > p).
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To get all the states within a given irrep, start with state with largest value of T3, ψmax, which
can be characterized as

T+ψmax = V+ψmax = U_ψmax = 0

Repeatly apply V� on ψmax, it has to vanish at some point, say after p + 1 steps,

(V�)
p+1 ψmax = 0

At the step (V�)
p ψmax, we can apply T� until it reach another corner,

(T�)
q+1 (V�)

p ψmax = 0
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Then we use U+,V+,T+,U� until it comes back ψmax. This completes the outer layer of the
representation. For the next layer we can start with state ψ0max which has same properties as
ψmax, i .e .

T+ψ0max = V+ψ0max = U_ψ0max = 0

but with T3 quantum number one unit less than ψmax. Repeat the procedures as described
above.
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Remarks :

1 The boundary is always convex.
This can be seen as follows. If there is a state at site C as shown in the �gure, we can
write

U+ψC = λψA , λ some constant and ψA = V�ψB

Then
λ (ψA ,ψA) = (V�ψB ,U+ψC ) = (ψB ,V+U+ψC ) = (ψB ,U+V+ψC ) = 0

This implies λ = 0 and there is no state at site C .

2 The boundary will in general be a six-sided �gure and is symmetric under rotation of 1200.
The boundary is also symmetric with repect to re�ection in Y � axis .

3 There is one state at each site on the boundary, 2 states at each site on the next layer, 3
states at each site on the next layer, etc, until a triangluar layer is reached, beyond which
the multiplicity ceases to increase. Denote the representation by the integers (p, q)
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Then the number of states in the inner most triangle is

p�q+1
∑
l=1

l =
1
2
(p � q + 1) (p � q + 2)

(Institute) Group 25 / 27



and the multiplicity for each state in the triangle is (q + 1) . The number of states in the
next layer is 3 (p � q + 2) with multiplicity q. Contiuing the counting of states in this
fashsion, we can get the dimensionality of the irrep as

d (p, q) =
1
2
(q + 1) (p � q + 1) (p + q + 2) + 3

q

∑
ν=0

(q � ν) (p � q + 2ν+ 2)

=
1
2
(p + 1) (q + 1) (p + q + 2)

4 In general, there will be several states for a given value of (T3,Y ) . The states on the Y =
constant line form isospin multiplet. For example, there are p + 1 states on the top line

and the isospin of these states is T =
p
2
. Simliarly the next line will have isospin

T =
1
2
(p � 1) , etc. It is not hard to see that (T3)max =

1
2
(p + q)
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