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INTRODUCTION
Group theory : framework for studying symmetry. The representation theory of the group
simpli�es the physical solutions. For example, suppose one-dim Hamiltonian has the symmetry
under parity x ! �x , i.e.

H (x ) = H (�x )

Then from Schrödinger�s equation,

H (x )ψ(x ) = Eψ(x )

we get
H (�x )ψ(�x ) = H (x )ψ(�x ) = Eψ(�x )

=) ψ(�x ) is eigenstate with same E . Form the linear combinations,

ψ� =
1p
2
(ψ(x )� ψ(�x ))

which are parity eigenstates. Note that this means only that the eigenstates can be chosen to be
either symmetric or antisymmetric and does not imply that the system has degenerate
eigenstates.
REMARK: Symmetry of H does not necessarily imply the symmetry of the eigenfunctions. It
only says that given an eigenfunction, the symmetry operation will generate other solutions
which may or may not be independent of the original eigenfunction.
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Examples OF Symmetry Groups in Physics

1 Finite groups

1 Crystallographic groups (symmetry group of crystals)

Symmetry operations
�
translations - periodic
rotations - space group

�
2 Example:

1 NaCl

Molecules
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3 Permutation group
In QM, wavefunction of identical particles is either symmetric of
antisymmetric under the permutation of the coordinates. These
permutations form a group, permutation group Sn. Permutation group
also important in study of representations of unitary groups.

2 Continuous groups

1 O(3) or SU(2)�Rotation group in 3�dimension
This group describes theory of angular momentum in quantum
mechanics. Structure of this group also provides the foundation for
more complicated groups.
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2 SU(3)�Special unitary 3� 3 matrices
This has been used to describe the spectrum of hadrons in terms of
quark model. Symmetry here is only approximate. SU(3) has also been
used in QCD. Here symmetry is exact but has the peculiarity of
con�nement.

3 SU(2)L � U(1)Y
This symmetry group is used in standard model of electromagnetic and
weak interactions. However the symmetry here is also broken
(spontaneously).

4 SU(5), SO(10), E (6)
These symmetries unify electromagnetic, weak and strong interactions,
grand uni�ed theories (GUT). Of course these groups are badly broken.

5 SL(2,C ) Lorentz group
This group describes tspace-time structure in special relativity. It plays
a crucial role in the relativistic �eld theory.
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ELEMENT OF GROUP THEORY

De�nition of Group
A group G consists of elements (a, b, c . . .) with an operstion * with properties:

(i) Closure : If a, b,2 G =) c = a � b is also in G .
(ii) Associative: a � (b � c ) = (a � b) � c
(iii) Identity : 9 an element e such that a � e = e � a = a 8 a 2 G
(iv) Inverse : for every a 2 G , 9 an element a�1 such that a � a�1 = a�1 � a = e

We will denote the group operation a � b by ab.
Examples of Group

1 All real numbers under \+ "

2 All real numbers without \0" under \� "
3 All integers under \+ "

4 All rotations in 3-dimensional space: O (3)

5 All n � n matrices under \+ "
6 All non-singular n � n matrices under \� ": GL(n) (General Linear Group in n-dimension)
7 All n � n matrices with determinant 1: SL(n) (Special Linear Group in n-dimension)
8 All n � n unitary matrices under \� ": U (n) (Unitary Group in n-dimension)
9 All n � n unitary matrices with determinant 1: SU (n) (Special Unitary Group in
n-dimension)
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10 All n � n orthogonal matrices: O (n)
11 All n � n orthogonal matrices with determinant 1: SO (n)
12 Permutations of n objects: Sn

Abelian Group - If group multiplication is commutative, i.e. ab = ba 8 a, b 2 G .
Finite Group - If number of elements in G is �nite.
Order of the Group - # of elements in the group.
Subgroup - a subset of the group which is also a group. e.g. SL(n) is a subgroup of GL(n).
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Simple Example : Symmetry of a regular triangle ( called D3 group)

Operations
A: rotation y by 120� in the plane of triangle
B: rotation y by 240� in the plane of triangle
K: rotation y by 180� about zz 0

L: rotation y by 180� about yy 0

M: rotation y by 180� about xx 0

E: no rotation
Group Multiplication : consider the product KA
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Thus we have KA = L
This way we can work out the multiplication of any 2 group elements and summarize the result
in multiplication table.

E A B K L M
E E A B K L M
A A B E M K L
B B E A L M K
K K L M E A B
L L M K B E A
M M K L A B E

Clearly fE ,A,Bg , fE , Lg , fE ,K g , fE ,Mg are

subgroups
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Isomorphism: Two groups G = fx1, x2, . . .g and G 0 = fx 01, x 02, . . .g are isomorphic if
9 a one-to-one mapping xi ! x 0i such that

xi xj = xk =) x 0i x
0
j = x

0
k

In other words, the groups G and G
0
, which might operate on di¤erent physical system, have

the same structure as far as group theory is concerned.
Symmetry group S3 : permutation symmetry of 3 objects. S3 has 6 group elements.�

123
123

�
,

�
123
231

�
,

�
123
312

�
,

�
123
132

�
,

�
123
321

�
,

�
123
213

�

S3 is isomorphic to D3 by associate the vertices of the triangle with 1, 2 and 3.
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Rearrangement Theorem
Theorem : Each element of G appears exactly once in each row or column of multiplication
table.
Proof: Take group elements to be E , A2, A3, . . . ,Ah .
Multiply by arbitrary Ak , we get AkE , AkA2, AkA3, . . . ,AkAh .
If 2 elements e.g. AkAi = AkAj where Ai 6= Aj .
Multiply this by A�1k to get Ai = Aj which contradicts the initial assumption.
Hence all elements in each row after multiplication are di¤erent. =) each group element
occurs only once in each row. Thus multiplication of the group by a �xed element of the group,
simply rearrange them. This is called the rearrangement theorem. �
Applications of Rearrangement Theorem

1 Suppose we are summing over the group elements of some functions of group elements,
Σ
Ai
f (Ai ) . Then rearrangement theorem implies that

Σ
Ai
f (Ai ) = Σ

Ai
f (AiAk )

for any Ak 2 G . This result is central to many important result of the representation
theory of �nite groups. The validity of this theorem for continuous group is then an
important requirement in generalized the results from the �nite groups to continuous
groups.
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2 Using this theorem, we can show that there is only one group of order 3. From
multiplication table

E A B
E E A B
A A B E
B B E A

In fact, this group is of the form A,B = A2,E = A3 . This is the cyclic group of order
3.

Cyclic Group of order n, is of the form, Zn =
�
A,A2A3, . . .An = E

	
Clearly, all cyclic groups are Abelian.
Examples of cyclic groups:

1 4th roots of unity; 1,�1, i ,�i =
�
i , i 2 = �1, i 3 = �i , i 4 = 1,

	
2 Benzene molecule

Z6 =
�
A,A2 . . .A6 = E

	
A = rotation by

π

3
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Group Induced Transformations
In physics, many group transfomations are geometrical. Then group transfomations can be
represented as operations in the coordinate space. As an example, take a coordinate system for
the triangle as shown,
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Keep the triangle �xed and rotate the coordinate system, we get the relations between the old
and new coordinates as

x 0 = cos
2π

3
x + sin

2π

3
y = � 1

2
x +

p
3
2
y

y 0 = � sin 2π

3
x + cos

2π

3
y = �

p
3
2
x � 1

2
y

or

�
x
y 0
0
�
=

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!�
x
y

�
or ~x 0 = A~x A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
, ~x =

�
x
y

�

Thus group element A is represented by matrix A acting on the coordinate system (x , y ). We
can do this for other group elements to get,

B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
E =

�
1 0
0 1

�
K =

�
�1 0
0 1

�
L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
M =

 
1
2

p
3
2p

3
2

1
2

!

The product of the group elements can also be expressed in terms of matrices, e.g

~x 0 = A~x ~x 00 = K~x 0 =) ~x 00 = KA~x
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K =
�
�1 0
0 1

�
A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
KA =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
= L

Thus, the matrix multiplication gives same result as the multiplication table. This is an
isomorphism between the symmetry group and the set of 6 matrices. This is an example of
representation - group elements are represented by a set of matrices (does not have to be 1-1
correspondence).
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Transformation of Functions
We can generalize the transformations of coordinates to functions of (x , y ), f (x , y ).

(i) Take A 2 G , which generate matrix A on (x , y ).
(ii) Replace ~x by A�1x 0 in f . This de�nes a new function g (x 0, y 0). Denote

g (x , y ) by g (x , y ) = PA f (x , y ) or more simply PA f (x ) = f
�
A�1x

�
.

Example: f (x , y ) = x 2 � y 2, take

A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!

then
x 0 = � 1

2 x +
p
3
2 y

y 0 = �
p
3
2 x �

1
2 y

or
x = � 1

2 x
0 �

p
3
2 y

0

y =
p
3
2 x

0 � 1
2 y
0

and

f (x , y ) =

 
1
2
x 0 +

p
3
2
y 0
!2
�
 p

3
2
x 0 � 1

2
y 0
!2
= � 1

2

�
x 0
2 � y 02

�
+
p
3x 0y 0 = g

�
x 0, y 0

�
Or

g (x , y ) = � 1
2

�
x 2 � y 2

�
+
p
3xy = PA f (x , y )
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Symbolically, we have

f (~x )! f
�
A�1~x

�
= g (~x ) or PA f (~x ) = g (~x ) = f

�
A�1~x

�
Theorem: If A�s form a group G , the PA�s de�ned on certain function f (~x ) also form a group
GP .
Proof:

PA f (~x ) = f
�
A�1x

�
= g (~x )

PBPA f (~x , ) = PB g (~x ) = g
�
B�1~x

�
= f

�
A�1

�
B�1~x

��
= f

�
A�1B�1~x

�
= f

�
(BA)�1~x

�
= PBA f (~x )

Thus we have PBPA = PBA =) G is homomorphic to GP . But the correspondence A ! PA is
not necessarily one-to-one.
Note that we de�ne PA in terms of A�1 in order to get the homomorphism PBPA = PBA .
For example if we have the function f (x , y ) = x 2 + y 2 =) PA = PB = PE = . . . = 1.
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Coset
Coset is a useful tool to decompose the group into disconnect sets. Let H = fE , S2, S3 . . . Sg g
be a subgroup of G .
For x 2 G but /2 H , if we multiply the whoe subgroup by x on the right we get

fEx , S2x , S3x , . . . Sg xg right coset of x , denoted by Hx

and the left multiplication gives,

fxE , xS2,xS3, . . . xSg g left coset of x , denoted by xH

Note that a coset can not form a group, because identity is not in the set.

Properties of Cosets

(i) Hx and H have no elements in common.
Suppose there is one element in common,

Sk = Sj x , where x /2 H

then
x = S�1j Sk 2 H

a contradiction because x /2 H by construction.
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(ii) Two right (or left) cosets either are identical or have no element in common.
Consider Hx and Hy , with x 6= y .Suppose there is one element in common
between these 2 cosets

Sk x = Sj y

then
xy�1 = S�1k Sj 2 H

But Hxy�1 = H by rearrangement theorem which implies that Hx = Hy

Theorem: Order of a subgroup H is a factor of order of G .
Proof: Consider all distinct right cosets

H , Hx2, Hx3, . . . ,Hxl

Each element of G must appear in exactly one of cosets. Since no elements in common among
cosets, we must have g = l � h where h the order of H , l some integer and g order of G .�
Remark: For example, a group of order 6, like D3, the only non-trivial subgroups are those with
orde 2 or 3.
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Conjugate: B and A are conjugate to each other if 9 x 2 G such that

xAx�1 = B (similarity transformation)

Remark: Replacing each element by its conjugate under some �xed element x is an
isomorphism under x . This can be seen as follows. From

A0 = xAx�1 B 0 = xBx�1

A0B 0 =
�
xAx�1

� �
xBx�1

�
= xABx�1 = (AB )0

we see that gi ! g 0i = xgi x
�1 is an isomorphism because the correspondence is one-to-one.

In coordinate transformations, similarity transformations correspond to change of basis and
represents same operation.

Coset Space
G/H = fcosets Hx , x 2 G but not in Hg
Coset space is obtained by grouping together elements which are related by left (or right)
multiplication of elements in the subgroup H . This decomposition is useful in reducing the
structure of the group to a smaller structure.
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Class
All group elements conjugate to a given element is called a class. These are group elements
which are the same operation with reapect to di¤erenent basis
Denote the group elements by G = fE , x2, . . . , xng
Take A 2 G , then
EAE�1

x2Ax�12
...

xhAx
�1
h

9>>>=>>>; class (all group elements conjugate to A). Note that these elements are not

necessarily all di¤erent.
Example: symmetry group of triangle D3 From the multiplication table,

AAA�1 = A AKA�1 = L

BAB�1 = A BKB�1 = M

KAK�1 = B KKK�1 = K

LAL�1 = B LKL�1 = M

MAM�1 = B MKM�1 = L

the classes are fE g , fA,Bg , fK , L,Mg.
Note: E is always in a class by itself because A�1i EAi = EA

�1
i Ai = E , 8Ai 2 G . Here

fA,Bg� rotations by 2π
3 and fK , L,Mg� rotations by π. This is a very general feature�all

elements in the same class have same angle of rotation.
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Invariant Subgroup: If a subgroup H of G consists entirely of complete classes. For example
H = fE ,A,Bg is an invariant subgroup while fE ,K g is not. Invariant subgroup is also called
normal subgroup or normal divisor. Symbolically for invariant subgroups, we have xHx�1 = H
for any x 2 G . which implies xH = Hx , i.e. left cosets are the same as right cosets.
For any G , there are at two trivial invariant subgroups, fE g and the group G itself. If a group
only has these two invariant subgroups, then it is called a simple group. Examples of simple
groups are cyclic groups of prime order.
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Factor Group (or Quotient Group)
Consider the invariant subgroup H = fE , h . . . h`g of G and the collection of all distinct left (or
right) cosets [a] � aH , [b] � bH , . . . (where in this notation [E ] = H ).
De�ne the multiplication of cosets as follows: Suppose r1 2 [a] , r2 2 [b] and r1r2 = R 0. Then we
de�ne [a] [b] = [R 0]. Let a, b 2 G but not in H , then the product of elements from these two
cosets can be written as

(ahi ) (bhj ) = ab
�
b�1hib

�
hj = ab (hkhj ) 2 coset containing ab

where hk = b�1hib. Notation: If C1 and C2 are two classes, then C1 = C2 means that C1 and C2
have same collection of group elements. Thus the coset multiplication is well-de�ned and is
analogous to multiplication of the group elements. It is not hard to see that the collection of
these cosets of H forms a group, called the Quotient Group and is denoted by G/H .
Theorem: If C is a class, for any x 2 G , we have x Cx�1 = C.
Proof: Write C = fA1,A2, . . . ,Ajg then x Cx�1 =

�
xA1x�1, xA2x�1, . . . , xAj x�1

	
.

Take any element in x Cx�1 say xAi x�1 . This is related to Ai by conjugation. xAi x�1 is in the
class containing Ai and hence xAi x�1 2 C. Thus, each element in x Cx�1 must appear in C
because C is a class. But all elements in x Cx�1 are di¤erent. Therefore x Cx�1 = C.
Theorem: Any collection C which satis�es x Cx�1 = C for all x 2 G consists wholly of complete
classes.
Proof: First we can subtract out all complete classes from both sides of the equation. Let
remainder by R . So we have xRx�1 = R . Suppose R is not a complete class. This means that
there exists some element Ai which is related to some element Rj 2 R by conjugate and Ai /2 R ,
i.e.

Ai = yRj y
�1 and Ai /2 R
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But this violates the assumption xRx�1 = R for all x 2 G .
Class Multiplication

For 2 classes Ci , Cj in G , we have from the previous theorems

Ci Cj =
�
x�1 Ci x

� �
x�1 Cj x

�
= x�1 (Ci Cj ) x 8 x 2 G .

Thus Ci Cj consists of complete classes, and we can write

Ci Cj = ∑
k
cijk Ck

where cijk are some integers.
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Direct Product of Two Groups
Given two groups G = fxi , i = 1, . . . , ng ,G 0 = fyj , j = 1, . . . ,mg, the direct product group is
de�ned as

G 
 G 0 = f(xi , yj ) ; i = 1, . . . n, j = 1, . . . ,mg

with group multiplication de�ned by

(xi , yj )�
�
xi 0 , yj 0

�
=
�
xi xi 0 , yj yj 0

�
It is clear that G 
 G 0 forms a group. Note that (E , yj )� (xi ,E 0) = (xi , yj ) = (xi ,E 0)� E , =)
G and G 0 are subgroups of G 
 G 0 with the property that group elements from G commutes
with group elements from G 0.
We can generalize this to de�ne direct product of 2 subgroups. Let S and T be subgroups of G
such that S and T commute with each other,

si tj = tj si 8 si 2 S , tj 2 T .

Then we can de�ne the direct product S 
 T as

S 
 T = fsi tj j si 2 S , tj 2 T g

Example:

Z2 = f1,�1g Z3 =
n
1, e2πi/3, e4πi/3

o
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Z2 
 Z3 =
n
1, e2πi/3, e4πi/3,�1,�e2πi/3,�e4πi/3

o
=
n
1, e2πi/3, e4πi/3, e iπ , e5πi/3, eπi/3

o
Clearly, this is isomorphic to Z6 .
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