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Theory of Group Representation

In phyiscal application, group representation is important in deducing the consequence of the
symmetries of the system. Most important one is realization of group operation by matrices.
Definition of Representation

Given a group G = {A;i=1---n}. If for each A; € G, there are an n X n matrices D (A;) such
that

D (Ai) D (Aj) = D (AjA)) (1)
then D’s forms a n-dimensional representation of the group G i.e. correspondence A; — D (A;)

is a homomorphism. If this is an 1 — 1 isomorphism, representation is called_faithful. A matrix
Mi; can be viewed as linear operator M acting on some vector space V with repect to some

basis e;,
I\/Ie,- = Zeij,-
J
Note that the choice of the basis is not unique. If we make a change to a new basis,

e =Y faSui, S non-singular
J

then
Y M£Sp =Y i SiiM;i
n k,j
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Multiply by S 1,

Mfwm =Y fSiM;iSit =Y fi (SMS™Y), . =Y fi (M),
k.j,i k k

where
M' = SMS1

To generate such matrices for the symmetry of certain geometric objects is to use the group
induced transformations, discussed before. Recall that each element A, induces a
transformation of the coordinate vector 7,

7 — A7

Then for any function of 7, say ¢ (¥) and for any group element A, define a new transformation
Pa, by

Pa,@ (F) = ¢ (A;'7)

Among the transformed functions obtained this way, Pa, @ (F), Pa, ¢ (F), - Pan@ (¥), we select
the linearly independent set ¢, (¥), ¢, (¥) --- ¢, (¥) .Then it is clear that Pa¢, can be expressed
as linear combination of ¢;.This is because

Py @y = PayPa, @ () = Pa,g (A7) = 9 (4,1 (4,'7)) = ¢ ((AuAs) '7)

Thus we can write
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l
Pa¢, = Y @5Dba (Ai)
b=1
and Dp, (A;j) forms a representation of G. This can be seen as follows.

Paia; 9, = PaPasp, = Pa; Z%Dba Zch cb (A7) Dba (A})

On the other hand,
PAiAj P = Z(PCD (A"Aj)ca
c

This gives
D (AiAj)Ca = D¢y (Ai) Dpa (Aj)

which means that D (A,-)'s form representation of the group.
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Example: Group D3, symmetry of the triangle.
As seen before, choosing a coordinate system on the plane, we can represent the group elements
by the following matrices,

A=\ ) v 1) EZ(O
2 2 2 2

PN
Il
S
o |
—
= O
N—
~
Il
|
S
Pl
N\»—lm‘&
N———
<
Il
S o2
w N—
oS
N———

Choose £ (

~L
—
Il

f(x,y) =x>—y? we get
PAf (F) = f (A7'F) = 1 (x+ \f3y>2 .- (\/37—}/)2 _ 1 (x% = y?) +V3xy.

4 4 2

We now have a new function g (x, y) = 2xy showing up. We can operate on g (r) to get,

Prg(F) = g (A7) =2 (*5) (x+v3y) % (Vax=v)
IRETTRN S TR

Thus we have
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The matrix generated this way is the same as A if we change g to -g.
Similarly

Pef (F) = f(Bil?) :%(X—\/gy)Q—%(\/gx-‘ry) :—% (X2—y )—\/gxy
Pgg (F) = g(B’lr) =2 <%> <x7\/§y> (*%) (\/§x+y)
= Y/j[vg(XZ—yz)—b(y] zg(xz—y2)—7(2xy)
1 B
Pe(f.g) = (f.g) (_ﬁg _21>
2 2
same as B
Remarks

© 1f DM (A) and D@ (A) are both representation of the group, then
@) (A 0
® (a) = (P (A) :
D™ (A) ( D@ (A) (block diagonal form)

also forms a representation. We will denote it as a direct sum &,
D® (A) =DW (A)® DP® (A)  direct sum
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@ If DM (A) and D@ (A) are 2 representations of G with same dimension and 3 a
non-singular matrix U such that

DM (A;) = UD® (AU~ forall A € G.

then D) and D®) are equivalent representations .
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Reducible and Irreducible Representations

A representation D of a group G is called irreducible representation (irrep) if it is defined on a
vector space V (D) which has no non-trivial invariant subspace. Otherwise, it is reducible. In
other words, all group actions can be realized in this subspace.

Suppose representaion D is reducible on the vector space V. Then 3 subspace S invariant under
D. For any vector v € V, we can write,

V:S-‘FSL

where s € S and s; belongs to the complement S| of S. If we write,

()
Vv =
SL
then the representation matrix is
Av=D(A)v = ( Dy (A) D2 (A) >

Since S is invariant under group operators, we get

D3(A,'):0, VA €EG
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i.e. D (A)) are all of the upper triangular form,

)= (O Rk

Note that
D— D1 Dy D{ Dé - D4 D{ D4 Dé + D, Di
o 0 Dy 0 th B 0 Dy D[t

Thus invariant subspace is still invariant if operate on it many times.
A representation is completely reducible if all matrices D (A;) can be simultaneously brought
into block diagonal form by the same similarity transformation U,

N -1_ (Di(A) 0 )
Ub (A) U™ = ( 0 D, (Ai)> , forall A; € G

Theorem: Any unitary reducible representation is completely reducible.
Proof: For simplicity we assume that the vector space V is equipped with a scalar product
(u,v). We can choose the complement space S_L to be perpendicular to S, i.e.
(u,v) =0, if ueS,ves,
Since scalar product is invariant under the unitary transformation,

0= (u,v)=(D(A)u,D(A)v)
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Thus if D (A;)u € S, then D (A;) v € S| which implies that S, is also invariant under the
group operation.ll

In physical applications, we deal mostly with unitary representations and they are completely
reducible.

Unitary Representation

Since unitary operators preserve the scalar product, representation by unitary matrices will
simplify the analysis of group theory. For finite groups, we can show that rep can always be
transformed into unitay one.

Fundamental Theorem

Every irrep of a finite group is equivalent to a unitary irrep (rep by unitary matrices)

Proof:

Let D (A;) be a representation of the group G = {E,Ay---A,}

Consider the sum

n
H=Y D(A)D"(A)  then H' =H
r=1

Since H is positive semidefinite, define squre root h by
W =H, ht=h

This can be achieved by diagonizing this hermitian matrix H by unitary transformation and then
transforming it back after taking the square root of the eigvalues. Define new set of matrices by
similarity transformation

D(A)=h"D(A)h r=1,2,---,n

D (A,) is equivalent to D (A,). We will now show that D (A,) is unitary,
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D(A)D'(A) = [hD(A,)H] [hD*(A,)hﬂ

2[ (As) Dt ( AS)] D (A,) h1

iD (A As) DY (A,AS)} h1

n
= h'Y D(As)D' (Ag)ht=hth*A =1

where we have used rearrangement theorem.ll
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Schur’s Lemma-an important theorems in irreducible reprentation

(i) Any matrix which commutes with all matrices of irrep is a multiple of identity
matrix.

Proof: Assume 3 M

Hermitian conjugate
DY (A) Mt = MDY (A))

Since D (A,) is unitary, we get

Mt =D (A)MIDY(A,) or MID(A,) =D (A )M

= M also commutes with all D's and so are M + M' and i(M — M*) ,
which are hermitian.

Thus, we take M to be hermitian. Start by
diagonalizing M by unitary matrix U,
M = UdU* d : diagonal
Define

D(A;)=U'D(A,) U, then we have

dD(A) =D (A,)d
(Institute)
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or in terms of matrix elements,
ZdaﬁDﬁr ZDaﬁ s) dgy

Since d is diagonal, we get
(daw — dyy) Day (As) =0 = if dyx # dyy, then Dyy (As) =0

— if diagonal elements d;; are all different, then off-diagonal elements of D
are all zero. The only possible non-zero off-diagonal elements of D can arise

when some of d,;gs are equal. For example, if di; = dy, then Discan be
non-zero. Thus D is in block diagonal form, i.e.
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if d

lw]]

rdy

0

d

dq
d2

d2

D1 0

or

then

This is true for every matrix in the rep. Thus all the matrices in rep are block

diagonal. But D is irreducible = not all matrices can be block diagonal .

Thus all d;'s have to be equal

d=cl.

(Institute)

or

M= UdU" = duUt =d = ¢l

Representation Theory

14 / 41



(ii) If the only matrix that commutes with all the matrices of a representation is a
multiple of identity, then the representation is irrep.
Proof: Suppose D is reducible, then we can transform them into

_ [ bW (A)
D (A;) = { D@ (A)) forall Aje G
I 0
construct M = {O 21} then

D (Aj))M =MD (A;) forall i

But M is not a multiple of identity (contradiction). Therefore D must be
irreducible.

Remarks

1. Any irrep of Abelian group is 1—dimensional. Because for any element A, D (A) commutes
with all D (A;). Then Schur's lemma = D (A) =c/ VYA € G. But D is irrep, so D has to be
1 x 1 matrix.

2. In any irrep, the identity element E is always represented by identity matrix. This follows
Schur’'s lemma.

3. From D(A)D (A1) =D (E) = 1., = D (A~) = [D (A)] 'and for unitary representation
D (A71) = DT (A).
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(i) If D@ and D@ are irreps of dimension /1, and dimension / and
MD® (Aj) = D) (Aj) M. 3)
then (a)ifh#h M=0

(b) if h = b, then either M = 0 or det M # 0 and reps are equivalent.
Proof: : take ; < k. Hermitian conjugate of Eq(3) gives

DWipmt = D@t mMmtD® (AT = MDW (A" Mt = DB (AN MMt

or
<MM+) D@ (A;) =D® (A)) (MM*) V(A)EG

Then from Schur’s lemma (l) we get Mmt = cl,where | is a [—dimensional

identity matrix.

First consider the case l; = h, where we get |det M\Q = ¢!t Then either
det M # 0, = M is non-singular and from Eq(3)

DW (A)) =MD (A)) M V(A)€EG

This means DM (A;) and D (A;) are equivalent. Otherwise if the
determinant is zero,

detM=0 =c=0 or MM'=0 = Y My,Mg, =0 Vap.
v
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In particular, for a = Z|Mm|2 =0 My, =0foralla.y = M =0.
v

Next, if 1 < k, then M is a rectangular l, X 1, matrix

M= ( ~>/2
N——
h

Define a square matrix by adding colums of zeros

h

—
N = [M,0]}h h x b square matrix

then

t t
N*:(’Z) and NN*:(M,O)(I\Z ):M/W:c/

where [ is the kh X k identity matrix. But from construction det N = 0. Hence
c=0,= NN* =0 or M =0 identically. ®
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Great Orthogonality Theorem—most important theorem for the representation of the finite
group.

Theorem(Great orthogonality theorem): Suppose G a group with n elements,
{A;,i=1,2,---n}, and D (A;), a =1,2--- are all the inequivalent irreps of G with
dimension /.

Then

NgE

! “ n
DI.(J.“) (Ax) D,((g) (Ay) = 5504,351'/((5]%

a=1

Proof: Define
M =Y D® (A;) XDP (A1)

a

where X is an arbitrary [y X [g matrix. Multiplying M by representation matrix,

D@ (Ap)M = D) (Ab)ZD(a) (Aa)XD</S) (Aa—l) [D(ﬁ) (A;l) D (Ab)]

a

= ZD (ApA, XDW((AbAa)*l)mﬁ)(Ab):MD(@(Ab)

(Institute) Representation Theory
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(i) If @ # B, then M =0 from Schur’'s lemma, we get
M= ZD/, 2) XesD ZD,, A) XsDP" (A) =0
Choose X;s = 4,04 (i.e. X is zero except the jl element). Then
ZDU B (a0 =0

= for different irreps , the matrix elements, after summing over group
elements, are orthogonal to each other.
(i) a =B then we can write M = Y.D®) (A,) XD®) (A;1) .This implies
a
DW (A))M = MDW (A) = M =cl

Then

T,X
ZTr { L) XD (A7 )] —ch ornT,X =ch, orc= (/7)n
(14
Take X5 = d,j05¢ then T, X =djy and
2D (A;); D (As)y = /ﬂ‘sfkéjz
a (9

This gives orthogonality for different matrix elements within a given irreducible
representation. W
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Geometric Interpretation

Imagine a complex n—dim vector space, axes (or componenets) are labeled by group elements
E,A3.As..A,(Group element space). Components of vector are made out of matrix element of
irreducible representation matrix D®) (Aa),-j .Each vector in this n—dim space is labeled by 3
indices, i, p.v

Bl = (D) (), D) (A2) - DL (An))
Great orthogonality theorem == these vectors are L to each other. As a result

Elfgn
i

because no more than n mutually L vectors in n-dim vector space.
As an example, we take the 2-dimensional representation we have work out before,

. g -
E:(O 1), A= hoA) B= 4 (4)

2

-1.0 1 ¢ 1 g
K:<o 1)' L=\ 1) M={s ()

2 2 2 2
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Label the axises by the groupl elements in the order (E, A, B, K,L, M). Then we can construct
four 6-dimensional ectors from these 2x2 matrices,

pP = .-} -b o1 3 LY
ppl =0 - 0 )
Dy =0 = P 0 = P
by =0 -3 -0 o D)

It is straightforward to check that these 4 vectors are perpendicular to each other.
Note that the other two vectors which are orthogonal to these vectors are of the form,

De =(1
Dy :(1 , 1,1 ,—-1 ,-1 ,—1)

coming from the identity representation and other 1-dimensional representation.
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Character of Representation
Matrices in irrep are not unique because of similairty transformation. But trace of matrix is
invariant under similarity transformation,

Tr (SAS™!) = TrA

We can use trace, or character, to characterize the irrep.
X (A7) = T, [D® (a)] = £0% (4)
a
Useful Properties

@ 1t D@ and D) are equivalent, then

Proof: If A and B are in same class = dx € G such that
xAx"1 =B = D™ (x) DWW (A) D@ (x71) = DW (B)

Using
D) (xil) —p® (x)_1
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we get

Hence x@ is a function of class, not of each element

Denote x; = x (C;), character of ith class. Let nc : number of classes in G, and n;:
number of group elements in C;.
From great orthogonality theorem

* n
Y05 (A) DY (Ar) = T-8upducd
r ®

which implies

ZXW (Ar)X(ﬁ)* (A)) = /ﬂ Ouply = ndyup

r (4

or

Zn)( (C)fnéalg

This is the great orthogonality theorem for the characters.
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Define U, = ﬂ)((”‘) (Ci), then great orthogonality theorem implies,

n
ne .
Y UniUgi = bap
=1

i=

Thus, if we consider U,; as components in n. dim vector space, Ua = (Un1, Ua2, -+ - Uap. ) , then
D,,t «=1,2,3---n, (n:# of indep irreps)form an othornormal set of vectors, i.e.

UgUy =Y UyiUpgi = b
i=1
This implies that

ny < ne

As an illustration, characters for rep given in Eqs(4,5) are

xV(E) =1, WA =xPB)=1, YV K)=xV(L)=xP M) =1
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AE)=1 DA =xPB) =1 x®K)=xP (L) =x" (M) = -1
Form another two 3-dimensional vectors,
KW =(1,1,1)
A®=(1,1,-1)
The orthogonality relations in Eq (??) these 3-dimensional vectors are orthogonal to each other

when weighted by # of elements in the class. For example,

(X(Q),;(@)):2><1+(71)><1><2+0><(71)><3:0

()(<1),x(3)):2><1+(—1)><1><2+0><1><3:0
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Decomposition of Reducible Representation
For a reducible rep, we can write

Oy
D=DWgD® e D(A,-):( DI (A7) D@ (4) >

The trace is
x (A7) = xM (A) + 1) (A)

Denote by D@ x=1,2---n, all inequivalent unitary irrep. Then any rep D can be
decomposed as

D= ZC,XD("‘) Cy: some integer , (# of time D@ appears)
14

In terms of traces,

C) =Y cx®(c
[14

The coefficient can be calculated as follows (by using orthogonity theorem). Multiply by nix§ﬁ)*

and sum over i
Yoox? ni = =2Yla X = Lc - nbup = ncp

or

cs=2ran”
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From this,

Z”inX: Z”IZC XI CﬁX/ = ”Z|C |
1 1

This leads to the following theorem:
Theorem: If rep D with character x; satifies,

Z”iXiXT =n
!

then the representation D is irreducible.
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Regular Representation
Given a group G = {A; = E, Ay... A, } .We can construct the regular rep as follows:
Take any A € G. If

AA, :A3:0A1+0A2+1-A3+0A4+~~
i.e. we write the product "formally" as linear combination of group elements,

n n
AAs = ZC,SA, = ZA,D,S (A), i.e. Crs = Dys(A) is either 0 orl. (8)

r=1 r=1

ie. Ds(A) = 1 ifAA;=A, or A=AA"

= 0 otherwise

Strictly speaking, the sum over group elments is undefined. But here only one group element
shows up in the right-hand side in Eq(8). No need to define the sum of group elements. Then
D (A)'s form a rep of G: regular representation with dimensional n. This can be seen as
follows:

Y A:Drs (AB) = ABAs = AY A;Dys (B) =Y Dis (B) ArDrt (A)

or Dys (AB) = Dyt (A) Dis (B)
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From definition of regular representation
D (A)=1 iff AAs = A,
diagonal elements are,
Dy (A) =1 iff AA, =A, or A=E
Then every character is zero except for identity class,

X)) = o i#1
X ) = n =1 (9)

Reduce D("8) to irreps. Write

reg Z Ca

then

re 1 re; * 1
2 = A = ==t

i

== Deg contains irreps as many times as its dimension,

reg Z/aX, or reg Z)Cl X, *”fsil
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For identity class x1% = n, X(la) = I, then

YIE=n

&

This constraints the possible dimensionalities of irreps becuase both n and /, have to be
integers. For D3, with n = 6, the only possible solution for Y12 =6 is h =1. h=1. 5 =2,
o

and their permutations.
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We now want to show that

[Mc=T11
(a)

i.e. # of classes = # of irreps. We will derive another orthogonal relations x;’ with summation

over irreps rather than classes,
(a) (@)
e Xj
13

The derivation is separated into several steps.

@ Define D) by

D = ¥ 0O (a)
AeC;

Then we can show that D™ isa multiple of identity. First,

i

D@ (A;) D™ D) (Aj‘l) — Y. D@ (4;)D® (A)D® (Aj_1>
AeC;
- Y. oW (AJAAJTI) =p®
AcC;
Using
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we get

i.e. Dl.(“) commutes with all matrice in the irrep. From Schur's lemma, we get

D.(”‘> = A(.“)l where AI(D‘) is some number. Taking the trace,

i I

@ _ @ w _ mxt” i
nixi =A; or A= i = X(”‘)
1

(2)

where X7 is the character of identity class.

From the property of the class multiplication, we have
Yy
CiC; = ZCUka
k

LHS C;C; is a collections of group element of the type A;A; where A; € C; and A; € C;.
Map these products into irrep matrices and sum over to get
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For example, in the group D3, we have classes, C1 = {E},Co = {A,B},C3 = {K,L,M}.
Then

CaCs {A B}{K,L,M} = {AK, AL, AM, BK,BL, BM}

2{K,L,M} = 2C;

Map these elements to their matrix representation and sum over,

LHS = D (AK)+D(AL)+D(AM)+ D (BK)+ D (BL)+ D (BM)
= D(A)D(K)+ D (A)D(L) + D (A)D(M)+ D (B)D(K) + D (B)D(L) + D (B)D(
[D(A)+ D(B)][D (L) + D(M) + D(K]

and
RHS =2[D (L) + D(M) + D(K]

This illustrates the relation .Using the values of /\ED‘) in Eq(?7?),

(@) .0 (%)

nix; iXj n '
Xi ' NiX; Zcuk kXk or ”i”jXE‘X)X(-’X) _ X(la) Cijk”kXia)
(a) (a) (a) J Z

X1 X1 X1 k

Sum over the irrep «,

2" nJX' X/ ZZCUknkXI Xk
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© We now compute the coefficients Cijk- If any element A belongs to ith class, let the class
which contains A~! be denoted by i’ — th class. We then get

Ly
CU1:{0 for j#i

n; for j=1

We make use of the property of regular rep, Y x{ X% = nd1, in Eq(??) to get,
o

) 0 f P
Lrima ™ = LY Cimext xe = nCin = { . or j#i
o I

nn; for j=1

Then .,
L) (a n_..
$ o — o
a=1 nj

Since rep is unitary

we get
O
and o
Y = i
a=1 J

(2)

I

This is the orthogonal relation for x
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(a)

i

as a vector in n, dim space x; = <X,(1),)(§2),,“X§"r)) we get

If we now consider x
nc < n,

Combine this with the result n, < n., we have derived before, we get

ny = ne¢
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Character Table
For a finite group, the essential information about the irrep can be summarized in a table witth
characters of each irrep in terms of the classes. To construct such table, use the following useful
information:

o
(2]

o
o

o
o
o

# of columns = # of rows = # of classes

Yi2=n

&

Lo =nssand Sxx = 2y

1 o

If lh=1, x; isitselfa rep.

x® (A =T, (D(a) (Afl)) =T, (D(IX)+ (Afl)) = x@* (A)

If Aand A7! are in the same class then x (A) is real.

D@ is a rep = D®* is also a rep
so if )(<“)'s are complex numbers, another row will be their complex conjugate

If [y, > 1,7(1(.“) = 0 for at least one class. This follows from the relation
Zn,- |)(,-|2 =n and Zn,- =n
i i

For physical symmetry group, x.y and z form a basis of a rep.
Example : D3 character table
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| | E 26 3G

x2 —I—yz,z2 Aq 1 1 1

Roz. | A |1 1 -1

(xz,yz) (x,y) E |2 -1 0
x2 —y? xy (Rx-Ry)

Here, typical basis functions up to quadratic in coordinate system are listed.

Remark: the basis functions are not necessarily normalized.

Using the transformation properties of the coordinate, we can also infer the transformation
properties of any vectors.

For example, the usual coordinates have the transformation property,

F=(x,y,z)~A2®E in D3
This means that electric field of E or magnetic field B will have same transformation property,

B~E~AO®E

because they all transform the same way under the rotation.
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Product Representation (Kronecker product)

123
Let x; be the basis for D@, i.e. x!/ = _Z Xij(l-a) (A)

ye¢ be the basis for D®), ie. y, = Zy[D[k (A)

then the products x;y; transform as

xyt = YD1 (4) DI (A) xgy0 = D3P (A) sy
jl j-t

where

D (a) = D[ (A) D (A)

Note that matrices, row and column are labelled by 2 indices, instead of one. We can show

that D@<P) forms a rep of the group.

{D(M’B) ( ) (aXﬁ ]U kt = ZD axﬁ U st D) (B)st;ké‘

s.t

=y b (a) oY () DY) (8) D (B) = DY (AB) D) (AB) = DF) (AB) .,
s.t

or

D(@xF) (A) D<) (B) = D**F) (AB)
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The basis functions for D®*B) are Xiyj

The character of this rep can be calculated by making the row and colum indices the same and
sum over,

KP4 =10 (4 2 L(A) = x1 (A)x P (A)
jl
X P () = X (A xP) (4)

If & = B, we can further decompose the product rep by symmetrization or antisymmetrization;

axXa 1 o ® . ].
Diit () = 5 [0 () 0 (4)+ D (A D ()] basis o G+ xk)

x 1 ' 1
Dl () =5 [P (A D7 (A) =D (A) D (W] basis 5 G —xuri)

These matrices also form rep of G and the characters are given by

A )= [ (1@ @) @ )] e ) = 3 [ (6 ) - ()

Example D3

| E. 205 3G
I 1 1 1
R,z I 1 1 -1
(xz,yz) (x,y) I3 2 -1 0
(x2 = y2,xy) I3 x T3 4 1 0 = Iehols
(1“3><1"3)S 3 0 1 = Iierls
F3 X F3 1 1 —1 = rg
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Direct Product Group
Given 2 groups Gi = {E Ay A, }, Gy ={E,By---Bpn}, define product group as
Gi®G ={A;Bj;i=1---n,j=1---m} with multiplication law

(AxBy) x (A By) = (AxBy) (BeByr)

It turns out that irrep of Gy @ G, are just direct product of irreps of G, and G. Let D@ (Aj) be
an irrep of Giand D) (B;j) an irrep of Gathen the matrices defined by

D(aXﬁ) (AiBj)ab;cd = D(a) (AI) D(ﬁ) (Bj)bd

ac

will have the property

[DWﬁ) (A;B;) D@P) (Aksé)}

[D@P (4;8)]
e-f

{D(“Xm (AkBZ)}

ab;cd ab;ef

[0 (A1), D) (A)ec| [D) (By)yy D) (Be) g

ef;cd

I
7

Y

e-

= D

%) (AiAk)ac D(ﬁ) (B]Bf)bd = D(aXﬁ) (AiAk-B/Bf)ab;cd

Thus matrice D®*F) (A;Bj) form a representation of the product group Gi; ® Gz. The characters
are,

meﬁ) (A ZD (&xp) (AiBj) ab ab = ZD D® (Bj)bb = X(A) (A")X(ﬁ) (Bj)
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Then

2) <ZX(5> (Bf)F) =nm = D@ isirrep.
J

Zlves ]l = (E

Example, G = D3 = {E,2C3,3C}}, G ={E,op} = ¢ where o:  reflection on the plane
of triangle.

Direct product group is then D3y = D3 ® ¢ = E, A, B = {E,2C3,3C},04,2C304,3C)04 }
Character Table

26 20}
o | E o, Dy | E AB  KLM
TF |1 1 L |1 1 1
r- |1 -1 L |1 1 -1
r; | 2 -1 0

Character Table

E 2C3 2C2/ Th 2C3(Th 2C2/0'h
Iy [1 1 1 1 1 1
ry |1 1 -1 ] 1 1 -1
ry |2 -1 2 -1 0
ry [1 1 I [ -1 -1 -1
ry |1 1 -1 | -1 -1 1
r;'|]2 -1 0 | -2 1 0
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