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Theory of Group Representation
In phyiscal application, group representation is important in deducing the consequence of the
symmetries of the system. Most important one is realization of group operation by matrices.
De�nition of Representation
Given a group G = fAi ,i = 1 � � � ng . If for each Ai 2 G , there are an n � n matrices D (Ai ) such
that

D (Ai )D (Aj ) = D (AiAj ) (1)

then D�s forms a n-dimensional representation of the group G i.e. correspondence Ai ! D (Ai )
is a homomorphism. If this is an 1� 1 isomorphism, representation is called faithful. A matrix
Mij can be viewed as linear operator M acting on some vector space V with repect to some
basis ei ,

Mei = ∑
j
ejMji

Note that the choice of the basis is not unique. If we make a change to a new basis,

ei = ∑
j
fnSni , S non-singular

then
∑
n
MfnSni = ∑

k ,j
fkSkjMji
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Multiply by S�1im ,

Mfm = ∑
k ,j ,i

fkSkjMjiS
�1
im = ∑

k
fk
�
SMS�1

�
km = ∑

k
fk
�
M 0�

km

where
M 0 = SMS�1

To generate such matrices for the symmetry of certain geometric objects is to use the group
induced transformations, discussed before. Recall that each element Aa induces a
transformation of the coordinate vector ~r ,

~r ! Aa~r

Then for any function of ~r , say ϕ (~r ) and for any group element Aa de�ne a new transformation
PAa by

PAa ϕ (~r ) = ϕ
�
A�1a ~r

�
Among the transformed functions obtained this way, PA1 ϕ (~r ) , PA2 ϕ (~r ) , � � �PAnϕ (~r ) , we select
the linearly independent set ϕ1 (~r ) , ϕ2 (~r ) � � � ϕ` (~r ) .Then it is clear that PAϕa can be expressed
as linear combination of ϕi .This is because

PAb ϕa = PAbPAa ϕ (~r ) = PAb ϕ
�
A�1a ~r

�
= ϕ

�
A�1a

�
A�1b ~r

��
= ϕ

�
(AbAa)

�1~r
�

Thus we can write
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PAi ϕa =
`

∑
b=1

ϕbDba (Ai )

and Dba (Ai ) forms a representation of G . This can be seen as follows.

PAiAj ϕa = PAi PAj ϕa = PAi ∑
b

φbDba (Aj ) = ∑
b.c .

φcDcb (Ai )Dba (Aj )

On the other hand,
PAiAj ϕa = ∑

c
ϕcD (AiAj )ca

This gives

D (AiAj )ca = Dcb (Ai )Dba (Aj )

which means that D (Ai )
0 s form representation of the group.
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Example: Group D3, symmetry of the triangle.
As seen before, choosing a coordinate system on the plane, we can represent the group elements
by the following matrices,

A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
, B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
, E =

�
1 0
0 1

�

K =
�
�1 0
0 1

�
, L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
, M =

 
1
2

p
3
2p

3
2 � 1

2

!

Choose f (~r ) = f (x , y ) = x 2 � y 2, we get

PA f (~r ) = f
�
A�1~r

�
=
1
4

�
x +

p
3y
�2
� 1
4

�p
3x � y

�2
= � 1

2

�
x 2 � y 2

�
+
p
3xy .

We now have a new function g (x , y ) = 2xy showing up. We can operate on g (r ) to get,

PAg (~r ) = g
�
A�1~r

�
= 2

�
� 1
2

��
x +

p
3y
� 1
2

�p
3x � y

�
= � 1

2

h�p
3
� �
x 2 � y 2

�
� 2xy

i
= �

p
3
2

�
x 2 � y 2

�
� 1
2
(2xy )

Thus we have

PA (f , g ) = (f , g )

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
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The matrix generated this way is the same as A if we change g to -g .
Similarly

PB f (~r ) = f
�
B�1~r

�
=
1
4

�
x �

p
3y
�2
� 1
4

�p
3x + y

�2
= � 1

2

�
x 2 � y 2

�
�
p
3xy

PB g (~r ) = g
�
B�1~r

�
= 2

�
1
2

��
x �

p
3y
��
� 1
2

��p
3x + y

�
=

+

r
1
2

h
+
p
3
�
x 2 � y 2

�
� 2xy

i
=

p
3
2

�
x 2 � y 2

�
� 1
2
(2xy )

PB (f , g ) = (f , g )

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
same as B
Remarks

1 If D (1) (A) and D (2) (A) are both representation of the group, then

D (3) (A) =
�
D (1) (A) 0

0 D (2) (A)

�
(block diagonal form)

also forms a representation. We will denote it as a direct sum �,

D (3) (A) = D (1) (A)�D (2) (A) direct sum
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2 If D (1) (A) and D (2) (A) are 2 representations of G with same dimension and 9 a
non-singular matrix U such that

D (1) (Ai ) = UD (
2) (Ai )U

�1 for all Ai 2 G .

then D (1) and D (2) are equivalent representations .
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Reducible and Irreducible Representations
A representation D of a group G is called irreducible representation (irrep) if it is de�ned on a
vector space V (D ) which has no non-trivial invariant subspace. Otherwise, it is reducible. In
other words, all group actions can be realized in this subspace.
Suppose representaion D is reducible on the vector space V . Then 9 subspace S invariant under
D . For any vector v 2 V , we can write,

v = s + s?

where s 2 S and s? belongs to the complement S? of S . If we write,

v =
�

s
s?

�
then the representation matrix is

Av = D (A) v =
�
D1 (A) D2 (A)
D3 (A) D4 (A)

�
Since S is invariant under group operators, we get

D3 (Ai ) = 0, 8 Ai 2 G
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i.e. D (Ai ) are all of the upper triangular form,

D (Ai ) =
�
D1 (Ai ) D2 (Ai )
0 D4 (Ai )

�
, 8 Ai 2 G (2)

Note that

D =
�
D1 D2
0 D4

��
D 01 D 02
0 D 04

�
=

�
D1D 01 D1D 02 +D2D

0
4

0 D4D 04

�
Thus invariant subspace is still invariant if operate on it many times.
A representation is completely reducible if all matrices D (Ai ) can be simultaneously brought
into block diagonal form by the same similarity transformation U ,

UD (Ai )U
�1 =

�
D1 (Ai ) 0
0 D2 (Ai )

�
, for all Ai 2 G

Theorem: Any unitary reducible representation is completely reducible.
Proof: For simplicity we assume that the vector space V is equipped with a scalar product
(u, v ) . We can choose the complement space S? to be perpendicular to S , i.e.

(u, v ) = 0, if u 2 S , v 2 S?

Since scalar product is invariant under the unitary transformation,

0 = (u, v ) = (D (Ai ) u,D (Ai ) v )
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Thus if D (Ai ) u 2 S , then D (Ai ) v 2 S? which implies that S? is also invariant under the
group operation.�
In physical applications, we deal mostly with unitary representations and they are completely
reducible.
Unitary Representation
Since unitary operators preserve the scalar product, representation by unitary matrices will
simplify the analysis of group theory. For �nite groups, we can show that rep can always be
transformed into unitay one.
Fundamental Theorem
Every irrep of a �nite group is equivalent to a unitary irrep (rep by unitary matrices)
Proof:
Let D (Ar ) be a representation of the group G = fE ,A2 � � �Ang
Consider the sum

H =
n

∑
r=1

D (Ar )D † (Ar ) then H † = H

Since H is positive semide�nite, de�ne squre root h by

h2 = H , h+ = h

This can be achieved by diagonizing this hermitian matrix H by unitary transformation and then
transforming it back after taking the square root of the eigvalues. De�ne new set of matrices by
similarity transformation

D̄ (Ar ) = h�1D (Ar ) h r = 1, 2, � � � , n

D̄ (Ar ) is equivalent to D (Ar ) . We will now show that D̄ (Ar ) is unitary,
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D̄ (Ar ) D̄ † (Ar ) =
�
h�1D (Ar ) h

� h
hD † (Ar ) h�1

i
= h�1D (Ar )

n

∑
s=1

h
D (AS )D

† (AS )
i
D † (Ar ) h�1

= h�1
"
n

∑
s=1
D (ArAs )D † (ArAs )

#
h�1

= h�1
n

∑
s 0=1

D (AS 0 )D
† (As 0 ) h

�1 = h�1h2h�1 = 1

where we have used rearrangement theorem.�
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Schur�s Lemma�an important theorems in irreducible reprentation

(i) Any matrix which commutes with all matrices of irrep is a multiple of identity
matrix.
Proof: Assume 9 M

MD (Ar ) = D (Ar )M 8 Ar 2 G

Hermitian conjugate
D † (Ar )M † = M †D † (Ar )

Since D (Ar ) is unitary, we get

M † = D (Ar )M †D † (Ar ) or M †D (Ar ) = D (Ar )M †

=) M † also commutes with all D�s and so are M +M † and i
�
M �M †� ,

which are hermitian. Thus, we take M to be hermitian. Start by
diagonalizing M by unitary matrix U ,

M = UdU † d : diagonal

De�ne D̄ (Ar ) = U †D (Ar )U , then we have

dD̄ (Ar ) = D̄ (Ar ) d
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or in terms of matrix elements,

∑
β

dαβ

_
D βr (As ) = ∑

β

_
D αβ (As ) dβγ

Since d is diagonal, we get

(dαα � dγγ) D̄αγ (As ) = 0 =) if dαα 6= dγγ, then D̄αγ (As ) = 0

=) if diagonal elements dii are all di¤erent, then o¤-diagonal elements of
_
D

are all zero. The only possible non-zero o¤-diagonal elements of
_
D can arise

when some of d 0ααs are equal. For example, if d11 = d22, then
_
D 12can be

non-zero. Thus D̄ is in block diagonal form, i.e.
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if d =

2666666666666664

d1
d1

. . .
d1

d2
. . .

d2
. . .

3777777777777775
then

D̄ =

264 D1 0
0 D2

. . .

375
This is true for every matrix in the rep. Thus all the matrices in rep are block
diagonal. But D is irreducible =) not all matrices can be block diagonal .
Thus all di�s have to be equal

d = cI . or M = UdU † = dUU † = d = cI �
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(ii) If the only matrix that commutes with all the matrices of a representation is a
multiple of identity, then the representation is irrep.
Proof: Suppose D is reducible, then we can transform them into

D (Ai ) =
�
D (1) (Ai )

D (2) (Ai )

�
for all Ai 2 G

construct M =

�
I 0
0 2I

�
then

D (Ai )M = MD (Ai ) for all i

But M is not a multiple of identity (contradiction). Therefore D must be
irreducible.

Remarks
1. Any irrep of Abelian group is 1�dimensional. Because for any element A, D (A) commutes
with all D (Ai ) . Then Schur�s lemma =) D (A) = cI 8A 2 G . But D is irrep, so D has to be
1� 1 matrix.
2. In any irrep, the identity element E is always represented by identity matrix. This follows
Schur�s lemma.
3. From D (A)D

�
A�1

�
= D (E ) = I ., =) D

�
A�1

�
= [D (A)]�1and for unitary representation

D
�
A�1

�
= D † (A) .
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(iii) If D (1) and D (2) are irreps of dimension l1, and dimension l2 and

MD (1) (Ai ) = D (
2) (Ai )M . (3)

then (a) if l1 6= l2 M = 0
(b) if l1 = l2, then either M = 0 or detM 6= 0 and reps are equivalent.

Proof: : take l1 � l2. Hermitian conjugate of Eq(3) gives

D (1)†M † = M †D (2)†, MM †D (2) (Ai )
† = MD (1) (Ai )

† M † = D (2) (Ai )
† MM †

or �
MM †

�
D (2) (Ai ) = D (

2) (Ai )
�
MM †

�
8 (Ai ) 2 G

Then from Schur�s lemma (i ) we get MM † = cI ,where I is a l2�dimensional
identity matrix.
First consider the case l1 = l2, where we get jdetM j2 = c `1 . Then either
detM 6= 0, ) M is non-singular and from Eq(3)

D (1) (Ai ) = M
�1D (2) (Ai )M 8 (Ai ) 2 G

This means D (1) (Ai ) and D (2) (Ai ) are equivalent. Otherwise if the
determinant is zero,

detM = 0 =) c = 0 or MM † = 0 =) ∑
γ

MαγM
�

βγ = 0 8α.β.
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In particular, for α = β ∑
γ
jMαγj2 = 0 Mαγ = 0 for all α.γ =) M = 0.

Next, if l1 < l2, then M is a rectangular l2 � l1, matrix

M =

�
. .
. .

�
| {z }

l1

l2

De�ne a square matrix by adding colums of zeros

N =

l2z }| {
[M , 0]gl2 l2 � l2 square matrix

then

N † =

�
M †

0

�
and NN † = (M , 0)

�
M †

0

�
= MM † = cI

where I is the l2 � l2 identity matrix. But from construction detN = 0. Hence
c = 0,=) NN † = 0 or M = 0 identically. �
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Great Orthogonality Theorem�most important theorem for the representation of the �nite
group.
Theorem(Great orthogonality theorem): Suppose G a group with n elements,
fAi , i = 1, 2, � � � ng , and D (α) (Ai ) , α = 1, 2 � � � are all the inequivalent irreps of G with
dimension lα.
Then

n

∑
α=1
D (α)ij (Aα)D

(β)�
k` (Aα) =

n
lα

δαβδik δj`

Proof: De�ne
M = ∑

a
D (α) (Aa)XD (β)

�
A�1a

�
where X is an arbitrary lα � lβ matrix. Multiplying M by representation matrix,

D (α) (Ab )M = D (α) (Ab )∑
a
D (α) (Aa)XD (β)

�
A�1a

� h
D (β)

�
A�1b

�
D (β) (Ab )

i
= ∑

a
D (α) (AbAa)XD

(β)
�
(AbAa)

�1
�
D (β) (Ab ) = MD

(β) (Ab )

(Institute) Representation Theory 18 / 41



(i) If α 6= β, then M = 0 from Schur�s lemma, we get

M = ∑
a

D (α)ir (Aa)XrsD
(β)
sk

�
A�1a

�
= ∑

a
D (α)ir (Aa)XrsD

(β)�
ks (Aa) = 0

Choose Xrs = δrj δsl (i.e. X is zero except the jl element). Then

∑
a
D (α)ij (Aα)D

(β)�
k` (Aα) = 0

=) for di¤erent irreps , the matrix elements, after summing over group
elements, are orthogonal to each other.

(ii) α = β then we can write M = ∑
a
D (α) (Aa)XD (α)

�
A�1a

�
.This implies

D (α) (Aa)M = MD (α) (Ab ) =) M = cI

Then

∑
a
Tr
h
D (α) (Aa)XD (α)

�
A�1a

�i
= cl2 or nTrX = cl2, or c =

(TrX ) n
lα

Take Xrs = δrj δs` then TrX = δj` and

∑
a
D (α) (Aa)ij D

(α) (Aa)
�
k` =

n
lα

δik δj`

This gives orthogonality for di¤erent matrix elements within a given irreducible
representation. �
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Geometric Interpretation
Imagine a complex n�dim vector space, axes (or componenets) are labeled by group elements
E ,A2.A3���An(Group element space). Components of vector are made out of matrix element of
irreducible representation matrix D (α) (Aa)ij .Each vector in this n�dim space is labeled by 3
indices, i , µ.ν

~D (i )µν =
�
D (i )µν (E ) ,D

(i )
µν (A2) , � � �D (i )µν (An)

�
Great orthogonality theorem =) these vectors are ? to each other. As a result

∑
i
l2i � n

because no more than n mutually ? vectors in n-dim vector space.
As an example, we take the 2-dimensional representation we have work out before,

E =
�
1 0
0 1

�
, A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
, B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
(4)

K =
�
�1 0
0 1

�
, L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
, M =

 
1
2

p
3
2p

3
2 � 1

2

!
(5)
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Label the axises by the groupl elements in the order (E ,A,B ,K , L,M ) . Then we can construct
four 6-dimensional ectors from these 2�2 matrices,

D (2)11 = (1 ,� 1
2 ,� 1

2 ,�1 , 12 , 12 )

D (2)12 = (0 ,
p
3
2 �

p
3
2 , 0 ,�

p
3
2 ,

p
3
2 )

D (2)21 = (0 ,�
p
3
2 ,

p
3
2 , 0 �

p
3
2 ,

p
3
2 )

D (2)21 = (1 ,� 1
2 ,� 1

2 , 1 ,� 1
2 ,� 1

2 )

It is straightforward to check that these 4 vectors are perpendicular to each other.
Note that the other two vectors which are orthogonal to these vectors are of the form,

DE = (1 , 1 , 1 , 1 , 1 , 1)
DA = (1 , 1 , 1 ,�1 ,�1 ,�1) (6)

coming from the identity representation and other 1-dimensional representation.
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Character of Representation
Matrices in irrep are not unique because of similairty transformation. But trace of matrix is
invariant under similarity transformation,

Tr
�
SAS�1

�
= TrA

We can use trace, or character, to characterize the irrep.

χ(α) (Ai ) � Tr
h
D (α) (Ai )

i
= ∑

a
D (α)aa (Ai )

Useful Properties

1 If D (α) and D (β) are equivalent, then

χ(α) (Ai ) = χ(β) (Ai ) 8 Ai 2 G

2 If A and B are in the same class

χ(α) (A) = χ(α) (B )

Proof: If A and B are in same class =) 9x 2 G such that

xAx�1 = B =) D (α) (x )D (α) (A)D (α)
�
x�1

�
= D (α) (B )

Using
D (α)

�
x�1

�
= D (α) (x )�1
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we get

Tr
h
D (α) (x )D (α) (A)D (α) (x )�1

i
= Tr

h
D (α) (B )

i
or χ(α) (A) = χ(α) (B )

Hence χ(α) is a function of class, not of each element

3 Denote χi = χ (Ci ) , character of i th class. Let nc : number of classes in G , and ni :
number of group elements in Ci .
From great orthogonality theorem

∑
r
D (α)ij (Ar )D

(β)�
k` (Ar ) =

n
lα

δαβδik δjl

which implies

∑
r

χ(α) (Ar ) χ(β)� (Ar ) =
n
lα
� δαβ lα = nδαβ

or

∑
i
niχ(

α) (Ci ) χ(β)� (Ci ) = nδαβ

This is the great orthogonality theorem for the characters.
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De�ne Uαi =
q

ni
n χ(α) (Ci ) , then great orthogonality theorem implies,

nc

∑
i=1
UαiU

�
βi = δαβ

Thus, if we consider Uαi as components in nc dim vector space, ~Uα = (Uα1,Uα2, � � �Uαnc ) , then
~Uα α = 1, 2, 3 � � � nr (nr : # of indep irreps)form an othornormal set of vectors, i.e.

UβUα =
nc

∑
i=1
UαiU

�
βi = δαβ

This implies that
nr � nc

As an illustration, characters for rep given in Eqs(4,5) are

χ(3) (E ) = 2, χ(3) (A) = χ(3) (B ) = �1, χ(3) (K ) = χ(3) (L) = χ(3) (M ) = 0

From these form a 3-dim vector,
χ(3) = (2,�1, 0) (7)

Similarly for rep in Eq(6) we get

χ(1) (E ) = 1, χ(1) (A) = χ(1) (B ) = 1, χ(1) (K ) = χ(1) (L) = χ(1) (M ) = 1
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χ(2) (E ) = 1, χ(2) (A) = χ(2) (B ) = 1, χ(2) (K ) = χ(2) (L) = χ(2) (M ) = �1

Form another two 3-dimensional vectors,

χ(1) = (1, 1, 1)

χ(2) = (1, 1,�1)

The orthogonality relations in Eq (??) these 3-dimensional vectors are orthogonal to each other
when weighted by # of elements in the class. For example,�

χ(2),χ(3)
�
= 2� 1+ (�1)� 1� 2+ 0� (�1)� 3 = 0

�
χ(1),χ(3)

�
= 2� 1+ (�1)� 1� 2+ 0� 1� 3 = 0
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Decomposition of Reducible Representation
For a reducible rep, we can write

D = D (1) �D (2) i.e. D (Ai ) =
�
D (1) (Ai )

D (2) (Ai )

�
8Ai 2 G

The trace is
χ (Ai ) = χ(1) (Ai ) + χ(2) (Ai )

Denote by D (α), α = 1, 2 � � � nr , all inequivalent unitary irrep. Then any rep D can be
decomposed as

D = ∑
α

cαD (α) cα : some integer ,
�
# of time D (α) appears

�
In terms of traces,

χ (Ci ) = ∑
α

cαχ(α) (Ci )

The coe¢ cient can be calculated as follows (by using orthogonity theorem). Multiply by niχ
(β)�
i

and sum over i
∑
i

χiχ
(β)�
i ni = ∑

i
∑
α

cαχ
(α)
i χ

(β)�
i ni = ∑

α

cα � nδαβ = ncβ

or

cβ=
1
n∑
i

χiχ
(β)�
i ni
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From this,

∑
i
niχiχ

�
i = ∑

i
ni∑

α,β

cαχ
(α)
i cβχ

(β)�
i = n∑

α

jcαj2

This leads to the following theorem:
Theorem: If rep D with character χi sati�es,

∑
i
niχiχ

�
i = n

then the representation D is irreducible.
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Regular Representation
Given a group G = fA1 = E ,A2���Ang .We can construct the regular rep as follows:
Take any A 2 G . If

AA2 = A3 = 0A1 + 0A2 + 1 � A3 + 0A4 + � � �

i.e. we write the product "formally" as linear combination of group elements,

AAs =
n

∑
r=1
CrsAr =

n

∑
r=1
ArDrs (A) , i.e. Crs = Drs (A) is either 0 or1. (8)

i.e. Drs (A) = 1 if AAs = Ar or A = ArA�1s
= 0 otherwise

Strictly speaking, the sum over group elments is unde�ned. But here only one group element
shows up in the right-hand side in Eq(8). No need to de�ne the sum of group elements. Then
D (A)�s form a rep of G : regular representation with dimensional n. This can be seen as
follows:

∑
r
ArDrs (AB ) = ABAs = A∑

t
AtDts (B ) = ∑

t �r
Dts (B )ArDrt (A)

or
Drs (AB ) = Drt (A)Dts (B )
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From de�nition of regular representation

Drs (A) = 1 i¤ AAs = Ar

diagonal elements are,

Drr (A) = 1 i¤ AAr = Ar or A = E

Then every character is zero except for identity class,

χ(reg ) (Ci ) = 0 i 6= 1
χ(reg ) (Ci ) = n i = 1 (9)

Reduce D (reg ) to irreps. Write
D (reg ) = ∑

α

cαD (α)

then

cα =
1
n∑

i
χ
(reg )
i χ

(α)�
i ni =

1
n

χ
(reg )
1 χ

(α)�
1 =

1
n
� nlα = lα

=) Dreg contains irreps as many times as its dimension,

χ
(reg )
i =

nr

∑
α

lαχ
(α)
i or χ

(reg )
i =

nr

∑
α=1

χ
(α)�
1 χ

(α)
i = nδi1
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For identity class χreg1 = n, χ
(α)
1 = lα, then

∑
α
l2α = n

This constraints the possible dimensionalities of irreps becuase both n and lα have to be
integers. For D3 , with n = 6, the only possible solution for ∑

α
l2α = 6 is l1 = 1. l2 = 1. l3 = 2,

and their permutations.
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We now want to show that
nc = nr

i.e. # of classes = # of irreps. We will derive another orthogonal relations χ
(α)
i with summation

over irreps rather than classes,

∑
α

χ
(α)
i χ

(α)
j

The derivation is separated into several steps.

1 De�ne D (α)i by

D (α)i = ∑
A2Ci

D (α) (A)

Then we can show that D (α)i is a multiple of identity. First,

D (α) (Aj )D
(α)
i D (α)

�
A�1j

�
= ∑

A2Ci
D (α) (Aj )D (

α) (A)D (α)
�
A�1j

�
= ∑

A2Ci
D (α)

�
AjAA

�1
j

�
= D (α)i

Using

D (α)
�
A�1j

�
= D (α) (Aj )

�1
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we get

D (α) (Aj )D
(α)
i = D (α)i D (α) (Aj )

i.e. D (α)i commutes with all matrice in the irrep. From Schur�s lemma, we get

D (α)i = λ
(α)
i 1 where λ

(α)
i is some number. Taking the trace,

niχ
(α)
i = λ

(α)
i lα, or λ

(α)
i =

niχ
(α)
i
lα

=
niχ

(α)
i

χ
(α)
1

where χ
(α)
1 is the character of identity class.

2 From the property of the class multiplication, we have

CiCj = ∑
k
CijkCk

LHS CiCj is a collections of group element of the type AiAj where Ai 2 Ci and Aj 2 Cj .
Map these products into irrep matrices and sum over to get

D (α)i D (α)j = ∑
k
CijkD (α)k or λ

(α)
i λ

(α)
j = ∑

k
Cijkλ

(α)
k
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For example, in the group D3, we have classes, C1 = fE g , C2 = fA,Bg , C3 = fK , L,Mg .
Then

C2C3 = fA,Bg fK , L,Mg = fAK ,AL,AM ,BK ,BL,BMg
= 2 fK , L,Mg = 2C3

Map these elements to their matrix representation and sum over,

LHS = D (AK ) +D (AL) +D (AM ) +D (BK ) +D (BL) +D (BM )

= D (A)D (K ) +D (A)D (L) +D (A)D (M ) +D (B )D (K ) +D (B )D (L) +D (B )D (M )

= [D (A) +D (B )] [D (L) +D (M ) +D (K ]

and
RHS = 2 [D (L) +D (M ) +D (K ]

This illustrates the relation .Using the values of λ
(α)
i in Eq(??),

niχ
(α)
i

χ
(α)
1

njχ
(α)
j

χ
(α)
1

= ∑
k
Cijk

nkχ
(α)
k

χ
(α)
1

or ninjχ
(α)
i χ

(α)
j = χ

(α)
1 ∑

k
Cijknkχ

(α)
k

Sum over the irrep α,

∑
α

ninjχ
(α)
i χ

(α)
j = ∑

α
∑
k
Cijknkχ

(α)
1 χ

(α)
k
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3 We now compute the coe¢ cients Cijk . If any element A belongs to i th class, let the class
which contains A�1 be denoted by i

0 � th class. We then get

Cij1 =
�
0
ni

for j 6= i 0
for j = i 0

We make use of the property of regular rep, ∑
α

χα
1χα
k = nδk1, in Eq(??) to get,

∑
α

ninjχ
(α)
i χ

(α)
j = ∑

α
∑
k
Cijknkχ

(α)
1 χα

k = nCij1 =
�
0
nni

for j 6= i 0
for j = i 0

Then
nr

∑
α=1

χ
(α)
i χ

(α)
j =

n
nj

δji 0

Since rep is unitary

D (α) (Ai )
† = D (α) (Ai )

�1 = D (α)
�
A�1i

�
= D (α) (Ai 0 )

we get

χ
(α)
i 0 = χ

(α)�
i

and
nr

∑
α=1

χ
(α)
i χ

(α)�
j =

n
nj

δji

This is the orthogonal relation for χ
(α)
i .
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If we now consider χ
(α)
i as a vector in nr dim space

!
χ i =

�
χ
(1)
i ,χ

(2)
i , . . . χ

(nr )
i

�
we get

nc � nr

Combine this with the result nr � nc , we have derived before, we get

nr = nc
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Character Table
For a �nite group, the essential information about the irrep can be summarized in a table witth
characters of each irrep in terms of the classes. To construct such table, use the following useful
information:

1 # of columns = # of rows = # of classes

2 ∑
α
l2α = n

3 ∑
i
niχ

(α)
i χ

(β)�
i = nδαβ and ∑

α
χ
(α)
i χ

(α)�
j = n

ni
δij

4 If lα = 1, χi is itself a rep.

5 χ(α)
�
A�1

�
= Tr

�
D (α)

�
A�1

��
= Tr

�
D (α)

+ �
A�1

��
= χ(α)� (A)

If A and A�1 are in the same class then χ (A) is real.

6 D (α) is a rep =) D (α)� is also a rep
so if χ(α)�s are complex numbers, another row will be their complex conjugate

7 If lα > 1,χ
(α)
i = 0 for at least one class. This follows from the relation

∑
i
ni jχi j

2 = n and ∑
i
ni = n

8 For physical symmetry group, x .y and z form a basis of a rep.
Example : D3 character table
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E 2C3 3C
0
2

x 2 + y 2, z 2 A1 1 1 1
Rz ,z . A2 1 1 �1

(xz , yz ) (x , y ) E 2 �1 0
x 2 � y 2, xy (Rx .Ry )

Here, typical basis functions up to quadratic in coordinate system are listed.
Remark: the basis functions are not necessarily normalized.
Using the transformation properties of the coordinate, we can also infer the transformation
properties of any vectors.
For example, the usual coordinates have the transformation property,

~r = (x , y , z ) � A2 � E in D3

This means that electric �eld of ~E or magnetic �eld ~B will have same transformation property,

~B s ~E s A2 � E

because they all transform the same way under the rotation.
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Product Representation (Kronecker product)

Let xi be the basis for D (α) , i.e. x 0i =
`α

∑
j=1
xjD

(α)
ji (A)

y` be the basis for D (β) , i.e. y 0k =
`β

∑
`=1
y`D

(β)
`k (A)

then the products xj yl transform as

x 0i y
0
k = ∑

j �`
D (α)ij (A)D (β)k` (A) xj y` � ∑

j �`
D (α�β)
j`;ik (A) xj y`

where
D (α�β)
j`;ik (A) = D (α)ij (A)D (β)`k (A)

Note that matrices, row and column are labelled by 2 indices, instead of one. We can show
that D (α�β) forms a rep of the group.h

D (α�β) (A)D (α�β) (B )
i
ij ;k`

= ∑
s .t
D (α�β) (A)ij ,st D

(α�β) (B )st ;k`

= ∑
s .t

D (α)is (A) D (β)jt (A) D (α)sk (B ) D
(β)
t` (B ) = D

(α)
ik (AB )D (β)j` (AB ) = D

(α�β) (AB )ik ;k`

or

D (α�β) (A)D (α�β) (B ) = D (α�β) (AB )
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The basis functions for D (α�β) are xi yj
The character of this rep can be calculated by making the row and colum indices the same and
sum over,

χ(α�β) (A) = ∑
j �`
D (α�β)
j`;j` (A) = ∑

j �`
D (α)jj (A)D (β)`` (A) = χ(α) (A) χ(β) (A)

χ(α�β) (A) = χ(α) (A) χ(β) (A)

If α = β, we can further decompose the product rep by symmetrization or antisymmetrization;

D fα�αg
ik ,j` (A) =

1
2

h
D (α)ij (A)D (α)k` (A) +D

(α)
i` (A)D

(α)
kj (A)

i
basis

1p
2
(xi yk + xk yi )

D [α�α]
ik ,j` (A) =

1
2

h
D (α)ij (A)D (α)k` (A)�D

(α)
i` (A)D

(α)
kj (A)

i
basis

1p
2
(xi yk � xk yi )

These matrices also form rep of G and the characters are given by

χfα�αg (A) =
1
2

��
χ(α) (A)

�2
+ χ(α)

�
A2
��
, χ[α�α] (A) =

1
2

��
χ(α) (A)

�2
� χ(α)

�
A2
��

Example D3

E . 2C3 3C
0
2

Γ1 1 1 1
Rz .z Γ2 1 1 �1

(xz , yz ) (x , y ) Γ3 2 �1 0�
x 2 � y 2, xy

�
Γ3 � Γ3 4 1 0 = Γ1 � Γ2 � Γ3
(Γ3 � Γ3)s 3 0 1 = Γ1 � Γ3
(Γ3 � Γ3)a 1 1 �1 = Γ2
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Direct Product Group
Given 2 groups G1 = fE ,A2 � � �Ang , G2 = fE ,B2 � � �Bmg , de�ne product group as
G1 
 G2 = fAiBj ; i = 1 � � � n, j = 1 � � �mg with multiplication law

(AkB`)� (Ak 0B`0 ) = (AkBk 0 ) (B`B`0 )

It turns out that irrep of G1 
 G2 are just direct product of irreps of G , and G2. Let D (α) (Ai ) be
an irrep of G1and D (β) (Bj ) an irrep of G2then the matrices de�ned by

D (α�β) (AiBj )ab;cd � D
(α) (Ai )ac D

(β) (Bj )bd

will have the property

h
D (α�β) (AiBj )D (

α�β) (AkB`)
i
ab;cd

= ∑
e �f

h
D (α�β) (AiBj )

i
ab;ef

h
D (α�β) (AkB`)

i
ef ;cd

= ∑
e �f

h
D (α) (Ai )ac D

(α) (Ak )ec
i h
D (β) (Bj )bf D

(β) (Be )fd
i

= D (α) (AiAk )ac D
(β) (BjB`)bd = D

(α�β) (AiAk .BjB`)ab;cd

Thus matrice D (α�β) (AiBj ) form a representation of the product group G1 
 G2. The characters
are,

χ(α�β) (AiBj ) = ∑
ab
D (α�β) (AiBj )ab;ab = ∑

a�b
D (α) (Ai )aa D

(β) (Bj )bb = χ(α) (Ai ) χ(β) (Bj )
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Then

∑
i �j

���χ(α�β) (AiBj )
���2 =  ∑

i

���χ(α) (Ai )���2
! 

∑
j

���χ(β) (Bj )���2
!
= nm =) D (α�β) is irrep.

Example, G1 = D3 = fE , 2C3, 3C 02g ,G2 = fE , σhg = ϕ where σh : re�ection on the plane
of triangle.
Direct product group is then D3h � D3 
 ϕ = E ,A,B = fE , 2C3, 3C 02, σh , 2C3σh , 3C 02σhg
Character Table

ϕ E σh
Γ+ 1 1
Γ� 1 �1

2C3 2C 02
D3 E AB KLM
Γ1 1 1 1
Γ2 1 1 �1
Γ3 2 �1 0

Character Table
E 2C3 2C 02 σh 2C3σh 2C 02σh

Γ+1 1 1 1 1 1 1
Γ+2 1 1 �1 1 1 �1
Γ+3 2 �1 0 2 �1 0
Γ+1 1 1 1 �1 �1 �1
Γ+2 1 1 �1 �1 �1 1
Γ�13 2 �1 0 �2 1 0
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