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In�nite group : group with in�nite number of elements.
Label group elements by real parameters (group parameters)

A (α1, α2, � � � αn) , α1, α2, � � � αn group parameters

Continuous group : group parameters continuous
Compact group: group parameters vary over compact domain.
For example, 3-dim rotational group is compact because angles of rotation, varies over compact
interval [0, 2π]

Lorentz group is not compact because , β =
v
c
varies over non-compact interval, [0, 1).

Example: SO (2) , 2� 2 real orthogonal matrices with det = 1 is an one-parameter continuous
group. Choose parameter to be the angle of rotation φ, 0 � φ � 2π.and is a compact group.
Denote group element by, R (φ) The group multiplication is

R (φ1)R (φ2) = R (φ1 + φ2)

Visualize group elements as points on the unit circle and are labeled by the angle. This is called
group parameter space.
Group Integration
Group invariant measure
In �nite group, rearrangement theorem,

n

∑
j=1
f (Aj ) =

n

∑
j=1
f (AjB ) =

n

∑
j=1
f (BAj ) , B ,Aj 2 G
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plays essential role in representation theory.
For continuous group, sum over group elements =) integration in group parameter space,

Z
dA �

Z
W (α1, � � � αn) dα1 � � � dαn

where W (α1, � � � αn) is a measure (or weight function).
De�ne group integration (or choose a measure W ) such that rearrangement theorem holds.
This is called the group invariant integration (measure).
The measure W (α1, � � � αn) should be chosen such thatZ

u (A) dA =
Z
u (AB ) dA =

Z
u (BA) dA

where Z
u (A) dA �

Z
u (α1, � � � αn)W (α1, � � � αn) dα1 � � � dαn

and u (A) is some arbitray function of group elements. Use notation,

A = A (α1, � � � αn) = A
�!

α
�
, B = A (β1, � � � βn) = A

�!
β

�
Then

BA = A
�!

β

�
A
�!

α
�
= A

�!
γ
�
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where
!
γ =

!
γ

�!
β ,
!
α

�
are some functions determined by the group multiplication. Write the integrations as,

dA = W
�!

α
�
d nα = W (α1, � � � αn) dα1 � � � dαn

d (BA) = W
�!

γ
�
d nγ = W (γ1, � � � γn) dγ1 � � � dγn

Thus group invariant measure should have the property

dA = d (BA) , or W
�!

α
�
d nα = W

�!
γ
�
d nγ

Note that left (or right) multiplication by a �xed group element, say B , is a 1-1 mapping of G
onto itself.
Thus giving a set of group elements in some region V of the parameter space, under the left (or
right) multiplication by B , these elements will move to other region V 0. Since the total number
of element in V is the same as those in V 0, we get,

ρV = ρ0V 0,
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where ρ (ρ0) is the density of elements at V (V 0) . Thus if we take the measure W (α1, � � � αn) to
be the density of the group elements at

!
α , then

W
�!

α
�
d nα = W

�!
γ
�
d nγ, where

!
γ =

!
γ

�!
β ,
!
α

�

i.e. W
�!

α
�
is a group invariant measure.

To get the density of elements W
�!

α
�
consider an in�nitesmal volume element

V0 = dα1 � � � dαn in the neighborhood of the origin(identity) i.e. I = A (0). Under left
multiplication by B , they move to V1 ,

W
�!

α
�
V0 = W

�!
γ
�
V1

Or
W
�!

α
�

W
�!

γ
� = V1

V0

Thus ratio of weight functions are ratio of the volume elements. We will normalize the density

such that W
�!
0
�
= 1, i.e. density is 1 at origin. Setting

!
α =

!
0 , we get

W
�!

α
�
= W

�!
0
�
= 1, and W

�!
γ
�
= W

�!
β

�
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Then

W
�!

β

�
=
V0
V1

Recall that the change in volume elements under the transformation induced by B = A
�!

β

�
is

given by the Jacobian of the change of the variables
!
α ! !

γ

�!
β ,
!
α

�
. Thus we get

V0 = dα1 � � � dαn =
∂ (α1, � � � αn)
∂ (γ1, � � � γn)

����!
α=

!
0
dγ1 � � � dγn =

∂ (α1, � � � αn)
∂ (γ1, � � � γn)

����!
α=

!
0
V1

Thus the invariant group measure is given by

W
�!

β

�
=

�
∂ (γ1, � � � γn)
∂ (α1, � � � αn)

����!
α=

!
0

��1
Thus to �nd the group invariant measure, need to know the change of group parameters under
the multiplication of group element.
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SO (2) group.
The group multiplication is given by

R (α)R (β) = R (γ) , with γ = α+ β

where α, β,γ are angles of rotations. The group invariant measure is

W (β) =

�
∂γ

∂α

��1
= 1

i.e.group elements of SO (2) are uniformly populated along the unit circle =) the points per
unit length is same everywhere. This explains the feature W (β) = 1 in this case. The group
integration is Z 2π

0
dα

Since this is an Abelian group, all irreps are 1-dimensional and of the form

e�imα, m = integer

The great orthogonality theorem is of the form,Z 2π

0
dα e imα

�
e im

0α
��
= δmm 02π

If we had chosen any other measure f (α) 6= constant, then we would not have the great
orthogonality theorem.
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SU (2) group- 2� 2 unitary matrice with determinant=1,

UU † = U †U = 1, detU = 1

Write unitary matrix U as

U =
�
a b
c d

�
then

U�1 =
1

detU

�
d �b
�c a

�
, U † =

�
a� c �

b� d �

�
The conditions

U�1 = U †, and detU = 1

imply that
a� = d , c � = �b, jaj2 + jbj2 = 1

Most general 2� 2 unitary matrix is

U =
�

a �b
b� a�

�
, with jaj2 + jbj2 = 1

Parametrize a and b in terms of real variables,

a = u1 + iu2, b = u3 + iu4, ui real
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then we have
u21 + u

2
2 + u

2
3 + u

2
4 = 1

Thus group elements of SU (2) are now on the surface of a sphere in 4-dimensional space. This
suggests the invariant measure asZ

dR =
Z
du1 � � � du4δ

�
u21 + u

2
2 + u

2
3 + u

2
4 � 1

�
It is intuitively clear that multiplication by an SU (2) element corresponds to a rotation on the
surface of sphere and this measure is invariant. To show this, we need to prove thatZ

dR 0f (R ) =
Z
dRf (R ) ,

where R 0 = SR and f is some arbitrary function. Using the parametrizations,

R 0 =

�
u 01 + iu

0
2 �u 03 � iu 04

u 03 � iu 04 u 01 � iu 02

�
, S =

�
s1 + is2 �s3 � is4
s3 � is4 s1 � is2

�
,

R =

�
u1 + iu2 �u3 � iu4
u3 � iu4 u1 � iu2

�
,

we get from the relation R 0 = SR ,8>><>>:
u 01 = s1u1 � s2u2 � s3u3 � s4u4
u 02 = s2u1 + s1u2 � s4u3 + s3u4
u 03 = s3u1 + s4u2 + s1u3 � s2u4
u 04 = s4u1 � s3u2 + s2u3 + s1u4
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The Jacobian of the transformation is then

J =
∂ (u 01, u

0
2, u

0
3, u

0
4)

∂ (u1, u2, u3, u4)
=

��������
s1 �s2 �s3 �s4
s2 s1 �s4 s3
s3 s4 s1 �s2
s4 �s3 s2 s1

��������
It is easy to see that J = 1 because it is the determinant of an orthogonal matrix using the fact
that s21 + s

2
2 + s

2
3 + s

2
4 = 1 . Then we have

du 01 � � � du 04δ
�
u 021 + u

02
2 + u

02
3 + u

02
4 � 1

�
=

∂ (u 01, u
0
2, u

0
3, u

0
4)

∂ (u1, u2, u3, u4)
du1 � � � du4δ

�
u21 + u

2
2 + u

2
3 + u

2
4 � 1

�
= du1 � � � du4δ

�
u21 + u

2
2 + u

2
3 + u

2
4 � 1

�
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Rotation Group O (3)
Homomorphism to SU (2) Group
Elements of rotation group O (3) will be denoted by P!

n
(θ) , the operator which rotates the

system by angle θ about the axis
!
n .

Write

P!
n
(θ) = exp

0@�i θ
!
J �!n
�h

1A
then

!
J will be called the generator of rotation. we can also parametrize the rotation operator in

terms of the familiar Euler rotations,

R (α, β,γ) = Pz (α)Py (β)Pz (γ) = exp
�
� iJz
�h

α

�
exp

�
� iJy
�h

β

�
exp

�
� iJz
�h

γ

�
,

where 0 � α,γ � 2π, 0 � β � π. We will now show that O (3) is homomorphic to SU (2)
group. For any vector

!
r = (x , y , z ) de�ne a 2� 2 hermitian matrix by

h =
!
σ �!r =

�
z x � iy

x + iy �z

�

where
!
σ are the Pauli matrices. It is easy to see that h has the properties

Tr (h) = 0, det h = �
�
x 2 + y 2 + z 2

�
= �r 2
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Let U any 2� 2 unitary matrix U and de�ne a new matrix h0 by

h0 = UhU † (1)

Then h0 is also hermitan, traceless and has the same determinant as h,

h
0
=
�
h0
�†
, Tr

�
h0
�
= 0, det h0 = det h

If we expand h0 in terms of Pauli matrices,

h0 =
!
σ �!r

0

then the relation between
!
r and

!
r
0
is just a 3-dimensional rotation becuse of the determinants,

det h = �
�
x 2 + y 2 + z 2

�
= det h0 = �

�
x 02 + y 02 + z 02

�
i.e. relation between

!
r and

!
r
0
is a linear transformation and can be written as

r 0i = Rij rj

where R is an orthogonal matrix. This establishes the correspondence between SU (2) matrix
and 3-dimensional rotation.
Note that from Eq(1) we see that U and �U , give the same h0 and hence the same rotation. So
the correspondence

�U ! R

is a homomorphism rather than isomorphism.
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Rotation about z-axis
Suppose U is diagonal. Then the general form is given by,

U =
�
e iα/2 0
0 e�iα/2

�

and

h
0
=

�
z 0 x 0 � iy 0

x 0 + iy 0 �z 0
�
= UhU † =

�
z (x � iy ) e iα

(x + iy ) e�iα �z

�
This gives the relation 8<: x 0 = cos αx + sin αy

y 0 = � sin αx + cos αy
z 0 = z

which is clearly a rotation around z � axis . Thus a diagonal U corresponds to rotation about
z -axis.
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Rotation about y-axis
If U is real

U =

0B@ cos
β

2
sin

β

2
� sin β

2
cos

β

2

1CA
Then

h0 =

0B@ cos
β

2
sin

β

2
� sin β

2
cos

β

2

1CA� z x � iy
x + iy �z

�0B@ cos
β

2
� sin β

2
sin

β

2
cos

β

2

1CA
=

�
z cos β+ x sin β x cos β� iy � z sin β

iy + x cos β� z sin β �z cos β� x sin β

�
and 8<: x 0 = cos βx � sin βz

y 0 = y
z 0 = sin βx + cos βz

i.e. a rotation about y � axis .
Rotation in terms of Euler angles
The 2� 2 unitary matrix corresponding to rotation by Euler angles, is then

(Institute) Continuous Group & SU (2) 14 / 46



U (α, β,γ) = Pz (α)Py (β)Pz (γ) (2)

=

�
e�iα/2 0
0 e iα/2

�0B@ cos
β

2
sin

β

2
� sin β

2
cos

β

2

1CA� �e iγ/2 0
0 e iγ/2

�
(3)

=

0B@ e�i (α+γ)/2 cos
β

2
�e�i (α�γ)/2 sin

β

2
e i (α+γ)/2 sin

β

2
e i (α+γ)/2 cos

β

2

1CA =

�
a �b
b� a�

�
,

where

a = e�i (α+γ)/2 cos
β

2
b = e�i (α�γ)/2 sin

β

2

write

a = u1 + iu2 = e�i (α+γ)/2 cos
β

2
, b = u3 + iu4 = e�i (α�γ)/2 sin

β

2

the group invariant integration can be converted to the integration over Euler angles by
computing the Jacobian. Z

du1du2du3 =
Z
dαd βdγJ
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First write Z
dR =

Z
du1 � � � du4δ

�
u21 + u

2
2 + u

2
3 + u

2
4 � 1

�
=

Z
du1du2du3

1
2 ju4 j

[δ (u4 � a) + δ (u4 + a)]

where
a =

q
1�

�
u21 + u

2
2 + u

2
3

�
The Jacobian is then of the form

J =
∂ (u1, u2, u3)

∂ (α, β, δ)

=
1
8

24 � sin (α+ γ) /2 cos β/2 � cos (γ+ γ) /2 sin β/2 � sin (α+ γ) /2 cos β/2
� cos (α+ γ) /2 cos β/2 sin (α+ γ) /2 sin β/2 � cos (α+ γ) /2 cos β/2
� sin (α� γ) /2 sin β/2 cos (α� γ) /2 cos β/2 sin (α� γ) /2 sin β/2

35
=

1
8
2 sin (α� γ) /2

�
cos β/2 sin2 β/2

�
The integration measure in terms of Euler angles is of the form,

Z
dR =

Z
du1 � � � du4δ

�
u21 + u

2
2 + u

2
3 + u

2
4 � 1

�
=

1
16

Z 2π

0
dα

Z π

0
sin βd β

Z 2π

0
dγ

The factor
1
16

is an overall normalization factor and is usually neglected for conveience.
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Irreducible Representation of SU (2)
The 2� 2 matrice of SU (2) can be viewed as a rotations in the complex 2�dimensional space
C2. We can use the induced transformation on functions of these 2�dimensional coordinates to
generate other representations.
ξ ,η basis vector for 2� 2 matrice of SU (2)

PU (ξ, η) = (ξ, η)U = (ξ, η)
�

a �b
b� a�

�
= (aξ + b�η,�bξ + a�η)

i.e.
ξ 0 = PU ξ = aξ + b�η
η0 = PU η = �bξ + a�η

Consider the action of PU on the mononomial ξληµ, with λ+ µ = 2j , where j is an integer or
half integer. As an example, take j = 1. There are 3 di¤erent monomials,

ξ2, ξη, η2

Then under the induced transformation

ξ 02 = (aξ + b�η)2 = a2ξ2 + 2ab�ξη + b2�η2

ξ 0η0 = (aξ + b�η) (�bξ + a�η) = �abξ2 + (aa� � bb�) ξη + a�b�η2
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η02 = (�bξ + a�η)2 = b2ξ2 � 2a�bξη + a2�η2

Write this in matrix notation0BBBB@
ξ 02p
2

ξ 0η0

η02p
2

1CCCCA =

0@ a2
p
2ab� b2�

�
p
2ab (aa� � bb�)

p
2a�b�

b2 �
p
2a�b a2�

1A
0BBBB@

ξ2p
2

ξη
η2p
2

1CCCCA

We have inserted the factor of
1p
2
in order to get a unitary matrix. In terms of Euler angles

α, β,γ

D (1) =

0B@
1
2 (1+ cos β) e�i (α+γ) � 1p

2
sin βe�iα 1

2 (1� cos β) e�i (α�γ)

1p
2
sin βe�iγ cos β � 1p

2
sin βe iγ

1
2 (1� cos β) e i (α�γ) 1p

2
sin βe iα 1

2 (1+ cos β) e i (α+γ)

1CA
As discussed before these matrice for di¤erent values of a, b will form the representation
matrices of the SU (2) group. For case β = γ = 0, we have rotation about z � axis ,

D (1) (α) =

0@ e�iα 0 0
0 1 0
0 0 e iα

1A
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However, in Cartesian coordinates the rotation around z � axis is,0@ x 0

y 0

z 0

1A =

0@ cos α sin α 0
� sin α cos α 0
0 0 1

1A0@ x
y
z

1A
Rotation matrix D (1) (α) corresponding to basis (x + iy , z , x � iy ) , spherical basis, related to the
Cartesian coordinates by a unitary transformation,0@ x + iy

z
x � iy

1A =

0@ 1 i 0
0 0 1
1 �i 0

1A0@ x
y
z

1A
Generalize this to arbitrary mononomials

φjm =
1
njm

(ξ)j+m (η)j�m , m = �j ,�j + 1, � � � , j
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where njm is a normalization factor to be determined later. Since the transformation from (ξ, η)

to
�
ξ 0, η0

�
is linear and homogeneous the transform of φjm will have same j but di¤erent m.

More explicitly,

PUφjm =
1
njm

(aξ + b�η)j+m (�bξ + a�η)j�m

=
1
njm

j�m
∑
s=0

j+m

∑
r=0

�
(j +m)!

r ! (j +m � r )!

� �
(j �m)!

s ! (j �m � s)!

�
(�b)s (a�)j�m�s ar (b�)j+m�r ξr ξs (η)j+m�r (η)j�m�s

De�ne m 0 by
s = j +m 0 � r , j � m 0 � j

Then

PUφjm = ∑
r ,m 0

�
njm 0
njm

�"
(j +m)! (j �m)! (�1)j+m

0�r

r ! (j +m � r )! (j +m 0 � r )! (r �m �m 0)!

#
ar (b�)j+m�r (b)j+m

0�r (a�)r�m�m
0
φjm 0

In terms of Euler angles,

a = e�i (α+γ)/2 cos
β

2
, b = e�i (α�γ)/2 sin

β

2
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and we can write
PUφjm = ∑

m 0
φjm 0D

j
m 0m (α, β,γ)

where
D jm 0m (α, β,γ) = e

�im 0αd jm 0m (β) e
�imγ (4)

with

d jm 0m (β) =
(j +m)! (j �m)!njm 0

njm
∑
k

(�1)j+m
0�k

k ! (j +m � k )! (j +m 0 � k )! (k �m �m 0)! (5)

�
cos

β

2

�2k�m�m 0 �
sin

β

2

�2j�2k+m+m 0

Note that sum over k covers all thos values for which the argument of the factorial functions are
positive.
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Properties of D jm 0m (α, β,γ)

1 D jm 0m (α, β,γ) �s form (2j + 1) dim rep of SU (2) , because group induced transformation
always generates a representation of the group as discussed in Note 2.

2 D jm 0m (0, 0, 0) = δmm 0 , the identiy matrix. To see this we set β = 0 in Eq(5) and the
non-zero term is where 2k = 2j +m +m 0. This implies that

j +m � k = 1
2

�
m �m 0

�
, j +m 0 � k = 1

2

�
m 0 �m

�
and the positivity of the arguments of the factorial functions gives m = m 0 and
d jm 0m (0) = δmm 0 .

3 For matrix D jm 0m (α, β,γ) to be unitary, we require

D jm 0m (α, β,γ)
† = D jm 0m (�γ,�β,�α) ) d jm 0m (�β) = d jmm 0 (β)

It is straightforward to show that this �xes the constant njm to be

njm =
q
(j +m)! (j �m)!
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and the d��nction is then

d jm 0m (β) = ∑
k

(�1)j+m
0�k p(j +m)! (j �m)! (j +m 0)! (j �m 0)!

k ! (j +m � k )! (j +m 0 � k )! (k �m �m 0)! (6)

�
cos

β

2

�2k�m�m 0 �
sin

β

2

�2j�2k+m+m 0
(7)

4 For each j , the rep D jm 0m (α, β,γ) is irreducible. This can seen as follows. Suppose 9 a
matrix M such that

MD j (α, β,γ) = D j (α, β,γ)M (8)

Consider following cases:

1 α 6= 0, β = γ = 0
From Eq(6), only non-zero term is

2j � 2k +m+m0 = 0

which gives
d jm 0m (0) = δmm 0

Then
D jm 0m (α, 0, 0) = e

�im 0αδmm 0
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and Eq(8) implies that�
e�imα � e�im 0α

�
Mmm 0 = 0

Thus Mmm 0 = 0 if m 6= m0, i.e. M is diagonal.
2 α 6= 0, β 6= 0,γ 6= 0
Since M is diagonal, Eq(8) gives

MmmD
j
m 0m = D

j
m 0mMm 0m 0 (no sum)

But for arbitrary (α, β,γ) , D jm 0m is not zero. Thus Mmm = Mm 0m 0 ,
or M is a multiple of identity. Schur�s lemma implies that
D jm 0m (α, β,γ) is irreducible.

5 If we replace β by β+ 2π, we see that from Eq(2) that the 2� 2 matrix U has the
property,

U ! �U

For the representation matrice this implies that

d j (β+ 2π) = (�1)2j d j (β) , or D j (�U ) = (�1)2j D j (U )

Thus for j =integer D j (�U ) = D j (U ) single valued representation
j = half integer D j (�U ) = D j (U ) double valued representation
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6 Representation of generators Ji , i = 1, 2, 3
Recall that

R (α, β,γ) = exp
�
� iJz
�h

α

�
exp

�
� iJy
�h

β

�
exp

�
� iJz
�h

γ

�
Take β = γ = 0, α � 1, we get

R (α, β,γ) '
�
1� iJz

�h
α

�
From

D jm 0m (α, 0, 0) '
�
1� im 0α

�
δmm 0

we get
D jm 0m (Jz ) = �hmδmm 0

Similarly, take α = �γ = �π

2
, and β small, we can get D (Jx )

α = γ = 0 and β small, we can get D (Jy )
In particular, for j = 1/2, we have

D 1/2 (jx ) =
�h
2

�
0 1
1 0

�
, D 1/2 (jy ) =

�h
2

�
0 �i
i 0

�
, D 1/2 (jz ) =

�h
2

�
1 0
0 �1

�

which are the Pauli matrices up to
�h
2
.
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7 Great Orthogonality Theorem reads

Z 2π

0
dα

Z π

0
sin βd β

Z π

0
dγD jm 0m (α, β,γ)D

k�
n0n (α, β,γ) = δjk δmnδm 0n0

R 2π
0 dα

R π
0 sin βd β

R π
0 dγ

(2j + 1)

Using D jm 0m (α, β,γ) given in Eq(4) we can integrate over angles α and β to reduce the

integral to orthogonality relation on d jm 0m (β) ,

Z π

0
sin β d βd jm 0m (β) d

k
m 0m (β) =

2δjk
(2j + 1)

8 Characters of irreps
Since all rotations of same angle are in the same class, choose rotation about z-axis to
compute the trace

χ(j) (θ) = Tr
h
D j
�!
n , θ

�i
= Tr

h
D j (θ, 0, 0)

i
=

j

∑
m=�j

e�imθ =

sin
�
j +

1
2

�
θ

sin
θ

2

Note that
χ(j) (θ)� χ(j�1) (θ) = 2 cos jθ
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Theorem: There are no irreps of SU (2) group other than D j (α, β,γ) .
Proof: Suppose D is another irrep with characterχ (θ) , not contained in D j . Then

χ (θ) = χ (�θ)

since they are in the same class. Then from orhogonality theorem

χ (θ) ? χ(j) (θ)

for all j . =)
χ (θ) ?

h
χ(j) (θ)� χ(j�1) (θ)

i
= 2 cos jθ

From the property of Fourier series, cos jθ, 2j = 1, 2, 3,� � � form a complete set of even functions
in the range 0 < θ < π. Thus χ (θ) = 0. for all θ. �
Basis Functions

Suppose we de�ne for j = l =integer

D (l)0m (α, β,γ) =

r
4π

2l + 1
Y ml (β,γ)

then we have

D (l)m0 (α, β,γ) = (�1)
m
r

4π

2l + 1
Y m�l (β, α)
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Suppose we have the relation for multiplication of group elements

R (α2, β2,γ2)R (α1, β1,γ1) = R (α, β,γ)

The corresponding representation matrices will satisfy

D lm 0m (α, β,γ) = ∑
m"
D lm 0m" (α2, β2,γ2)D

l
m"m (α1, β1,γ1)

Setting m 0 = 0, the relation is

Y ml (β,γ) = ∑
m"
Y m"l (β2,γ2)D

l
m"m (α1, β1,γ1)

Thus functions fY ml (β,γ)g form the basis for irrep D l (α, β,γ) . We can rewrite this in a more
familiar spherical angles notation as,

PRY
m
l (θ, φ) = Y

m
l
�
θ0, φ0

�
= ∑

m"
Y m"l (θ, φ)D lm"m (α, β,γ) (9)

where
cos θ0 = cos θ cos β+ sin θ sin φ cos (φ� γ)

Example :
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1 l = 1

Y 11 (θ, φ) = �
r

3
8π

sin θe iφ = �
r

3
8π

(x + iy )
r

,

Y 01 (θ, φ) =

r
3
8π

cos θ =

r
3
8π

z
r
,

Y �11 (θ, φ) = �
r

3
8π

sin θe�iφ = �
r

3
8π

(x � iy )
r

2 l = 2

Y 22 (θ, φ) =
1
4

r
15
2π

sin2 θe2iφ �
�
x 2 � y 2 + 2ixy

�
r 2

� (x + iy )2

r 2

Y 12 (θ, φ) = �
1
2

r
15
2π

sin θ cos θe iφ � z (x + iy )
r 2

Y 02 (θ, φ) =
1
4

r
5
2π

�
3 cos2 θ � 1

�
�
�
2z 2 � x 2 � y 2

�
r 2

� 2z 2 � (x + iy ) (x � iy )
r 2

Y �12 (θ, φ) =
1
2

r
15
2π

sin θ cos θe�iφ � z (x � iy )
r 2

Y �22 (θ, φ) =
1
4

r
15
2π

sin2 θe�2iφ �
�
x 2 � y 2 � 2ixy

�
r 2

� (x � iy )2

r 2
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3 For the special case of m = 0 we have

Y 0l (θ, φ) =

r
2l + 1
4π

Pl (cos θ)

and from Eq(9) we get the addition theorem,

Pl
�
cos θ0

�
=

�
4π

2l + 1

�
∑
m
Y ml (θ, φ)Y

m�
l (β,γ)

where
cos θ0 = cos θ cos β+ sin θ sin β cos (φ� γ)
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Product Representations
Addition of Angular Momentum
Suppose D (j1 ) and D (j2 ) are 2 irreps of SU (2). How to reduce the product representation
D (j1 )
 D (j2 ) � D (j1�j2 ), i.e. write D (j1�j2 ) as sum of irreps?. Using the characters of irreps (take
j1 > j2),

χ(j1�j2 ) (θ) = χ(j1 ) (θ) χ(j2 ) (θ)

=

sin
�
j1 +

1
2

�
θ sin

�
j2 +

1
2

�
θ

sin2
θ

2

=
cos (j1 � j2) θ � cos (j1 + j2 + 1) θ

sin2
θ

2

=
1

sin2
θ

2

8<: [cos (j1 � j2) θ � cos (j1 � j2 + 1) θ]
+ [cos (j1 � j2 + 1) θ � cos (j1 � j2 + 2) θ]
+ � � � [cos (j1 + j2) θ � cos (j1 + j2 + 1) θ]

9=;
=

1

sin
θ

2

�
sin
�
j1 � j2 +

1
2

�
θ + sin

�
j1 � j2 +

3
2

�
θ + � � � sin (j1 + j2) θ

�

the character of D (j1 )
 D (j2 ) has the decomposition,

χ(j1�j2 ) (θ) =
j1+j2

∑
J=jj1�j2 j

χ(J ) (θ)
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which implies the reduction,

D (j1�j2 ) = D (j1 ) 
D (j2 ) =
j1+j2

∑
J=jj1�j2 j

D (J ) (10)

We can relate this to the addition of angular momenta. Let f m1j1
(r̂ ) be the basis for D (j1 ) irrep

and f m2j2
(r̂ ) be the basis for D (j2 ). Then the product f m1j1

(r̂ ) f m2j2
(r̂ ) are the basis for

D (j1 ) 
D (j2 ), i.e.

PR
h
f m1j1

f m2j2

i
=
h
PR f

m1
j1

i h
PR f

m2
j2

i
=

0@∑
m 01

f
m 01
j1
D (j1 )
m1m 01

1A0@∑
m 02

f
m 02
j2
D (j2 )
m2m 02

1A
For in�nitesmal rotation around, say z-axis, (setting �h = 1 )

PR = e
�iαJz ' (1� iαJz ) , α � 1

Let
!
J 1 acting on f

m1
j1

and leaving f m2j2
alone and

!
J 2 acting on f

m2
j2

and leaving f m1j1
alone.

Then we can write

PR
h
f m1j1

f m2j2

i
=

h
(1� iαJz ) f m1j1

i h
(1� iαJz ) f m2j2

i
' [1� iα (J1z + J2z )] f m1j1

f m2j2

= (1� iαJz ) f m1j1
f m2j2

(Institute) Continuous Group & SU (2) 32 / 46



where
Jz = J1z + J2z

We can extend this to other components to write

!
J =

!
J 1 +

!
J 2

which is just the total angular momentum. =) in�nitesmal rotation of product of the basis can
be written in terms of total angular momenta. From Eq(10) we see that decomposition of the
product of irreps is related to the additon of angular momenta.
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Clebsch-Gordon Coe¢ cients

In the decomposition of product representations

D (j1�j2 ) = D (j1 ) 
D (j2 ) = D (jj1�j2 j) +D (jj1�j2 j+1) + � � �+D (j1+j2 )

=)representation matrices D (j1�j2 ) can be changed into a direct sum of irreps D j . In terms of
matrix elements we have

D (j1�j2 )
m 01m

0
2 ;m1m2

= D (j1 )
m1m 01

D (j2 )
m2m 02

On the other hand,

∑
J
D J � ∆ =

0BBBB@
D (jj1�j2 j)

D (jj1�j2 j+1)

. . .
D (j1+j2 )

1CCCCA � ∆J 0M 0 ;JM = δJJ 0D
J
MM 0

where J , J 0 label the boxes and M ,M 0 labels the row and colums within each box.
Let A be the unitary matrix which transform D (j1 ) 
D (j2 ) into ∆,

D (j1 ) 
D (j2 ) = A†∆A

Writing out in terms of matrix elements,
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D (j1�j2 )
m 01m

0
2 ;m1m2

=
h
A†
i
m 01m

0
2 ;J

0M 0
∆J 0M ;JM [A]JM ;m1m2 (11)

New notation for the matrix elements of the similarity transformation,

[A]JM ;m1m2 � hJM jj1m1 j2m2i

These are called Clebsch-Gordon coe¢ cients. Since A is unitary, AA† : = 1, and A†A = 1 we
have

∑
J 0M 0



j1m 01 j2m

0
2 jJ 0M 0� 
J 0M 0jj1m1 j2m2

�
= δm 01m1

δm 02m2

∑
m1m2

hJM jj1m1 j2m2i


j1m1 j2m2 jJ 0M 0� = δJJ 0 δMM 0

Note that unitary matrix A is not uniquely de�ned. Let B be a unitary matrix which commutes
with ∆,

B∆ = ∆B , or ∆ = B †∆B

Then
D = A†∆A = (BA)† ∆BA

Thus if A block diagonalizes D , so does A0 = BA. Since ∆ is of the form

∆ =

0BBB@
D (J1 )

D (J2 )

. . .
D

1CCCA
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From Schur�s lemma, B must be of the form,

B =

0BBB@
c1 I1

c2 I2
. . .

I

1CCCA , where ci = e
iθr

Or
BJM ;J 0M 0 = δJJ 0 δMM 0e iθj

and �
A0
�
JM ;m1m2

= e iθJ [A]JM ;m1m2

Thus similarity transformation is de�ned up to J dependent phases.
Condon-Shortly convention : Choose

hJJ jj1 j1 j2J � j1i

to be real and positive, then it turns out that all Clebsch-Gordon coe¢ cients are real.
In terms of Clebsch-Gordon coe¢ cients Eq 11) becomes

D (j1 )
m1m 01

D (j2 )
m2m 02

= ∑
J ,M ,M 0

D JM 0M


JM 0jj1m 01 j2m 02

�
hJM jj1m1 j2m2i
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Theorem: Let ψm1j1 (r̂ ) be the basis for D
(j1 ) irrep and ψm2j2 (r̂ ) be the basis for D

(j2 ). Then

φJM = ∑
m1m2

hJM jj1m1 j2m2iψm1j1 ψm2j2

are basisi for D J .
Proof:

PRφJM = ∑
m1m2

hJM jj1m1 j2m2i
�
PRψm1j1

� �
PRψm2j2

�
= ∑
m1m2

hJM jj1m1 j2m2iD (j1 )m1m 01
D (j2 )
m2m 02

ψ
m 01
j1

ψ
m 02
j2

= ∑
m1m2

hJM jj1m1 j2m2i ∑
J ,M ,M 0

D J
0
M 0M"



J 0M 0jj1m 01 j2m 02

� 

J 0M 0jj1m1 j2m2

�
ψ
m 01
j1

ψ
m 02
j2

= ∑
M"m1m2

D JM"M


JM"jj1m 01 j2m 02

�
ψ
m 01
j1

ψ
m 02
j2

Thus φJM does transform according to the representation D J .�
As a consequence if

!
j 3 =

!
j 1 +

!
j 2 then

∑
m1m2m3

ψm1j1 ψm2j2 ψm3j3 hj1m1 j2m2 jj3,�m3i hj3,�m3 j3m3 j00i

is invariant under SU (2) transformations.
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Rotation group and Quantum Mechanics
In quantum mechanics, implement symmetry transformations by unitary operator U on the
states jψi

jψi �!
��ψ0� = U jψi , for all states

so that 

φ0jψ0

�
= hφjψi

At the same time the operators change as

A �! A0 = UAU †

so that 

φ0jA0jψ0

�
= hφjAjψi

If A0 = A, or [U ,A] = 0, we say that A is invariant under the transformation U . In particular, if
Hamiltonian H is invariant under the symmetry transformation U

[U ,H ] = 0 (12)

Suppose ,
[U1,H ] = 0, [U2,H ] = 0

then
[U1U2,H ] = [U1,H ]U2 + U1 [U2,H ] = 0
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Collection of all such operators form a group. Suppose jψi is an eigenstate of H with energy E ,

H jψi = E jψi

Then from Eq(??) we see that

HU jψi = UH jψi = E (U jψi)

which means that U jψi is also an eigenstate of H with same energy E . If we run the operator U
through the whole group G , we get

U1 jψi , U2 jψi , U3 jψi , � � �

If we select a linear independent set out of these, then we have degeneracy of energy levels.On
the other hands, if we consider the eigenfunction ψ (x ) of time independent Schrodinger
equation,

Hψ (x ) = Eψ (x )

we can use induced tranformation on this eignefunctions to get

PR1ψ (x ) = ψ
�
R�11 x

�
, PR2ψ (x ) = ψ

�
R�12 x

�
, � � �

As discussed before, if we select a linearly independent set out of these transformed functions,
they will form a basis of irrep. Since they are also eigenfunctions of Hamiltonian with same E ,
we get the result,

degenercy = dim of irrep
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For example, if choose ψ
�!
x
�
= z , then the basis for the transformed functions will be, x , y , z .

and they form the basis of l = 1 irrep of rotational group.
In the case of hydrogen atom, the Hamiltonian is of the form

H = � p2

2m
� e2

4πεr

and is invariant under rotation
[R (α, β,γ) ,H ] = 0

where R is an arbitrary 3-dimensional rotation. As a consequence, the degeneracy of the energy
levels is 2l + 1.
Another important result is that for matrix elements between states belong to di¤erent irrep are
zero, D

φm
0

j 0 jφ
m
j

E
� δjj 0 δmm 0

This follows from the great orthogonal theorem as follows. We can perform a rotation on this
matrix element to getD

φm
0

j 0 jφ
m
j

E
=
D
PRφm

0
j 0 jPRφmj

E
= ∑
l ,l 0 ,
D j�l 0m 0 (R )D

j
lm (R )

D
φl
0
j 0 jφ

l
j

E
In order to use great orthogonality theorem we sum over all group elements,D

φm
0

j 0 jφ
m
j

E Z
dR =

Z
dR
D
PRφm

0
j 0 jPRφmj

E
= ∑
l ,l 0 ,

Z
dR D j�l 0m 0 (R )D

j
lm (R )

D
φl
0
j 0 jφ

l
j

E
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Then from Z
dRD j�l 0m 0 (R )D

j
lm (R ) � δjj 0 δmm 0 δll 0

we get the result D
φm

0
j 0 jφ

m
j

E
� δjj 0 δmm 0
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Wigner-Eckart Theorem
In quantum mechanics, need to compute matrix elements of certain operators. We can use the
representation theory to simplify the computations. The strategy is to write the operator and
wave functions in terms of irrep of group and use the rep theory.
Tensor operators
Suppose D (α) is an irrep of group G and dimension of D (α) is dα. A set of operators

T (α)i , i = 1, 2, � � � dα, transforming under the symmetry group G as

PRT
(α)
i P�1R = ∑

j
T (α)j D (α)ji (R )

is said to be irreducible tensor operators corresponding to D (α) irreps.
For the case of SO (3) (or SU (2) group) , if the operators Tmj ,m = �j ,�j + 1, � � � j satisfy the
relation,

PR (α, β,γ)T
m
i P

�1
R (α, β,γ) = ∑

m 0
Tm

0
i D jm 0m (α, β,γ)

then we say Tmj are irreducible tensors of rank j in SO (3) . For example,

T (1)1 � x + iy , T (1)0 � z , T (1)�1 � x � iy

are tensor operators of rank 1.
Remarks :
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1 If Tm1j1 are irreducible tensor of rank j1 and T
m2
j2

are irreducible tensor of rank j2 then

∑
m1 ,m2

hjmjj1m1 j2m2iTm1j1 T
m2
j2

are irreducible tensor of rank j . In particular, since

h00jjmj �mi = (�1)j�mp
2j + 1

we see that the combination
∑
m
Tmj S

�m
j (�1)m

is an invariant operator under rotations. Here Smj is another tensor operator of rank j .

2 If Tmj are irreducible tensor operator of rank j , so is

Smj = (�1)
m
h
T �mj

i†

This follows from the fact that

D j�m 0m (α, β,γ) = (�1)
m 0�m D j��m 0 ,�m (α, β,γ)
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3 Combining remarks (1) and (2) we get that

∑
m
Tmj

�
Tmj

�†

is a SO (3) invariant operator.

Theorem (Wigner � Eckart)
If φmj are basis for D

j , φm
0

j 0 are basis for D
j 0 and T qk are irreducible tensor operator of rank k ,

then D
φm

0
j 0 jT

q
k jφ

m
j

E
=


j 0m 0jkqjm

� Dφj 0 jjTk jjφj
E

p
2j + 1

where
D

φj 0 jjTk jjφj
E
are the reduced matrix elements and are independent of m,m 0, q.

Proof:
Since T qk are irreducible tensor operator, we can writeD

φm
0

j 0 jT
q
k jφ

m
j

E
=

D
PRφm

0
j 0 jPRT

q
k P

�1
R jPRφmj

E
= ∑

l ,l 0q 0 ,
D j�l 0m 0 (R )D

j
lm (R )

D
φl
0
j 0 jT

q 0
k jφ

l
j

E
D kq 0q (R )

= ∑
J ,M ,M 0 l ,l 0q 0 ,

D j�l 0m 0 (R )D
J
M 0M (R )



JM 0jkq 0jl 0

�
hJM jkqjmi

D
φl
0
j 0 jT

q 0
k jφ

l
j

E
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Summing over all group elements in SU (2) , we getZ
dR
D

φm
0

j 0 jT
q
k jφ

m
j

E
=

D
φm

0
j 0 jT

q
k jφ

m
j

E Z
dR

=
Z
dR ∑

J ,M ,M 0 l ,l 0q 0 ,
D j�l 0m 0 (R )D

J
M 0M (R )



JM 0jkq 0jl 0

�
hJM jkqjmi

D
φl
0
j 0 jT

q 0
k jφ

l
j

E

we have used the fact
D

φm
0

j 0 jT
q
k jφmj

E
is independent of R . Using great orthogonality theorem

Z
dRD j�l 0m 0 (R )D

J
M 0M (R ) = δJj 0 δl 0M 0 δm 0M

Z
dR

we get D
φm

0
j 0 jT

q
k jφ

m
j

E
=



j 0m 0jkqjm

�
∑
l ,l 0q 0



j 0 l 0jkq 0jl

� D
φl
0
j 0 jT

q 0
k jφ

l
j

E

=


j 0m 0jkqjm

� Dφj 0 jjTk jjφj
E

p
2j + 1

where D
φj 0 jjTk jjφj

E
=
p
2j + 1 ∑

l ,l 0q 0



j 0 l 0jkq 0jl

� D
φl
0
j 0 jT

q 0
k jφ

l
j

E
is the reduced matrix element and is independent of m,m0, q.
� � � � � � � �
Remarks:
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1 The m,m0, q dependence in the matrix element
D

φm
0

j 0 jT
q
k jφmj

E
are all contained in

hj 0m 0jkqjmi which are universal and independent of details of φmj , φ
m 0
j 0 and T

q
k . Then in

the ratios of matrix elements we haveD
φm2j 0 jT

q
k jφ

m1
j

E
D

φm4j 0 jT
q
k jφ

m3
j

E = hj 0m2 jkqjm1i
hj 0m4 jkqjm3i

Thus , we can calculate only one such matrix element explicitly and use Clebsch-Gordon
coe¢ cients to obatin other matrix elements with same j , j 0 and k .

2 Since Clebsch-Gordon coe¢ cients hj 0m 0jkqjmi has the property that it vanishes
unless,jk � j j � j 0 � j + k , and m 0 = q +m, the matrix elements will satify the same
selection rules independent of the nature of the wavefunctions φmj , φ

m 0
j 0 or the operator T

q
k

.

Example: Dipole matrix elements
D

φm
0

j 0 j
!
r jφmj

E
,
!
r = (x , y , z ) . Note that the linear

combinations,

r+ = �
1p
2
(x + iy ) , r0 = z , r� =

1p
2
(x � iy )

are the basis for the irrep D 1mm 0 . Thus we have the selection rules: matrix elements vanish unless

j 0 = j � 1, but if j = 0 then j 0 = 1

and
m 0 = m or m � 1
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