Rotation group R (3)
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Infinite group : group with infinite number of elements.
Label group elements by real parameters (group parameters)

Alar, - ap), a1,0p, &, group parameters

Continuous group : group parameters continuous

Compact group: group parameters vary over compact domain.

For example, 3-dim rotational group is compact because angles of rotation, varies over compact
interval [0, 271]

. v . .
Lorentz group is not compact because , = — varies over non-compact interval, [0, 1).
c

Example: SO (2), 2 x 2 real orthogonal matrices with det = 1 is an one-parameter continuous
group. Choose parameter to be the angle of rotation ¢, 0 < ¢ < 27.and is a compact group.
Denote group element by, R (¢) The group multiplication is

R(4’1) R(‘Pz) = R(¢1 +‘f’z)

Visualize group elements as points on the unit circle and are labeled by the angle. This is called
group parameter space.

Group Integration

Group invariant measure

In finite group, rearrangement theorem,

n

AB:i B.A€G
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plays essential role in representation theory.
For continuous group, sum over group elements = integration in group parameter space,

/dAE/W(lXL'”tXn) day---da,

where W (a1, ---a,) is a measure (or weight function).

Define group integration (or choose a measure W) such that rearrangement theorem holds.
This is called the group invariant integration (measure).

The measure W (a1, - - &) should be chosen such that

/u(A)dA:/u(AB)dA:/u(BA)dA

where

/u(A)dAz/u(a1,~~~ocn) W (a1, an)dag---dap
and u (A) is some arbitray function of group elements. Use notation,
A=Ana) =A(5), B=AGp)=A(5)

Then

BA:A(E)A(Z):A(?)
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where
7=7(6.7)

are some functions determined by the group multiplication. Write the integrations as,

dA=W () d" =W (a1, ap) day - - d,

d(BA) =W (7)d"y =W (11,+-7,) d7, -+ d7,
Thus group invariant measure should have the property

dA=d(BA), or W (E) d"w = W (?) d"y
Note that left (or right) multiplication by a fixed group element, say B, is a 1-1 mapping of G
onto itself.
Thus giving a set of group elements in some region V of the parameter space, under the left (or
right) multiplication by B, these elements will move to other region V’. Since the total number

of element in V is the same as those in V/, we get,

oV :p/V/,
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where p (p’) is the density of elements at V (V'). Thus if we take the measure W (a1, -a,) to
be the density of the group elements at « , then

W (&) da=w(7)d"y,  wherey =7 (E &’)

.
ie. W (a) is a group invariant measure.

To get the density of elements W (E[) consider an infinitesmal volume element

Vo = day -+ - da, in the neighborhood of the origin(identity) i.e. / = A(0). Under left
multiplication by B, they move to Vi,

w (E’) Vo =W (?) Vi
w(®) _w
v(s)

Thus ratio of weight functions are ratio of the volume elements. We will normalize the density
such that W (0) =1, i.e. density is 1 at origin. Setting w = 0, we get

W(E):W(H):L and W(?):W(E)
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Then
— Vo
w = —
<'B> Vi
Recall that the change in volume elements under the transformation induced by B = A (ﬁ) is

given by the Jacobian of the change of the variables . ? <,B E) . Thus we get

o (ag,---ap) o (a1, - ap)
Vo=day---dap= ————F% Ad’)/"'d')/n:i H\/1
") e (1 7a) 7o
Thus the invariant group measure is given by
2\ [t B
w(#) =[]
9 (w1, ) |70

Thus to find the group invariant measure, need to know the change of group parameters under
the multiplication of group element.
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SO (2) group.
The group multiplication is given by

R@R(B)=R(y), withy=a+p

where a, B,y are angles of rotations. The group invariant measure is

we=[2]" =1

i.e.group elements of SO (2) are uniformly populated along the unit circle = the points per
unit length is same everywhere. This explains the feature W (B) =1 in this case. The group
integration is

2

dua
0

Since this is an Abelian group, all irreps are 1-dimensional and of the form
eEima, m = integer

The great orthogonality theorem is of the form,

27 . .y *
/ da "™ (e”" "‘) = 6 270
0

If we had chosen any other measure f (x) # constant, then we would not have the great
orthogonality theorem.
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SU (2) group- 2 x 2 unitary matrice with determinant=1,
UUt=U'U =1, detU=1

Write unitary matrix U as

then

The conditions
Ut =Ut and detU =1

imply that . ) )
a* =d, ¢ =—b, la]” +|b]" =1

Most general 2 X 2 unitary matrix is

U:(;* if’), with [a> +|b]* =1
a

Parametrize a and b in terms of real variables,

a=uy +iup, b= u3+ iug, u; real
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then we have
=1

Thus group elements of SU (2) are now on the surface of a sphere in 4-dimensional space. This
suggests the invariant measure as

/M:/My%MMﬁ+ﬁ+ﬁ+ﬁfU

It is intuitively clear that multiplication by an SU (2) element corresponds to a rotation on the
surface of sphere and this measure is invariant. To show this, we need to prove that

(/dRV(R):‘/de(Ry

where R’ = SR and f is some arbitrary function. Using the parametrizations,

R uy 4 vy —uf — i s_( = +isy  —s3 — sy
ué — iufl ui — iué ! 53 — f54 51 — i52 !
R = up +iuy —u3z —iug
- u3 — fug Uy — iU ’

we get from the relation R’ = SR,

S
5
I

S1U1 — SpUp — S3U3 — SqUy
= Spuy + S1U2 — Sau3 + S3Us
U3 = S3u1 +sau2 +S1U3 — SaUg
Squy — S3U2 + Spu3 + Sy U4
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The Jacobian of the transformation is then

S1 —S2 —S3 —S4

S 9 (uf, uy, uf, uj) |2 st —sos
] (Ul, up, U3, U4) S3 S4 S1 —S

S4 —S3 S2 51

It is easy to see that J = 1 because it is the determinant of an orthogonal matrix using the fact
that s? + 2 +s2 +s2 =1 . Then we have

du} du'&(u’2+u’2+u'2+u'271) = Mdu dué(u2+u2+u2+u271)
1 4 1 2 3 4 - a(ul,uz,U3,U4) 1 4 1 2 3 4

du1~~~du4(5(u%+u§+u§+uf—1)
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Rotation Group O (3)
Homomorphism to SU (2) Group
Elements of rotation group O (3) will be denoted by P (0), the operator which rotates the

system by angle 6 about the axis n.
Write

P.(0) =exp | —i

-
then J will be called the generator of rotation. we can also parametrize the rotation operator in
terms of the familiar Euler rotations,

R (@,8.7) = P (a) P, (B) P (1) = exp (—“72“) exp (—% ) exp (—U%ﬁ :

where 0 < a,y <27, 0 < B < . We will now show that O (3) is homomorphic to SU (2)
group. For any vector r = (x,y,z) define a 2 x 2 hermitian matrix by

- = z X — iy
h=0c-r = .
r < X+ 1y -z )
where o are the Pauli matrices. It is easy to see that h has the properties

Tr(h) =0, deth=—(x>+y>+2%) =1
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Let U any 2 x 2 unitary matrix U and define a new matrix h’ by
W = UunUt (1)
Then A’ is also hermitan, traceless and has the same determinant as h,
W= ()", Tr(W)=0,  deth =deth

If we expand A’ in terms of Pauli matrices,

then the relation between r and 7/ is just a 3-dimensional rotation becuse of the determinants,
deth = — (x2 +y2 +22) =deth’ = — (x’2 +y’2 +z’2)
i.e. relation between r and 7, is a linear transformation and can be written as
r,»’ = Rjjrj

where R is an orthogonal matrix. This establishes the correspondence between SU (2) matrix
and 3-dimensional rotation.
Note that from Eq(1) we see that U and —U, give the same h’ and hence the same rotation. So

the correspondence
+U — R

is a homomorphism rather than isomorphism.
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Rotation about z-axis
Suppose U is diagonal. Then the general form is given by,

ehx/Z 0
U= < 0 e—in/2 >

r z' < =iy o z (x —iy)e™®
h = < X'+ iy’ -z ) = UhU" = < (x +iy)e i@ -z

This gives the relation

x'" = cosax +sinay
y' = —sinax + cosay
=z

which is clearly a rotation around z — axis. Thus a diagonal U corresponds to rotation about
Z-axis.
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Rotation about y-axis

If U is real
cosé sin 4
U= B
—sin 5 s
Then
W cosg sing < 7 x — iy ) cosg
—sin g cos 5 Xty -2 sin 5
zcosB+ xsin xcosf —iy —zsinf
iy +xcosp —zsin —zcosf —xsinf
and
x' = cos Bx —sin Bz
Y=y
z' = sin Bx + cos Bz

i.e. a rotation about y — axis.
Rotation in terms of Euler angles

The 2 x 2 unitary matrix corresponding to rotation by Euler angles, is then

(Institute) Continuous Group & SU (2)
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e—in/2 0 cosg sin p _ei1/2 0
= 0 oit/2 B % 0 0i1/2 (3)
—sins  cos
2 2
B e~ila+n)/2 cosé —e—ila=)/2 sing B ( a —b )
elwtn/2gin £ e/e+1)/2 cos £ bt )
2
where
a=e (@t7)/2 o B
b=e ile="/24in £
write

a=u +iup = e (Wt 1)/2 g g, b=u3+ius = e~ (e=1)/2gj g

the group invariant integration can be converted to the integration over Euler angles by
computing the Jacobian.

/ duy dupduz = / dadBdyJ
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First write
/dR = /du1---dU45(u%+u§+u§+uffl)

1
= /duldU2dU37[5(”4—2)+(5(U4+a)]
2 |ug|

where
1— (v +u3+03)

The Jacobian is then of the form

J — 0 (u1, up, u3)
- 9 (a, B,6)
1 —sin (o +7) /2cosB/2  —cos(y+7)/2sinB/2 —sin(a+)/2cosB/2
= - | —cos(a+7)/2cosB/2  sin(a+7y)/2sinp/2  —cos(a+)/2cosB/2
8 —sin(a—)/2sinB/2  cos(a—)/2cosB/2 sin (o — ) /2sinB/2
= %ZSin(a— v)/ [cosﬁ/2sm /3/2]

The integration measure in terms of Euler angles is of the form,
/dR /du1 dU4(5(u1+u2+u3+u471 16/ doc/ smﬁdﬁ/ dy

1 . L . .
The factor I is an overall normalization factor and is usually neglected for conveience.
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Irreducible Representation of SU (2)

The 2 x 2 matrice of SU (2) can be viewed as a rotations in the complex 2—dimensional space
C>. We can use the induced transformation on functions of these 2—dimensional coordinates to
generate other representations.

& basis vector for 2 x 2 matrice of SU (2)

Puen=@Enu=@n( 5 0 )= sra)

§'=Pyg=al+b"y
1" =Py =—bi+a"y

Consider the action of Py on the mononomial r;‘)‘qf‘, with A +p = 2j, where j is an integer or
half integer. As an example, take j = 1. There are 3 different monomials,

A
Then under the induced transformation
&% = (al + b"r])2 = 2222 4 2ab* &y + b 42
&'y = (ag + by) (—bE + a"y) = —abZ® + (aa” — bb*) § + a"b*p?
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0% = (—bZ + a*n)? = b22% — 22" béy + a**n?

Write this in matrix notation

612 52
ﬁ 32 ﬁab* b2* ﬁ
&y | = | —v2ab (aa* —bb*) 2a*b* &
ﬁ b? —/2a*b a%* Lz
V2 V2

. 1 . .
We have inserted the factor of — in order to get a unitary matrix. In terms of Euler angles

V2
By

% (1 + cos B) e~(a+7) _% sin Be~ i % (1 —cosp)e (@)
ﬁ sin e~ cos B f sin pe’?
3(L—cosp)el®m  “osinpe™  F(1+cosp) etV

p) —

As discussed before these matrice for different values of a, b will form the representation
matrices of the SU (2) group. For case f = =0, we have rotation about z — axis,

e 0 0
DW (1) = 0 1 0
0 0 e
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However, in Cartesian coordinates the rotation around z — axis is,

!

X cosw sinae 0 X
y' | =| —sina cosa 0 y
z' 0 0 1 z

Rotation matrix D(1) (a) corresponding to basis (x + iy, z, x — iy) , spherical basis, related to the
Cartesian coordinates by a unitary transformation,

X+ iy 1 i 0 X
z = 0o 0 1 y
X — iy 1 —i 0 z
Generalize this to arbitrary mononomials
i 1 j+m j—m . . .
Pp=—@"" )" om=—j 1
Njm
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where njp, is a normalization factor to be determined later. Since the transformation from (¢, 1)
to (5/,77’) is linear and homogeneous the transform of 4>/m will have same j but different m.
More explicitly,

Pty = o (s bV (b 42Ty
_ ijimﬁm[ (+m)! ] { G —m)! ]
Nm S 2 Lt G+m—=r)t] [st(G—m—s)!

(=b) (@) " (YT () gy
Define m’ by
s=j+m' —r,  j<m' <
Then

G+ m)t (G —m) (=1
rG+m—r)G+m —r)l(r—m—m')!

. Nipy
P - m
U‘P/m ;m/ ( njm )

2 (b*)j+m—r (b)jer’—r (a*)r—m—m’ ,'n/

In terms of Euler angles,

—i(@+)/2 cog g b= e—ila-1/2gn B

a=e D)
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and we can write

Puthy = Ly Dl (2.517)

where )
i (& Bry) = e Ed (B) e (4)
with

G+m)tl—m)lnjm (-1 K
Njm ’ Z“k']«#m KUG+m —k)!(k—m—m')! (

2k—m—m’ 2j—2k+m+m’
(cos g) (sin g)

Note that sum over k covers all thos values for which the argument of the factorial functions are
positive.

&, (B) = 5)
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Properties of D{n,m (&, B, y)

o D{n,m (a,B,y) 's form (2j +1) dim rep of SU (2), because group induced transformation

always generates a representation of the group as discussed in Note 2.

Q D#,m (0,0,0) = 6,,,, the identiy matrix. To see this we set =0 in Eq(5) and the
non-zero term is where 2k = 2j + m + m’. This implies that

: _1 e . o _l o
J+m7k—2(m m), j+m k—2(m m)

and the positivity of the arguments of the factorial functions gives m = m’ and
&, (0) = S
e For matrix D{n,m (a, B, ’y) to be unitary, we require
. ' . . .
Do (@ B7) =Dy (=1 =B—) = (=) =d . (B)

It is straightforward to show that this fixes the constant nj, to be

Nim =/ (j +m)! (j —m)!

(Institute) Continuous Group & SU (2)
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and the d—finction is then

i _ 1)J+rn k\/1+m ( )!(j+m’)!(jfm’)!
Form (P) = ; T m—K)GAm — k) (k—m—m)! (6)

(o) o

@ For each j, the rep D{n,m (a, B, ) is irreducible. This can seen as follows. Suppose 3 a
matrix M such that

MD’ (a, B, 7) = D’ (., B, 7) M (8)

Consider following cases:

O v#0,p=9=0
From Eq(6), only non-zero term is

2j—2k+m+m =0

which gives

Then
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and Eq(8) implies that
(e—ima _ e—im/a) M., =0
mm

Thus M.,y =0if m# m', i.e. M is diagonal.
O a#0,B#0,7v#0
Since M is diagonal, Eq(8) gives
MmmD{n,m = D{n,ml\/lm,m/ (no sum)
But for arbitrary («, B,7v), D{n,m is not zero. Thus Mpym = My,
or M is a multiple of identity. Schur's lemma implies that

D, («, B, ) is irreducible.

m'm

@ If we replace B by B+ 27, we see that from Eq(2) that the 2 x 2 matrix U has the
property,

U——-U

For the representation matrice this implies that

& (pr2m)= (DI (F. o DI(-U)= (-1 D (1)
Thus for j =integer Di(=U) = DI (V) single valued representation
J = half integer D/ (-U) = D! (V) double valued representation
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e Representation of generators J;, i =1,2,3

Recall that g ” ”
_ _Mz Yy _Mz
R(a,ﬁ,'y)—exp( _hzx> exp< _hﬁ> exp( 717)

Take B=7=0, a <1, we get

From
D/, (6,0,0) = (1 — im'a) &y
we get
D), (Jz) = Hmé

Similarly, take a = —y = —g, and B small, we can get D (Jy)

xa=7=0 and B small, we can get D (Jy)
In particular, for j = 1/2, we have

. h 0 1 . h 0 —i . h 1 0
DmW:E(l 0>’ Dm(”):i(i o’)' Dm(”):E(o —1>

h
which are the Pauli matrices up to 5
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@ Great Orthogonality Theorem reads

2 2T da [ sin dp [ d
/ d“/ S'"ﬁdﬁ/ DL, (@B, 7) Dy (B ) = Jk(smn(smnff “fg@:f)ﬁfo i

Using D#,m (a, B, y) given in Eq(4) we can integrate over angles a and B to reduce the
integral to orthogonality relation on ¢, (B),

T ) 26
/0 sin B dpd’, (B) d;‘:q’m (B) = (21-_1_1)

@ Characters of irreps
Since all rotations of same angle are in the same class, choose rotation about z-axis to
compute the trace

X (0) = Tr[ (n 9)] - T [Df (9,0,0)] =

Note that _ )
A9 (8) — xU=Y (8) = 2 cos 6
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Theorem: There are no irreps of SU (2) group other than D/ (a, B, 7). ‘
Proof: Suppose D is another irrep with charactery (0) , not contained in D/. Then

since they are in the same class. Then from orhogonality theorem
x(6) LxY (o)

for all j. =
x(0) L [x () = XUV (6)] =2cosjo

From the property of Fourier series, cosjf, 2j =1,2,3,--- form a complete set of even functions
in the range 0 < 6 < 7t. Thus x (6) = 0. for all 6. W
Basis Functions

Suppose we define for j = | =integer

DY) (8, B.7) = {5 Y™ (.7)

41T
2/+1

then we have
/
DY) (@, 7) = (—1)"

Y (B, a)
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Suppose we have the relation for multiplication of group elements

R (a2, By, 72) R (21, By, 71) = R (&, B,77)

The corresponding representation matrices will satisfy

Dy (@, B.7) = Y Dpyrr (42, B2, 72) Dpyr oy (1, By, 1)

Setting m’ = 0, the relation is

" (B) =LY (Barv2) Do (@1, By 1)

Thus functions {Y; (B,7)} form the basis for irrep D' (a, B,7). We can rewrite this in a more
familiar spherical angles notation as,

PRY/™(8,9) =Y/ (¢'.¢') ZY/ ) Dl (2, B, Y) (9)

where
cos @ = cos B cos B+ sin Osin ¢ cos (¢ — )

Example :
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3 3
Yi(6,¢) = 87_[5|n6e"p— ”877'( X—Hy
3 3z
Y2(6,¢) = ﬁcosez Srr
_ 3 . 3 (x—iy)
1 __ /3 ip__ |3 XxX=y)
6, 9) Py sin fe =
Q /=2
1 /15 ; X2 — y? + 2ixy x +iy)?
Y22(6'¢):Z ﬂsmzeehbw ( = ) ~ 2 )
1 /15 | i z(x+iy)
1 =24/ = g 22 L)
Y5 (6, ¢) 2\ 2 sinf cos fe s
1 /5 222 — x%2 —y? 222 — (x +iy) (x —iy)
S (9’¢):Z\/§(3C°529_1)N ( ) ) e
_ 1 /15 | _i z(x—iy)
1 — .= LN S A
Y, " (0,¢) 5 27_[sm9c059e 2
_ 115 5 oy (PP —20xy)  (x—iy)’
Y52 (0,¢) = 2 ﬂsm%’e 2~ = ~
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© For the special case of m =0 we have

Y,O (6,¢) =4/ 2/4_;1 Py (cosf)

and from Eq(9) we get the addition theorem,

Py (cost') — (2,“%) SV (6.6) Y™ (B.7)

m

where
cos ' = cos B cos B+ sin Osin Bcos (¢ — )
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Product Representations

Addition of Angular Momentum

Suppose DU and DU2) are 2 irreps of SU (2). How to reduce the product representation
DU DU2) = pU1x2) je. write DUL*2) as sum of irreps?. Using the characters of irreps (take

> ),

X(jl Xj2) 0 =

X(f ) (G)X(j ) (6)

1 1
e Noaan (ool e
(3 72) 5 (2 72)° _ conu-o-cosi 4410

sin2§ sin? g
1 [cos (j1 —j2) 0 —cos (j1 — jo +1) 6]

7 +[cos (j1 —j2 +1)0 —cos (j1 — j2 +2) 0]
sin2§ +---[cos (j1 +j2) 0 —cos (j1 +jo +1)6]

1 1 3
- {sin <J-1 ot 5) 6+ sin (11 it 5) 6+ sin (j +12)6}

sin —

the character of D(jl)® DU2) has the decomposition,

(Institute)
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which implies the reduction,
it
pli<h) = pii) g pi2) = Y pU)

J=lia—j|

We can relate this to the addition of angular momenta. Let f"’l (7
and 13.2 () be the basis for DU2), Then the product 6.1 (?) fjm2 (?) are the basis for
DU @ DU2)  je.

Pr (66| = [Pef] [Prf?] = Zf”“ bl mezomfimz

For infinitesmal rotation around, say z-axis, (setting h=1)

Pr=e ™z~ (1—iat,), ax1

. .
Let J; acting on fjf” and leaving fj;"z alone and J; acting on f;z and leaving fj:"l alone.

Then we can write

Pr hml @2”’2} - [(1 —iady) f.ml} {(1 - ian)fj;”] ~ (1= ia (Jrz + Joo) FT
= (1—iad;)fMET
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where
Jz = J1z+ Jo;

We can extend this to other components to write

—

7:714-_/2

which is just the total angular momentum. = infinitesmal rotation of product of the basis can
be written in terms of total angular momenta. From Eq(10) we see that decomposition of the
product of irreps is related to the additon of angular momenta.
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Clebsch-Gordon Coefficients

In the decomposition of product representations
pUixi2) — pl) g pl2) = pllii—i2l) 4 pllii—i2l+1) L ... L pli+i)

—>representation matrices DU1%2) can be changed into a direct sum of irreps D/. In terms of
matrix elements we have

D(j1><j2) _ D(Jl) D(j)
’"/1"’123"71 my mlmi QOé
On the other hand,
pii—il)
D (12 +1)
ZDJEA: . EAJ’M’;JM :5JJ’DI{/IM’
J "L
pU1+h)

where J, J' label the boxes and M, M’ labels the{ row and colums within each box.
Let A be the unitary matrix which transform DU @ D(2) into A,

pU) @ pl2) = ATAA

Writing out in terms of matrix elements,
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(1 %42) +
Dmim;;mlmz - mymbJ M/ AJ’M;JM [A]JM;mlmz (ll)
New notation for the matrix elements of the similarity transformation,

[A]JM;mlmz = <JM|j1m1j2m2)
These are called Clebsch-Gordon coefficients. Since A is unitary, AAY =1, and AtA=1 we
have
Z <j1m£j2mé‘J/M,> <JIM,‘j1m1j2m2> = (smimlémémg
Jm!
Y. (UM jimijama) (imijama| S M) = 6518y
mymyp
Note that unitary matrix A is not uniquely defined. Let B be a unitary matrix which commutes

with A,
BA = AB, or A=B'AB

Then
D = ATAA = (BA)' ABA

Thus if A block diagonalizes D, so does A’ = BA. Since A is of the form

ph)
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From Schur's lemma, B must be of the form,

cih
cob

B = ) , where ¢ = el

Bmssymr = 618 e
and
/ _ A8y
[A }JM;mlmZ =€ [A]JM;mlmQ

Thus similarity transformation is defined up to J dependent phases.
Condon-Shortly convention : Choose

(J|jrjrjad — 1)

to be real and positive, then it turns out that all Clebsch-Gordon coefficients are real.

In terms of Clebsch-Gordon coefficients Eq 11) becomes

mymy = mym}

pU) pl) Y DY (IMjimifamd) (JM|jimyjam)
J.M,.Mm!
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Theorem: Let 1,[71'-’171 () be the basis for DU irrep and 1/)}22 (#) be the basis for DU2). Then

P =Y, (IMljimijoma) pt g2

myma

are basisi for D”.

Proof:
Prop = 3, (IMljimijpms) (PRlﬂﬂl) (PRlﬁgz) =) (J’V’|J1mu2mz>D,(man1 msz l/’
mymy mpma
= Y (UMlimipma) Y D (IM[imhpmb) (S M |J1r77112'772>l/’J1 S
mymy J,M,.M’
! /
= Y Dy (IM"[imijpmy) iyl
M" mymy

Thus ¢}, does transform according to the representation D/l

As a consequence if j3 = j; + j, then

Y YRyl Gimijama|jz, —ms) (s, —majzm3|00)

mimym3

is invariant under SU (2) transformations.
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Rotation group and Quantum Mechanics
In quantum mechanics, implement symmetry transformations by unitary operator U on the
states |)

[p)y — [9') = U |yp), for all states

so that

(@'1y") = (oly)
At the same time the operators change as

A— A = UAUT

so that
(¢'IA'lg") = (9| Alp)

If A=A, or [U, A] =0, we say that A is invariant under the transformation U. In particular, if
Hamiltonian H is invariant under the symmetry transformation U

[U,H =0 (12)

Suppose ,
[Ui, H] =0, (U, H] =0

then
[U1U2,H} = [U1,H] U, + Uy [Uz,H] =0
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Collection of all such operators form a group. Suppose |¢) is an eigenstate of H with energy E,

Hly) = E )

Then from Eq(??) we see that

HU |y) = UH [y) = E (U [y))

which means that U |¢) is also an eigenstate of H with same energy E. If we run the operator U
through the whole group G, we get

Uilg),  Ualg),  Usly),

If we select a linear independent set out of these, then we have degeneracy of energy levels.On
the other hands, if we consider the eigenfunction 1 (x) of time independent Schrodinger
equation,

Hy (x) = E¢ (x)

we can use induced tranformation on this eignefunctions to get

Priyp (x) =9 (Ri'x),  Prap(x) =9 (Ry'x),

As discussed before, if we select a linearly independent set out of these transformed functions,
they will form a basis of irrep. Since they are also eigenfunctions of Hamiltonian with same E,
we get the result,

degenercy = dim of irrep
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For example, if choose ¢ (;) = z, then the basis for the transformed functions will be, x, y, z

and they form the basis of / =1 irrep of rotational group.
In the case of hydrogen atom, the Hamiltonian is of the form

p2 &2

T 2m  Amer

and is invariant under rotation
[R (%, 8.7) . H] = 0

where R is an arbitrary 3-dimensional rotation. As a consequence, the degeneracy of the energy
levels is 2/ + 1.

Another important result is that for matrix elements between states belong to different irrep are
zero,

(97" 197) ~ 35S

This follows from the great orthogonal theorem as follows. We can perform a rotation on this
matrix element to get

(97 197) = (Paey¥ |Pr9}") = X DI, (R) DI, (R) (#)19])

L,

In order to use great orthogonality theorem we sum over all group elements,

o7 o) [ dr = [ dr Py IPR9T) "dR DY, (R) D}, (R) (g} lo!
/ 2 1"y ol
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Then from
/dRDf* (R) D}, (R) ~ 8,18 1

I'm’

we get the result

(071057 ) ~ G
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Wigner-Eckart Theorem

In quantum mechanics, need to compute matrix elements of certain operators. We can use the
representation theory to simplify the computations. The strategy is to write the operator and

wave functions in terms of irrep of group and use the rep theory.
Tensor operators

Suppose D®) is an irrep of group G and dimension of D®) is d. A set of operators

T,@, i=1,2,--dy, transforming under the symmetry group G as
PRT 2 T®

is said to be irreducible tensor operators corresponding to D@ irreps.

For the case of SO (3) (or SU (2) group) , if the operators Tj’", m=—j,—j+1,--

relation,

P (a,B,7) TP (a, B, 7) = ZT’” o (2 BY)

then we say Tj’" are irreducible tensors of rank j in SO (3). For example,

T oxtiy, Tz TWox—iy

are tensor operators of rank 1.
Remarks :
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Q If Tj’l"1 are irreducible tensor of rank j; and 7—];"2 are irreducible tensor of rank j, then

Yo Gmliimijpmy) T T

my,my
are irreducible tensor of rank j. In particular, since

"

V2+1

(00]jmj — m) =

we see that the combination

Z ijsjfm (_l)m

is an invariant operator under rotations. Here Sj’" is another tensor operator of rank j.

Q If Tj’" are irreducible tensor operator of rank j, so is

This follows from the fact that

Dl (@ B7) = (~1)" "D, B,7)
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© Combining remarks (1) and (2) we get that
+
LT
m

is a SO (3) invariant operator.

Theorem (Wigner — Eckart)

If 4)]’" are basis for D/ , ¢jf7/ are basis for D// and T,? are irreducible tensor operator of rank k,
then

{9, 11Tellg;)
Vv2j+1
where /|| Tkllg; ) are the reduced matrix elements and are independent of m, m’, g.
J J

Proof:
Since T/ are irreducible tensor operator, we can write
k

(9 IT{1oy) = (J'm|kqjm)

(o IT{lo7) = (Peeyl PR T{PR!IPag]")

Y Diiy (R) D}, (R) (9417 19]) Dl (R)

1I'q',

Y Dl (R) Dy (R) (IM' k') (M [ kajm) { o) TS |g))
LM M1

(Institute) Continuous Group & SU (2) 44 / 46



Summing over all group elements in SU (2), we get

[ar (o7 1T8107) <4>’-'7'|T;’|4>m [ ar

) . ’ / \
_ /dR Dl (R) Dy (R) (IM'|kg'i"y (IM|kajm) (¢} TS |9
M, M’/ Iy, ’

we have used the fact <¢;7[‘TE|¢F> is independent of R. Using great orthogonality theorem

/dRDI, ,(R) Dy (R) :5Jj,5,,M,5m,M/dR

we get
(o IT8loy )y = ('m'lkajm) X 1 ka'ity (@1 TS lg))
II'g'
Pl Tillp;
— <j/m'|kqjm> M
V2j+1
where

(9, 11Tkllg;) = V27 +1 X (7 ka'ity (@1 ¢ lg))

II'g'

is the reduced matrix element and is independent of m, m/, q.

Remarks:
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@ The m, m/, q dependence in the matrix element <¢J’.’,7/\Tf\4)j’-”> are all contained in

(j'm’|kqjm) which are universal and independent of details of (,bj’-",(pj”,’/ and T/. Then in
the ratios of matrix elements we have

m q| om
<4)j/2|Tk |¢J 1> _ (j’m2|kqjm1>
(opeTilgpe) ' malkaims)

Thus , we can calculate only one such matrix element explicitly and use Clebsch-Gordon
coefficients to obatin other matrix elements with same j,;’ and k.

@ Since Clebsch-Gordon coefficients {j’m’|kqjm) has the property that it vanishes
unless, |k — j| <j' <j+k, and m" = g + m, the matrix elements will satify the same
selection rules independent of the nature of the wavefunctions ¢'.",¢J.”,’/ or the operator T/

Example: Dipole matrix elements <¢J’7,‘7‘¢71> , ¥ =(x,y,z). Note that the linear
combinations,

1 .
rp=——=(x+1iy), rn =z, ro =

V2

1

mm’*

1 ,
ﬁ(X*'Y)

are the basis for the irrep D Thus we have the selection rules: matrix elements vanish unless

j'=j+1,  butifj=0 thenj =1

and
m =morm=+1
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