Group Theory in Physics

Ling-Fong Li

(Institute)

æ

イロト イヨト イヨト イヨト

Crystal Symmetry

Crystalline solid : regular array invariant under translation,

 $\overrightarrow{T} = n_1 \overrightarrow{a}_1 + n_2 \overrightarrow{a}_2 + n_3 \overrightarrow{a}_3$

In addition, also rotations carried in a unit cell. <u>Space group</u>-complete operations, including translation and rotations <u>Point group</u>-only rotations there are only 32 space groups consistent with translational invariant **Point group**

C_n -one n-fold symmetry axis only n can only be 2, 3, 4, 6 to be consistent with translational invariant Write the translation in plane ⊥ rotation axis,

$$\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Let \vec{R} be the one with shortest length. Rotate this by $\frac{2\pi}{n}$ to get \vec{R}' . Consider $\vec{R} - \vec{R}'$

From the figure,

$$\left| \overrightarrow{R} - \overrightarrow{R}' \right| = 2R \sin \frac{2\pi}{n}$$

Since \overrightarrow{R} is the shortest length

$$2R\sin\frac{2\pi}{n} \le R$$

This implies that $n \leq 6$.

For the case n=5, we can show that $\left|\overrightarrow{R}+\overrightarrow{R}'\right|\geq R$ and is ruled out.

Possible C_n symmetries are;

3

イロト イヨト イヨト イヨト

These are all cyclic Abelian groups.

2 $C_{n\nu}$ - In addition to C_n axis there is a vertical reflection plane σ_{ν} , reflection in a plane passing through the axis of highest symmetry. Solid lines- vertical reflection planes.

Solution C_{nh} - There is a horizontal reflection plane \perp to C_n .

Improper rotation-rotation followed by reflection in the plane \perp to axis of rotation If *n* is odd these groups are identical to C_{nh}

(5) D_n – These groups have *n* 2-fold axes \perp to principal C_n axis

5 D_{nd} - In D_n +additional diagonal reflection planes σ_d , bisecting the angles between 2-fold axies \perp to principal axis.

🚺 . $D_{nh}-$ There are additional horizontal reflection plane σ_h

T - Symmetry of tetrahedron. It has 12 proper rotations, 3 C₂, around X, Y, Z axes and 8 C₃ along body diagonals.

- ∢ ∃ ▶

Fig. 4-4. Tetrahedron in-

9 T_d – This group contains reflections in addition to those in T.

2

< ∃⇒

O - Octahedral group - proper rotations which take a cube or an octahedron into itself. There are 8 C₃ along body diagonals, 3 C₂, around X, Y, Z axes, and 6 C₄, around X, Y, Z axes

3

(日) (同) (三) (三)

(D) $O_h = O \times i$ This group includes improper rotations and reflections

2

ヘロト 人間 と 人間 と 人間 とう

/ In	ct.	 1 0
	30	 ILC.

・ロト・(部・・ヨ・・ヨ・・(の・・ロト

Elementary rep of rotation group

Want to study the effect of crystal fields on the atom . Need to study rotational properties of a free atom. Will borrow some simple results for our purpose. Quantum Mechanics: irreps are labelled by orbital angular momentm, $l = 0, 1, 2, 3, \cdots$ with spherical harmonics as the basis functions,

$$Y_{l}^{m}(\theta,\phi) \sim P_{l}^{m}(\theta) e^{im\phi}, \qquad m = -l, \cdots, l$$

where $P_{I}^{m}(\theta)'s$ associated Legendre functions. Under rotation R ,

$$P_R Y_l^m = \sum_m \Gamma^{(l)} \left(R \right)_{m'm} Y_l^{m'}$$

We need characters of these representations . Use the property that rotations with same angle are all in the same class and choos the rotation of angle α around z - axis.

$$P_{\alpha}Y_{l}^{m}\left(\theta,\phi\right)=Y_{l}^{m}\left(\theta,\phi-\alpha\right)=e^{-im\alpha}Y_{l}^{m}\left(\theta,\phi\right)$$

The character is

$$\chi^{(l)}(\alpha) = \sum_{m=-l}^{l} e^{-im\alpha} = \frac{\sin\left(l + \frac{1}{2}\right)\alpha}{\sin\frac{\alpha}{2}}$$

3

イロト イポト イヨト イヨト

Crytal-field splitting of atomic levels

If we describe the crytal field by a potential, this potential is invariant under the symmetry group of the crystal. Illustrate by an example. The character table of octahedron group is given,

		E	8 <i>C</i> 3	3 <i>C</i> ₂	6 <i>C</i> ₂	6 <i>C</i> ₄
Γ_1	A_1	1	1	1	1	1
Γ_2	A_2	1	1	1	-1	-1
Γ3	E	2	-1	2	0	0
Γ_4	T_1	3	0	-1	-1	1
Γ_5	T_2	3	0	-1	1	-1

For the atomic levels ,

$$\chi^{(l)}(C_2) = \chi(\pi) = (-)^l$$

$$\chi^{(l)}(C_3) = \chi\left(\frac{2\pi}{3}\right) = \begin{cases} 1 & l = 0, 3, \cdots \\ 0 & l = 1, 4, \cdots \\ -1 & l = 2, 5, \cdots \end{cases}$$

$$\chi^{(l)}(C_4) = \chi\left(\frac{\pi}{2}\right) = \begin{cases} 1 & l = 0, 1, 4, 5 \cdots \\ -1 & l = 2, 3, 6, 7, \cdots \end{cases}$$

With respect to O group we get

0	Е	8 <i>C</i> 3	3 <i>C</i> ₂	6 <i>C</i> ₂	6 <i>C</i> 4				
D_0	1	1	1	1	1	-			
D_1	3	0	-1	-1	1				
D_2	5	$^{-1}$	1	1	-1				
D_3	7	1	-1	-1	- - 1		< 注 ▶	з	996

(Institute)

where we denote l = n representation by D_n . Using the formula for computing the coefficients of reduction of representation, we get

$$D_0 = A_1$$
, $D_1 = T_1$, $D_2 = E + T_2$, $D_3 = A_2 + T_1 + T_2$

This gives the splitting of the atomic levels. For example, 5 I = 2 levels split into a doublet E, and a triplet T_2 .

Additional splitting in field of lower symmetry

In actual crystals there are some small departure from cubic symmetry O. Consider the example the the cubic symmetry O is reduced to D_3 . We can study the further splitting again using character table

From this we see that $T_1 \longrightarrow E + A_2$, $T_2 \longrightarrow E + A_1$. This means that triplet level T_1 will split into a doublet E and a singlet A_2 .

イロン イ団と イヨン ト