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Molecular Vibration
Molecules consists of many atoms can execute vibrational motions.
Treat the atoms as point particles moving around their equilibrium positions. Let
!
x = (x1, x2, � � � xn) be the generalized coordinates the atoms in the molecule. For the small
deviations, expand the potential energy V around the equilibrium position,

V
�!
x
�
= V

�!
x0
�
+ (xi � xi0)

∂V
∂xi

����
x=x0

+
1
2
(xi � xi0) (xj � xj0)

∂2V
∂xi ∂j

����
x=x0

+ � � �

Here
!
x 0 is the equilibrium position, ∂V

∂xi

���
x=x0

. Write the potential energy as

V = V0 +
1
2
uijqiqj

where

V0 = V
�!
x0
�
, qi = (xi � xi0) , uij =

∂2V
∂xi ∂j

����
x=x0

Write the kinatic energy as

T =
1
2
Mij

�
q i
�
q j , where Mij = mi δij (no sum over i)

The Lagrangian is
L = T � V
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From Euler-Lagrange equation,

Mij
��
qj = �uijqj

Normal mode solution, qi = ηi exp (�iωt) . Equation of motion gives

ω2Mijηj = uijηj (1)

Or in matrix notation,
ω2Mη = Uη (2)

where

(M )ij = Mij , (U )ij = uij , η =

0B@ η1
...

ηn

1CA
Similar to the eigenvalue equation except for the presence of the mass matrix M . Non-trivial
solution exists only if

det jω2M � U j = 0

whose solutions give normal mode frequencies, ω(1),ω(2), � � � ,ω(n). For each normal mode
frequency, we get normal mode con�guration, η(1), η(2), � � � , η(n).
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Orthogonality of normal modes
From

ω(α)2Mijη
(α)
j = uijη

(α)
j

ω(β)2Mijη
(β)
j = uijη

(β)
j

we get �
ω(α)2 �ω(β)2

�
η(β)Mijη

(α)
j = 0

Thus, normal modes are orthogonal with repect to M ,

η(β)Mijη
(α)
j = δαβ

General solution

q =
n

∑
i=1
c (i )η(i ) cos

h
ω(i )t + φ(i )

i
Normal model coordinates
De�ne Rjα = η

(α)
j then

�
R tMR

�
αβ
= RTαiMijRjβ = η

(α)
i Mijη

(β)
j = δαβ

�
R tuR

�
αβ
= RTαi uijRjβ = ω(β)2η

(α)
i Mijη

(β)
j = δαβω(β)2
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In new coordinates z de�ned by
xj = Rjαzα

the kinetic and potential energies are all diagonal

T =
1
2
�
x iMij

�
x j =

1
2
�
z α

�
z α, V =

1
2
xiuij xj =

1
2

ω(α)2z 2α

Thus in terms of zα,the normal mode coordinates, the oscillators decouple.

(Institute) Molecular 5 / 19



Example 1: Linear triatomic molecule

T =
1
2

�
m
�
x
2
1 +M

�
x
2
2 +m

�
x
2
3

�

V =
k
2

h
(x1 � x2)2 + (x2 � x3)2

i
The mass matrix and potential matrix are

M =

0@ m
M

m

1A , u =

0@ k �k 0
�k 2k �k
0 �k k

1A
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Normal mode frequencies ������
k �mω2 �k 0
�k 2k �mω2 �k
0 �k k �mω2

������ = 0
or

ω2 �k �mω2� �mMω2 � km (2m +M )
�
= 0

1. ω = 0, translational mode

η(1) =
1p

2m +M

0@ 1
1
1

1A
2. ω =

q
k
m , spring frequency

η(2) =
1p
2m

0@ 1
0
�1

1A
3. ω =

q
k
M

�
2+ M

m

�
η(3) =

1q
2m

�
1+ 2 mM

�
0@ 1
�2

� m
M

�
1

1A
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Symmetries and Normal modes
This system is symmetric under, x1 $ x3, which can be represented by ,

σ =

0@ 1
1

1

1A
The eigenvectors are

v1 =

0@ 1
0
1

1A , v2 =

0@ 0
1
0

1A , with eigenvalue 1

v3 =

0@ 1
0
�1

1A , with eigenvalue � 1

By inspection, v3 is a normal mode. Zero mode of translation is v1 + v2, the remaining mode
can be obtained by orthogonality.
Example: 4-chain
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T =
m
2

�
�
x
2
1 +

�
x
2
2 +

�
x
2
3 +

�
x
2
4

�

V =
k
2

h
(x1 � x2)2 + (x2 � x3)2 + (x3 � x4)2

i
=
1
2
(xiuij xj )

where

u = k

0BB@
1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

1CCA
The translational zero mode is,

η(1) =

0BB@
1
1
1
1

1CCA
Symmetric under x1 $ x4, x3 $ x4 , represented by the matrix

σ =

0BB@
1

1
1

1

1CCA

(Institute) Molecular 9 / 19



The eigenvectors are

η(1) =
1
2

0BB@
1
1
1
1

1CCA , η(2) =
1
2

0BB@
1
�1
�1
1

1CCA with eigenvalue 1

and

η(3) =
1
2

0BB@
1
1
�1
�1

1CCA , η(4) =
1
2

0BB@
1
�1
�1
1

1CCA with eigenvalue � 1

By inspection,
uη(2) = 2kη(2)

Thus η(2) is a normal mode with ω2 = 2k
m . Now in space η(3), and η(4),

uη(3) = k
�

η(3) � η(4)
�

uη(4) = k
�
�η(3) + 3η(4)

�
or

u 0 = k
�

1 �1
�1 3

�
Diagonalize this martrix: eigenvalues are k

�
2�

p
2
�
and eigenvectors are η(3) �

�
1+

p
2
�

η(4),

and
�
1+

p
2
�

η(3) + η(4).
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Example: 4-ring

m

m

m

m

The potential energy is,

u = k

0BB@
2 �1 0 �1
�1 2 �1 0
0 �1 2 �1
�1 0 �1 2

1CCA
Clearly the zero mode is

η(1) =
1
2

0BB@
1
1
1
1

1CCA
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Symmetry: x1 $ x3, x2 $ x4. The latter one can be represented by

σy =

0BB@
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1CCA
The eigenvectors are

η(1) =
1
2

0BB@
1
1
1
1

1CCA , η(2) =
1
2

0BB@
1
�1
1
�1

1CCA , λ = 1

η(3) =
1
2

0BB@
1
1
�1
�1

1CCA , η(4) =
1
2

0BB@
1
�1
�1
1

1CCA , λ = �1

It can be checked that these are all nomal modes.
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Symmetry and Molecule Vibration
For a molecule with symmetry G , both the kinetic and potential energies are invariant under the
group transformation T ,

[T ,M ] = 0, [T ,U ] = 0

Then from eigenvalue equation in Eq(2) we get

TUη = U (T η) = Tω2Mη = ω2M (T η)

=) η and T η have the same frequency ω. Run transformation T over the whole group and
select a linear independent set, φ1, φ2, � � � φr ,
this will form a basis for the transformation Ti 2 G .
As discussed before, coordinates

!
x = (x1, x2, � � � xn) , will give a reducible representation of

group G ,
Ti xa = xbXba (Ti ) , and X (Tj )X (Ti ) = X (TjTi )

Want to �nd out how coordinate vector,
!
x = (x1, x2, � � � xn) , reduces in terms of irrep to get

degenercies and structure of normal modes,

X = ∑
i
kiD (

i )

where D (i ) are the irrep and ki is the # of time each irrep D (i ) appears in this reduction and
can be calculated in terms of the characters
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of the representations,

ki =
1
g ∑

i
nPχ

(i )�
p χ

(X )
p

we only need the trace of each group element. Thus χ
(X )
p comes from those atoms which are

unmoved by transformation of the
symmetry group G . For a proper rotation of angle θ, R (θ) ,a unmoved atom will contribute
(1+ 2 cos θ) to the trace and the total trace is

χ(X ) (R (θ)) = NR (θ) (1+ 2 cos θ)

where NR (θ) is # of atoms not moved by R (θ) . Similarly, for an improper rotation of angle θ,

S (θ) ,, the trace is,
χ(X ) (S (θ)) = NS (θ) (�1+ 2 cos θ)

where NS (θ) is # of atoms not moved by the rotation S (θ) . However, there are always 6 zero
modes, 3 for translation and 3 for rotation. We need to remove these zero modes to get the real

vibrational mode. We can used center of mass coordinates
!
R to describe these motions. So

under proper rotation, and improper rotation we have,

χ
(X )
trans (R (θ)) = (1+ 2 cos θ) , χ

(X )
trans (S (θ)) = (�1+ 2 cos θ)

For the rotational modes, we can describe it in terms of total angular momentum, an axial vector

χ
(X )
rot (R (θ)) = (1+ 2 cos θ) , χ

(X )
rot (S (θ)) = � (�1+ 2 cos θ)
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Substract these zero modes, we get pure vibrational modes,

χ
(X )
vib (R (θ)) =

�
NS (θ) � 2

�
(�1+ 2 cos θ)

χ
(X )
vib (S (θ)) = NS (θ) (�1+ 2 cos θ)
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As a illustration, we will study the water molecule H2O , which has C2v symmetry. The
vibrational characters are

E (proper , θ = 0,NE = 3) χvib (E ) = 3
C2 (proper , θ = π,NC2 = 1) χvib (C2) = 1

σv (improper , θ = 0,Nσv = 3) χvib (σv ) = 3

σ0v
�
improper , θ = 0,Nσ0v = 1

�
χvib (σ

0
v ) = 1

We can use the character table for C2v to see how the vibrational modes reduced in terms of
irrep of C2v .

C2v E C2 σv σ0v
A1 (z ) 1 1 1 1
A2 (Rz ) 1 1 �1 �1
B1 (x ) 1 �1 1 �1
B2 (y ) 1 �1 �1 1

χvib 3 1 3 1

We take σv to be the re�ection in the plane of the molecule and σ0v to be re�ection in the
perpendicular plane bisecting the HOH bond angle. The C2 axis is z and y axis. We see that
the reduction is perpendicular to the plane of the molecule.

χvib = 2A1 + B1
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Thus the vibrational modes are given by 2 A1 modes which are invariant under C2v and 1 B1
mode which is invariant under C2 rotation and change sign under σv .
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Another example : NH3 molecule

This molecule has D3 symmetry. The characters for vibrational modes are

D3 E 2C3 3C2
A1 1 1 1
A2 1 1 �1
E 2 �1 0

χvib 6 0 2
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We see that the reduction of vibrational modes are

χvib = 2A1 + 2E

Thus there are 2 non-degenerate and 2 doubly degenerate modes.

(Institute) Molecular 19 / 19


