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Molecular Vibration

Molecules consists of many atoms can execute vibrational motions.
Treat the atoms as point particles moving around their equilibrium positions. Let

X =(x1, %,

-xp) be the generalized coordinates the atoms in the molecule. For the small

deviations, expand the potential energy V around the equilibrium position,

% (?) =V <>70> + (xi — i)

Here xg is the equilibrium position, §°

where
Vo=V ().
Write the kinatic energy as

1 L.
I'=3Mjaq;q;,

The Lagrangian is
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. Write the potential energy as
0

X=X

1
V= Vot 5 uiqiq;

qi = (xi — xijo) u L

i = (xi — xi0) =

i i i ij aX,'aj o

where  Mj = m;d; (no sum over i)
L=T-V
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From Euler-Lagrange equation,
Mijq; = —uijq;

Normal mode solution, g; = 17, exp (—iwt) . Equation of motion gives
2
W Mjip; = (1)

Or in matrix notation,
w? My = Ury (2)
where
M
(M); = My, (U); = ujj, n=
My
Similar to the eigenvalue equation except for the presence of the mass matrix M. Non-trivial

solution exists only if

det |w?M — U] =0
whose solutions give normal mode frequencies, w(”,w(z), cee ,w(">. For each normal mode
frequency, we get normal mode configuration, 17(1 ,11<2), cee ,17(” .
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Orthogonality of normal modes
From

we get

WM™ = )

w2 M ® = P

(w<a>2 _ w(ﬁﬂ) y®) Mw}"‘) -0

Thus, normal modes are orthogonal with repect to M,

General solution

Normal model coordinates

Define Rj, = J(-a) then

(RTMR),

(R'uR) 5 = RijuiiRjp = w2y My ) = 5,500 (P2
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=Y cy® cos [wmt " ¢<i>]

i=1

= RIM;Rig = 1\ My P = 5,5
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In new coordinates z defined by

Xj = j,xz,x
the kinetic and potential energies are all diagonal

1

T = -xiMjx; = -z424, V = Sxujx =

2 2 2

2

w!

«)2

z;

Thus in terms of z,,the normal mode coordinates, the oscillators decouple.
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Example 1: Linear triatomic molecule

m
M
1 .2 .2 ¥
T = > {mxl + Mx, +mx3}
V= 5 {(Xl —x2)? + (x2 —X3)2]

The mass matrix and potential matrix are

m k -k 0
M = M , u= —k 2k —k
m 0 —k k
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Normal mode frequencies

k — mw? —k 0
—k 2k — mw? —k =0
0 —k k — mw?

or
w? (k — mw?) [mMMw? — km (2m + M)] =0

1. w =0, translational mode

1
m-__ 1
7] =
va2m+ M 1
2. w= 1/%, spring frequency

1

@=L [ o

\/2m —1

3. w= ﬁ(2+M)
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Symmetries and Normal modes
This system is symmetric under, x; < x3, which can be represented by ,

1
o= 1
1
The eigenvectors are
1 0
vi = 0 X vy = 1 , with eigenvalue 1
1 0
1
vz = 0 , with eigenvalue —1
-1

By inspection, v3 is a normal mode. Zero mode of translation is v; 4 v, the remaining mode
can be obtained by orthogonality.
Example: 4-chain
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ml[.2 .2 .2 .2
T:? X1+ Xy + X3+ X4

V =

N | X

[(Xl - X2)2 + (x2 — X3)2 + (x3 — X4)2] = % (xjujjx;j)

where

The translational zero mode is,

=
Il
el

Symmetric under x; <> x4, X3 <> x4 , represented by the matrix

1

q
Il
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The eigenvectors are

1 1
1 1 1 -1
1) — = (2) _ 2 . .
Ui 5 1 , i 5 1 with eigenvalue 1
1 1
and
1 1
1 1 1 -1 . .
(CH— (4) = = _
Ul 5 1 ' Ui 5 1 with eigenvalue —1
-1 1
By inspection,
,”7(2) =2ky®

Thus #?) is a normal mode with w? = % Now in space 1), and 7,

un® = k (,7<3> _ ,7<4>)
@ = k (_,7<3> +3,7<4>)

. 1 -1
ufk(_1 3 >

Diagonalize this martrix: eigenvalues are k (2 + ﬂ) and eigenvectors are 17<3) — (1 + \/5) 17(4),
and (1 + ﬁ) 73 4+ 5@,

(Institute) Molecular

or

10 / 19



Example: 4-ring

m
The potential energy is,
2
u==k 701
-1
Clearly the zero mode is
1
,7( )
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Symmetry: x; <> x3, x2 <> x4. The latter one can be represented by

0 0 1 0
oo — 0 0 0 1
a 1.0 0 O
0 1 0 O
The eigenvectors are
1 1
1 1 1 -1
1= = [ p—— =
7 3 1 , n 1 , A=1
1 -1
1 1
1 1 1 -1
() p—— “4) = = I
ELl | e | AT
-1 1

It can be checked that these are all nomal modes.
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Symmetry and Molecule Vibration
For a molecule with symmetry G, both the kinetic and potential energies are invariant under the
group transformation T,

[T,M] =0, [T,U]=0

Then from eigenvalue equation in Eq(2) we get
TUy = U(Ty) = Tw?Mny = w*M (Ty)

== 11 and T have the same frequency w. Run transformation T over the whole group and
select a linear independent set, ¢, ¢, - ¢,,
this will form a basis for the transformation T; € G.
As discussed before, coordinates X = (x1, %2, xn), will give a reducible representation of
group G,

T,'Xa:XbXba(T,'), and X(TJ‘)X(T,'):X(TJ‘T,‘)

Want to find out how coordinate vector, X = (Xl,XQ, .- ~x,,), reduces in terms of irrep to get
degenercies and structure of normal modes,

X =Y kDU

where D() are the irrep and k; is the # of time each irrep D appears in this reduction and
can be calculated in terms of the characters
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of the representations,
1 i 5%
ki = EZ”PXS)*XE )
1

(X)

we only need the trace of each group element. Thus ), ' comes from those atoms which are
unmoved by transformation of the

symmetry group G . For a proper rotation of angle 6, R (8) ,a unmoved atom will contribute
(14 2cosf) to the trace and the total trace is

XX (R (8)) = Ng(g) (1+2cos0)

where NR<9) is # of atoms not moved by R (). Similarly, for an improper rotation of angle 6,
5(0),, the trace is,

X
XXV (S (6)) = Ns(g) (—1 +2cos6)
where Ng ) is # of atoms not moved by the rotation S (0). However, there are always 6 zero
modes, 3 for translation and 3 for rotation. We need to remove these zero modes to get the real
vibrational mode. We can used center of mass coordinates R to describe these motions. So

under proper rotation, and improper rotation we have,

Xirens (R (0)) = (1+2¢c0s0),  xirahs (S (6)) = (—1+2cos0)

For the rotational modes, we can describe it in terms of total angular momentum, an axial vector
(X) (X)

Xrot (R(8)) = (1+2cos8),  xror (5(0)) = = (=14 2cos0)
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Substract these zero modes, we get pure vibrational modes,
X
X(vib) (R(6)) = <N$(9) - 2) (—1+2cosb)

Xf/?z) (5(0)) = Ns(g) (=1 +2cos0)
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As a illustration, we will study the water molecule HyO, which has Cy, symmetry. The
vibrational characters are

E (proper, =0, Ng = 3) Xvib (E) =3
Gy (proper,0 = 1, Nc, =1) x5 (C2) =1
oy (improper,0 =0, Ny, =3) X, (0v) =3

o (improper, 0.0, 1) ) 1

We can use the character table for C,, to see how the vibrational modes reduced in terms of
irrep of Gy, .

GCoy E G oy, o,
A1 (2) 1 1 1 1
Ay (R;) 1 1 -1 -1
B (x) 1 -1 1 -1
By (y) 1 -1 -1 1

Xvib 3 1 3 1

We take 0, to be the reflection in the plane of the molecule and ¢”, to be reflection in the
perpendicular plane bisecting the HOH bond angle. The C; axis is z and y axis. We see that
the reduction is perpendicular to the plane of the molecule.

Xvib = 2A1 + By
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A A A

Fig. T-8.  Norural modes of water molecule.  (a)-(5) Symmetry A,; (2) symmeiry B,

Thus the vibrational modes are given by 2 A; modes which are invariant under C;, and 1 B;
mode which is invariant under C; rotation and change sign under o,.
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Another example : NH3 molecule

H

This molecule has D3 symmetry. The characters for vibrational modes are

D3 E 2C3 3G
A1 1 1 1
Az 1 1 —1
E 2 -1 0
Xvib 6 0 2
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We see that the reduction of vibrational modes are
Xvip = 2A1 +2E

Thus there are 2 non-degenerate and 2 doubly degenerate modes.
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