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Tensor Analysis

The analysis we have discussed for SU (2) and SU (3) shows that, as thr group gets larger, the
elmentary techniques used to dissect the representation structure becomes very complicate. The
tensor method we will discuss here provides a handle which is very useful for low rank
representations.
Tensor analysis in O(3)
Rotation in R3
Rotation: coordinate axes are �xed and the physical system is undergoing a rotation. Let x 0a , xb
be the components of new and old vectors. Then we have

x 0a = ∑
b
Rabxb

where Rab are elements of matrix which represents rotation. For example, the matrix for the
rotation about z�axis is of the form,

R =

0@ cos θ � sin θ 0
sin θ cos θ 0
0 0 1

1A
Note that the relation between x 0a and xb is linear and homogeneous.
Important properties of transformation:
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1 R is an orthogonal matrix,

RRT = RT R = 1, or RabRac = δbc , RabRcb = δac

More conviently, we will write the orthogonality relations as,

RabRcd δac = δbd , RabRcd δbd = δac

i.e. in the product of 2 rotation matrix elements, making row(or coulm) indices the same
and summed over will give Kronecker δ.

2 The combination
!
x
2
= xaxa is invariant under rotations,

x 0ax
0
a = RacRabxc xb = xbxb

This can be generalized to the case of 2 arbitrary vectors,
!
A,

!
B with transformation

property,
A0a = RabAb , B 0c = RcdBd

Then
!
A �

!
B = AaBa is invariant under rotation. It is more convienent to write this as

!
A �

!
B = AaBa = AaBbδab

which is sometimes called the contraction of indices.
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3 Transfomation of the gradient operators,

∂

∂x 0a
=

∂

∂xc

∂xc
∂x 0a

From xb =
�
R�1

�
ba x

0
a , we get then

∂

∂x 0a
=
�
R�1

�
ca

∂

∂xc

Thus gradient operator transforms by
�
R�1

�T
. However, for rotations, R is orthogonal,�

R�1
�T
= R ,

∂

∂x 0a
= Rac

∂

∂xc

i.e. ∂α =
∂

∂xa
tranforms the same way as xa .
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Tensors
Suppose we have two vectors, i.e. they have the transformation properties,

Aa ! A0a = RabAb , Bc ! B 0c = RcdBd

then
A0aB

0
c = RabRcdAbBd

The second rank tensors are those objects which have the same transformation properties as
the product of 2 vectors, i. e.,

Tac ! T 0ac = (RabRcd )Tbd

De�nition of n�th rank tensors (Cartesian tensors)

Ti1 i2 ... ! T 0i1 i2 ...in = (Ri1 j1 ) (Ri2 j2 ) � � � (Rin jn )Tj1 j2 ���jn

Note again that these transformations are linear and homogeneous which implies that

if Tj1 j2 ���jn = 0, for all jm

then they all zero in other coordinate system.
Tensor operations

1 Mulplication by constants
(cT )i1 i2 ...in = cTi1 i2 ...in
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2 Add tensors of same rank

(T1 + T2)i1 i2 ...in = (T1)i1 i2 ...in + (T2)i1 i2 ...in

3 Multiplication of 2 tensors

(ST )i1 i2 ...in j1 j2 ���jm = Si1 i2 ...inTj1 j2 ���jm

This will give a tensor of rank which is the sum of the ranks of 2 constituent tensors.

4 Contaction
SabcTae = SabcTde δad ! 3rd rank tensor

This will reduce the rank of tensor by 2.

5 Symmetrization

if Tab 2nd rank tensor) Tab � Tba are also 2nd rank tensors
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6 Special numerical tensors

RRT = 1, ) RijRkj = δik , or RijRkl δjl = δik

This means that δij can be treated as 2nk rank tensor. Similarly,

(detR ) εabc = εijkRaiRbjRck

εabc a 3rd rank tensor. Useful identities for εabc

εijk εijl = δkl , εijk εilm = δjl δkm � δjmδkl

More general notation for tensor transformation (Jackson),

x 0a = Rabxb , ) Rab =
∂x 0a
∂xb

Then we can wrtie

x 0a =
∂x 0a
∂xb

xb
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Transformation Law of Tensors in SU(N)
The SU (n) group consists of n � n unitary matrices with unit determinant. We can regard these
matrices as linear transformations in an n�dimensional complex vector space Cn . Thus any
vector

ψi = (ψ1,ψ2, � � �ψn)

in Cn is mapped by an SU (n) transformation Uij , as

ψi ! ψ0i = Uijψj (1)

Thus ψ0i also belong to Cn , with UU
† = U †U = 1 and with detU = 1. Clearly for any two

vectors we can de�ne a scalar product

(ψ, φ) � ψ�i φi

which is invariant under SU (n) transformation. The transformation law for the conjugate vector
is given by,

ψ�i ! ψ0�i = U
�
ijψ

�
j = ψ�j U

†
ji (2)

It is convenient to introduce upper and lower indices to write

ψi � ψ�i , U j
i � Uij , U ij � U �ij
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Thus complex conjugation just change the lower indices to upper ones, and vice versa. In these
notation, the transformation law in Eqs(1,2) become

ψi ! ψ0i = U
j
i ψj

The
ψi ! ψ0i = U ijψ

j

The SU (n) invariant scalar product is then

(ψ, φ) = ψiφi

and the unitary condition becomes
U ikU

k
j = δij (3)

where the Kronecker delta is de�ned as

δij = δij =

�
1 if i = j
0 otherwise

Note that the summation is always over a pair of upper and lower indices. We call this a
contraction of indices.
The ψi are the basis for the SU (n) de�ning representation (also called the fundamental or
vector representation and denoted as n), while the ψi are the basis for the conjugate
representation, n*.
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Higher-rank tensors are de�ned as those with transformations properties as products of vectors.
Thus tensors have both upper and lower indices with the transfomation law,

ψ
0i1 i2 ���ip
j1 j2 ���jq =

�
U i1k1U

i2
k2
� � �U ipkp

� �
U l1j1U

l2
j2
� � �U lqjq

�
ψ
k1k2 ���kp
l1 l2 ���lq

They correspond to the basis for higher-dimensional representations.
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Invariant tensors
The Kronecker delta and Levi-Civita symbol are invariant tensors under SU (n) transformations.
The play important role in the study of irreducible tensors.

1 From the unitarity condition of Eq(3) we immediately have

δij = U
i
kU

l
j δ
k
l (4)

Hence δij ,even though do not change under the SU (n) transformations, behaves as if
they are second rank tensors. They can be used to contract indices of other tensor to
produce a tensor of lower rank. For example, if ψkij is a 3rd rank tensor,

ψkij ! ψ0kij = U
k
a U

b
i U

c
j ψabc

the contracting with δki gives

ψ0kij δki = δki U
k
a U

b
i U

c
j ψabc = U

c
j δbaψabc

where we have used Eq(4). This gives a tensor of rank 1( vector).
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2 The Levi-Civita symbol is de�ned as the totally antisymmetric quantity,

εi1 i2 ���in = εi1 i2 ���in =

8<: 1 if (i1 i2 � � � in) is an even permutation of (1, 2, � � � n)
�1 if (i1 i2 � � � in) is an odd permutation of (1, 2, � � � n)
0 otherwise

This is also an invariant tensor, because from the property of the determinant we have

(detU ) εi1 i2 ���in = U
j1
i1
U j2i2 � � �U

jn
in

εj1 j2 ���jn

Since detU in SU (n) , εi1 i2 ���in can be treated as n � th rank tensor. We can use this to
change the rank of a tensor. For example,

ψi2 ���in εi1 i2 ���in � ψi1

is a vector.
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Irreducible Representations and Young Tableaux
Permutation symmetry and tensors
Generally the tensors are basis for reducible rep of SU (n) . To decompose them into irrep we use
the following property : permutation of upper(or lower) indices commutes with the SU (n)
transformations, as the latter consists of product of identical Uij�s(or U �ij�s). We will illustrate
this with a simple example. Consider the second rank tensor ψij whose transformation is given by

ψ0ij = U
a
i U

b
j ψab

Since U�s are the same, we can relabel the indices to get

ψ0ji = U
b
j U

a
i ψba

Thus the permutation of indices in the tensor does not change the transformation law. If P12 is
the permutation opeator which interchanges the �rst two indices,

P12ψij = ψji ,

then P12 commutes with the group transformation,

P12ψ0ij = U
a
i U

b
j (P12ψab )
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This property can be used to decompose ψij as follows. First we form eigenstates of the
permutation operator P12 by symmetrization or antisymmetrization,

Sij =
1
2

�
ψij + ψji

�
, Aij =

1
2

�
ψij � ψji

�
so that

P12Sij = Sij , P12Aij = �Aij

In group theory language, Sij form basis of an one-dimensional representation of the
permutation group S2 and Aij the basis for another representation. It is clear that Sij , and Aij
will not mix under the SU (n) transformations,

S 0ij = U
a
i U

b
j Sab , A0ij = U

a
i U

b
j Aab

This shows that the second rank tensor ψij decomposes into Sij , and Aij such that group
transformations never mix parts with di¤erent symmetries. It turns out that Sij , and Aij can not
be decomposed any further and they thus form the basis of irreducible representations of
SU (n) . This can be generalized to tensors of higher rank so that the basis for irreducible
representations of SU (n) correspond to tensors with de�nite permutation symmetry among (the
positions of) its indices.
Young tableaux
The task of �nding irreducible tensors of an arbitrary rank f (i.e. number of indices) involves
forming a complete set permutation operations on these indices. The problem of �nding
irreducible representations of the permutation group has a complete solution in terms of the
Young tableaux. They are pictorial representations of the permutation operations of f objects
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as a set of f boxes each with an index number in it. For example, for the second rank tensors,
the symmetrization of indices i and j in Sij is represented by i j ; the antisymmetrization

operation in Aij is represented by
i
j
. For the third rank tensors ψijk , we have

i j k for totally symmetric combination Sijk =
1
6

�
ψijk + ψjki + ψkij + ψjik + ψkji + ψikj

�
(5)

i
j
k
, for the totally antisymmetric combination Aijk =

1
6

�
ψijk + ψjki + ψkij � ψjik � ψkji � ψikj

�
(6)

i j
k

, for the tensor with mixed symmetry χij ;k =
1
4

�
ψijk + ψjik � ψkji � ψjki

�
(7)

A general Young tableau is shown in the following �gure. It is an arrangement of f boxes in
rows and columns such that the length of rows should not increase from top to bottom:
f1 � f2 � f3 � � � and f1 + f2 + f3 � � � = f . Each box has an index ik = 1, 2, � � � n.

i1 i2 � � � � � � if1
if1+1 � � � � � � if2
...
i...
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To this tableau we associate the tensor,

ψi1 ���if1 ; if1+1 ���

with the following operations.

1 First apply symmetrization operators which leave invariant the indices appearing in each
row.

2 Then apply antisymmetrization operators which leave indices in each column invariant.

A tableau where the index numbers do not decrease when going from left to right in a row and
always increase from top to bottom is a standard tableaux. , For example, the n = 3 mixed
symmetry tensors are given here with the respective Young tableaux.

1 1
2

2 (ψ112 � ψ211) ,
1 1
3

, 2 (ψ113 � ψ311) ,
1 2
2

(ψ122 � ψ221)

1 3
3

(ψ133 � ψ331) ,
2 3
3

(ψ233 � ψ332) ,
2 2
3

2 (ψ223 � ψ322)

1 2
3

(ψ123 + ψ213 � ψ321 � ψ312) ,
1 3
2

(ψ132 + ψ312 � ψ231 � ψ213)

where we have make used of the tensor χij ;k given in Eq (7). Thus we have 8 indepedent tensors
which correspond to the 8�dimensional irrep we discussed before. Note that non-standard
tableaux give tensors that, by symmetrization or antisymmetrization, either vanish or are not
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independent of the standard tableaux. Thus for a given pattern of the Young tableaux the
number of independent tensors is equal to the number of standard tableaux which can be
formed. It is not hard to see that this number for the simplest case of a tensor with k
antisymmetric indices is

...

9>>>>>>=>>>>>>;
k ,

�
n
k

�
=
n (n � 1) � � � (n � k + 1)

1� 2� 3 � � � k

and that for a tensor with k symmetric indices the number is

� � �| {z }
�
n + k � 1

k

�
=
n (n + 1) � � � (n + k � 1)

1� 2� 3 � � � k

k

Note that because of antisymmetrization there are not more than n rows in any Young tableaux.
Also if there are n rows, we can use εi1 ���in to contract the indices in the columns with n entries.
Pictorially, we can simply cross out any columns with n rows
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Fundamental theorem (See for example, Hammermesh 1963.) A tensor corresponding to the
Young tableaux of a given pattern forms the basis of an irrep of SU (n) . Moreover if we
enumerate all possible Young tableaux under the restriction that there should be no more than
n � 1 rows, the corresponding tensors form a complete set.
We next give two formulae of the dimensionalitof irreps. If the Young tableaux is characterized
by the length of its rows (f1, f2, � � � fn�1) , de�ne the length di¤erences of adjacent rows as

λ1 = f1 � f2, λ2 = f2 � f3, � � � λn�2 = fn�2 � fn�1, λn�1 = fn�1,

The dimension of an SU (n) irreps will then be the number of standard tableaux for a given
pattern and is given by

d (λ1,λ2, � � � λn�1) = (1+ λ1) (1+ λ2) � � � (1+ λn�1) (8)

�
�
1+

λ1 + λ2
2

��
1+

λ2 + λ3
2

�
� � �
�
1+

λn�2 + λn�1
2

�
�
�
1+

λ1 + λ2 + λ3
3

��
1+

λ2 + λ3 + λ4
3

�
� � �

�
�
1+

λn�3 + λn�2 + λn�1
3

�
(9)

� � �

�
�
1+

λ1 + λ2 + � � �+ λn�1
n � 1

�
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On can easily check that the special results of totally symmetric and anti-symmetric tensors are
recovered from this formaula. Here we give some simple examples.
Example 1. SU (2) group. The Young tableaux can have only one row

d (λ1) = (1+ λ1)

Thus λ1 = 2j . It follows that

doublet, triplet, � � �

Example 2. SU (3) group. The Young tableaux can now have two rows and

d (λ1,λ2) = (1+ λ1) (1+ λ2)

�
1+

λ1 + λ2
2

�
This equivalent to the other formula for the dimensionality of SU (n) representations with the
identi�cation, λ1 = p and λ2 = q. Simple cases are given below

(1, 0) 3, (2, 0) 6, (3, 0) 10,

(0, 1) 3�, (0, 2) 6�, (1, 1) 8 ,

The formula given in Eq(8) is rather cumbersome to use for large value of n; in such case the
second formula is perhaps more useful. For this we need to introduce two de�nitions�hook
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length and distance to the �rst box. For any box in the tableaux, draw two perpendicular lines,
in the shape of a hook, one going to the right and another going downward. The total number
of boxes that this hook passes, including the original box itself, is the hook length (hi )
associated with i th box. For example,

hi = 3, hi = 1

The distance to the �rst box (Di ) is de�ned to be the number of steps going from the box in
the upper left-handed corner of the tableaux to the i th box with each step toward the right
counted as +1 unit and each downward step as �1 unit. For example, we have

0 1 2
�1 0
�2

The dimension of the SU (n) irrep associated with the Young tableaux is given by

d = ∏
i

�
n +Di
hi

�

where the products are taken over all boxes in the tableaux. We illustrate this with a simple
example

Young tableaux , hook lengths
3 1
1

, distance to the �rst box
0 1
�1
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and the dimension is

d =
� n
3

�� n + 1
1

��
n � 1
1

�
=
n
�
n2 � 1

�
3

This gives d = 8 for n = 3 as expected.
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Reduction of the product representations
One of the most useful application of SU (n) irrep with Young tableaux is the decomposition of
the product representations. To �nd the irrep in the product of two factors,

1 In the smaller tableaux, assign the same symbol, say a, to all boxes in the �rst row, the
same symbol b to all boxes in the second row, etc.

a a � � � � � � a
b b � � � b
c � � � c
� � �

2 Attach boxes labelled by a to the second tableaux in all possible ways subjected to the
rules that no two a0s appear in the same column and that the resultant graph is still a
Young tableaux (i.e. the length of rows does not increase from top to bottom and there
are not more than n rows, etc.) Repeat this process with b 0s ..etc.

3 After all symbols have been added to the tableaux, these added symbols are then read
from right to letft in the �rst row, then the second row in the same order,. . . and so
forth. This sequence of symbols aabbac � � � , must form a lattice permtutation. Thus, to
left of any symbol there are not fewer a than b and no fewer b than c , � � � etc.
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We consider two examples in the SU (3) group.
Example 1.

a � =
a
+ a

which corresponds to
3� 3 = 3�+6

Example 2.
a a
b

� = 8� 8

Firs step:

a
+

a
+

a

Second step:

a a
+

a
a

+
a

a
+ a

a
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Third step:

a a
b

+
a a

b
+

a
a b

+
a

a
b

+
a

b
a

+ a
a b

27 10 10� 8 8 1(10)

This gives the usual result
8� 8 = 1+ 8+ 8+ 10+ 10� + 27

8� 8 = 1+ 8+ 8+ 10+ 10� + 27

In terms of tensor analysis we have the following relations. If

ui � 3, v j � 3�

then

ui v
j =

�
ui v

j � 1
3

δji uk v
k
�
+
1
3

δji uk v
k

This corresponds to
3� 3�= 8+ 1

Similarly, if
ui � 3, wj � 3
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then

uiwj =
1
2
(uiwj + ujwi ) +

1
2
(uiwj � ujwi )

which corresponds to

3� 3 = 6+ 3�
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