Sorne recent clevelopments ins the nucleon stiructure study

Shin Nan Yang
National Taiwan University

$>$ Introduction
$>$ Electromagnetic form factors
$>$ N! \triangle transition form factors ${ }^{2}$ deformation of the Δ (1232)
$>$ Outlook and conclusion
Colloquium at National Tsing-Hua University,
May 11, 2005

History of Nuclear Physics

> 1932 Chadwick discovered neutron marked the birth of nuclear physics
> Nuclei ${ }_{Z}^{A}$ Name with $\mathrm{A}=1-292, \mathrm{Z}=1-116$ have been discovered
A= 1: nuclear matter, e.g., neutron stars nuclear astrophysics (Bethe)

Spectroscopy, electron scatterings (Hofstadter), nuclear reactions (fission, fusion, β-decay, fragmentation.....), high-spin states, super-deformed nuclei, super-heavy nuclei etc.

Eseape Suppressed Speetrometer Arrays

Fizure 3
Gamma-ray spectrum in ${ }^{152}$ Dy after a heavy ion fusion reaction with which the superdeformed states have been detected. The spectrum shows transitions from angular momentum 60 to 58 and from 58 to 56 and so on till down to angular momentum 26. The regular spacing of this gammaray transition energies indicates an extremely constant moment of inertia within the superdeformed band. The axis ratio 2:1 is established by measuring the E2 transition probabilities.

> Standard model of nuclear physics

 Non-relativistic quantum mechanics with

- Bethe-Salpeter equation
- Faddeev equation, Faddeev-Yacubovsky equation
- Green's function Monte Carlo method etc.
- Quantum many-body theory
> Models
- shell model -- Mayer and Jensen
- collective model - Bohr and Mottelson
- interacting boson model - Iachello and Arima

Developments of QCD

> 1964 Gell-Mann and Zweig proposed quark model
>1969 Friedman, Kendall, and Taylor discovered partons in deep inelastic scattering of electrons from nucleon
>1973 formulation of QCD by
Gross, Politzer, and Wilczek t'Hooft
\Longrightarrow Hadron physics

Hadron physics

$>$ Structure of hadrons (baryons and mesons) experiments mostly performed with electron accelerators like MAMI (Mainz), Bates (MIT), Jlab etc.
> Quark-gluon plasma (QGP) experiments mostly performed with heavy-ion accelerators like SPS, GSI, RHIC, and LHC

Figare 4. Quark gluon plasma is a state of matter that must have existed in the firnt momentry of the univene and that could be recceated if Saboratory eaperiments attain a high enough or the universe and thit could be re-ceatel if batoratury experimen about head-rn collision
 befween heavy muciei accelerated to relatristic velocity- ir mas efroct of relat other but the leave behind in the collisiun rone a region of intense excitation, where hundreds or therasands of squarks and ghwons materialize. At this high tempetature the quarks and gluens can briefly remain in a plavma phase, before they condense ho form hadrony

Elastic form factors

Constituent Quark Model

Deformed
Bag Model

Chiral
Bag Model

Soliton
Skyrme-Model

STRUCTURE OF THE NUCLEON

Electromagnetic form factors

Rutherford scattering

(1) Electron (spin-1/2) scattered by a spin-0 charged particle with mass M (Mott scattering)

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}=4\left(Z e^{2}\right)^{2} \frac{E^{2}}{(q c)^{4}} \frac{\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)}{1+\frac{2 E}{M} \sin ^{2} \frac{\theta}{2}}, \quad \beta=\frac{\mathrm{v}}{\mathrm{c}}
$$

(2) Mott scattering from a spin-0 particle with extended structure

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Natt }} F\left(\vec{q}^{2}\right)^{2}, F\left(\vec{q}^{2}\right)=\int d^{3} r \rho(\vec{r}) \exp (\overrightarrow{\mathrm{iq} \cdot \overrightarrow{\mathrm{r}}})
$$

(3) Electron scattering from proton (Dirac particle) with finite extension and anomalous magnetic moment, in one-photon-exchange approximation,

Rosenbluth formular

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}\left[\frac{G_{E}^{2}\left(Q^{2}\right)+b G_{M}^{2}\left(Q^{2}\right)}{1+b}+2 b G_{M}^{2}\left(Q^{2}\right) \tan ^{2}\left(\frac{\theta}{2}\right)\right], \\
& G_{E}^{p}(0)=1, G_{M}^{p}(0)=1+\kappa_{p}=2.79=\mu_{p}, b=\frac{Q^{2}}{4 m_{N}}
\end{aligned}
$$

(4) In elastic scattering of longitudinally polarized electrons from unpolarized protons, in one-photon-exchange approximation,

$$
\frac{G_{E}^{p}}{G_{M}^{p}}=-\frac{P_{t}}{P_{l}} \frac{E+E^{\prime}}{2 m_{N}} \tan \left(\frac{\theta}{2}\right),
$$

$P_{t}, \quad P_{l}$: polarization components of the recoiling proton perpendicular and parallel to its momentum in the scattering plane

The one-photon-exchange polarized electron-photon elastic scattering

Fig. 16. Jefferson Lab data ${ }^{56, B s}$ on the proton form factor ratio, $\frac{\mu G_{E}^{p}}{Q_{M}^{5}}$ as a function of Q^{2} together with calculations by Lomon ${ }^{116}$ (dast-dotted), Miller ${ }^{107}$ (solid cwrve), Holvwarth ${ }^{100}$ (dotted curvo), and Ma, Qing, and Schmidt ${ }^{129}$ (doshed cwrvo).

```
Protonformfactors
```


Fig. 17. World dato on proton electromagnetic form factor, G_{E}^{F} and $\frac{G_{M}^{P}}{\mu_{n}}$ since 1970 in the wnit of the standard dipole panometerisation as a function of Q^{2} together with calculations by Lomon 116 (dash-dotted), Miller ${ }^{107}$ (solid curvo), Holsuarth ${ }^{100}$ (dotted curvo), and Ma, Ging and Schmidt ${ }^{129}$ (dashed curve).

$$
G_{d}\left(Q^{2}\right)=\left[1+\left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right]^{-2}, Q_{0}^{2}=0.71(\mathrm{GeV} / \mathrm{c})^{2}
$$

Fig. 18. World dato on neutron electromagnetic form factor, G_{E}^{n} and $\frac{G_{M}^{N}}{\mu_{\mathrm{M}}}$ since 1990 as a function of Q^{2} toyecher with calculations by Lomon ${ }^{116}$ (dash-dotted), Miller ${ }^{107}$ (solid curve), Holvwarth 100 (dotted carve), and Ma, Qing, and Schmidt ${ }^{129}$ (dashed curve).

Rosenblutr vs polarization transfer measurements of $\mathcal{G}_{\mathcal{E}} / \mathcal{G}_{M}$ of proton

Two methods, two different results!

Two-photon exchange calculation: elastic contribution

Blunden, Tjon, Me Cnitcfouk(2003, 2005)

Two-photon exchange : partonic calculation

Rosenbluth w/2- γ corrections vs. Polarization data

Properties of Δ

- $\mathrm{M}_{\Delta}=1232 \mathrm{MeV}, \quad \Gamma_{\Delta}=120 \mathrm{MeV}$
- $I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3^{+}}{2}\right)$, i.e, spin $=\frac{3}{2}$, isospin $=\frac{3}{2}\left(\Delta^{+}, \Delta^{+}, \Delta^{0}, \Delta^{-}\right)$
$\Delta \rightarrow \pi \mathrm{N}$ (branching ratio > 99\%)
- Is Δ spherical? Namely, does it have a D-state?

Alexandrou et al Lattice QCD calculation Nucl-th/0311007

In constituent quark model,

$$
\begin{aligned}
& H=T+V_{\text {conf }}+V_{\text {OGEP }}, \\
& \left.V_{\text {OGEP }}(i j)=\frac{2 \alpha_{s}}{2 m_{i} m_{j}}\left\{\frac{8 \pi}{3} \delta^{(3)}\left(\vec{r}_{i j}\right) \vec{S}_{i} \cdot \vec{S}_{j}+\frac{1}{r_{i j}^{3}}\left(3 \vec{S}_{i} \cdot \hat{r}_{i j} \vec{S}_{j} \cdot \hat{r}_{i j}^{(2)}\right]^{(0)} \vec{S}_{i} \cdot \vec{S}_{j}\right)\right\},
\end{aligned}
$$

Tensor force
$V_{\text {conf }}=V_{\text {H. }}$.
Fermi contact term
D-state component

	$\mathrm{P}_{\mathrm{D}}(\%)$	$\mathrm{Q}\left(\mathrm{fm}^{2}\right)$
$\mathrm{N}(938)$	0.4	0
$\Delta(1232)$	1.9	-0.089

How to measure it?

$\gamma^{*} N \leftrightarrow \Delta$ transition

Parity and angular momentum of multipole radiation

- electric multipole of order $(1, m)$, parity $=(-1)^{1}$
- magnetic multipole of order $(1, \mathrm{~m})$, parity $=(-1)^{l+1}$

$$
\gamma+N\left(J_{i}=\frac{1}{2}, P_{\mathrm{i}}=+\right) \rightarrow \Delta\left(J_{f}, P_{f}=+\right)
$$

Allowed multipole orders are $\mathrm{l}=1$ and 2, with parity $=+$

$$
\begin{array}{cll}
l=1: \overline{P(E 1)=(-1)^{\prime}=-}, & P(M 1)=(-1)^{l+1}=+ & S \rightarrow \mathrm{~S} \\
l=2: P(E 2)=+, & P(M 2)=- & S \rightarrow \mathrm{D} \\
\mathrm{~N}(\mathrm{~J}=1 / 2) & \Delta=(\mathrm{J}=3 / 2) &
\end{array}
$$

$\gamma+N \rightarrow \pi+N$
$e+N \rightarrow e^{\prime}+\pi+N \quad\left(\gamma^{*}+N \rightarrow \pi+N\right)$

EXCITATION OF NUCLEON RESONANCES

Quarks are held together by gluons in nucleon

Struck quark is excited into a higher énergy state

Electron approaches
nucleon

Gluon flux lines 'break up and a quark-antiquark pair is generated

Electron exchanges virtual photon with one quark and transfers energy

\& meson and nucleon are formed as the final products

Tree diagrams

and rescatterings

Experimentally, it is only possible to extract the contribution of the following process,

In particular, interests have been focused on the extraction of EMR and CMR from experiments

NEED A GOOD THEORY OF
ELECTROMAGNETIC PRODUCTION O F PIO O

Dynamical approacfi

- Dubna-Mainz-Taipei (DMT)
- Sato-Lee
- MAID - K-matrix approximation

$\gamma \mathrm{p} \rightarrow \pi^{0} \mathrm{p}$

$p\left(\vec{e}, e^{\prime} p\right) \pi^{0}$ Electroproduction near Threshold

$$
\mathrm{E}_{0}=854.5 \mathrm{MeV}, \mathrm{Q}^{2}=0.05 \mathrm{GeV}^{2} / \mathrm{c}^{2}, \varepsilon=0.03, \theta=90^{\circ}, \phi=90^{\circ}
$$ \$ exp. data: M. Weis, Mainz 2003

$$
\frac{d \sigma_{v}}{d \Omega}=\frac{d \sigma_{T}}{d \Omega}+\varepsilon \frac{d \sigma_{L}}{d \Omega}+\sqrt{2 \varepsilon(1+\varepsilon)} \frac{d \sigma_{L T}}{d \Omega} \cos \phi+\varepsilon \frac{d \sigma_{T T}}{d \Omega} \cos 2 \phi+h \sqrt{2 \varepsilon(1-\varepsilon)} \frac{d \sigma_{L T^{\prime}}}{d \Omega} \sin \phi
$$

Pion Cloud
\square Bare Δ

	$A_{1 / 2}$ $\left(10^{-3} \mathrm{GeV}^{-1 / 2}\right)$	$A_{3 / 2}$	$Q_{N!\Delta}$ $\left(\mathrm{fm}^{2}\right)$	$\mu_{N}!\Delta$
PDG	-135	-255	-0.072	3.512
LEGS	-135	-267	-0.108	3.642
MAINZ	-131	-251	-0.0846	3.46
DMT	-134 (-80)	-256 (-136)	-0.081 (0.009)	3.516 (1.922)
SL	-121 (-90)	-226 (-155)	-0.051 (0.001)	3.132 (2.188)

Comparison of our predictions for the helicity amplitudes, $\mathbf{Q}_{\mathrm{N}!\Delta}$, and $\mu_{\mathrm{N}!\Delta}$ with experiments and Sato-Lee's prediction. The numbers within the parenthesis in red correspond to the bare values.

$L-T$ Interference Structure Functions

---- MAID2000
Sato-Lee

- DMT

L-T Interference Structure Functions

- CLAS Datá $\left(Q^{2}=0.65 \mathrm{GeV}^{2}\right)^{\text {! }}$
$\stackrel{n}{0} \stackrel{0}{0}$
$\cos v^{*}{ }_{\pi}$
---- MAID2000 --..- Sato-Lee
- DMT

$\sigma_{0} W$ Dependence

$$
Q^{2}=0.06 \mathrm{GeV}^{2}, \theta_{p q}^{*}=0^{\circ}
$$

$$
Q^{2}=0.126 \mathrm{GeV}^{2}, \theta_{p q}^{*}=0^{\circ}
$$

PRELIMINARY

OUILOO K and Conclusion

\rightarrow Nucle on form factors
2 Jlab 12 GeV upgrade will extend the proton $\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathfrak{M}}$ measurement to $\mathrm{Q}^{2}=14(\mathrm{GeV} / \mathrm{c})^{2}$
$2 \mathrm{G}_{\mathrm{E}}^{n}$ will be extended to $\mathrm{Q}^{2}=4(\mathrm{GeV} / \mathrm{C})^{2}$ via ${ }^{3} \mathrm{He}\left(\vec{e}, e^{\prime} n\right)$ and $\mathrm{G}_{\mathrm{M}}^{n}$ to $\mathrm{Q}^{2}=10(\mathrm{GeV} / \mathrm{c})^{2}$ via ratio technique of $D\left(e, e^{\prime} n\right) / D\left(e, e^{\prime} p\right)$
2 new analyses for the form factors, including the two-photon-exchange corrections needed to be carried out
$>\mathcal{N}-\Delta$ transition form factors
2 Jlab 12 GeV upgrade will extend the EMR and CMR measurements to $\mathbf{Q}^{2}=14(\mathrm{GeV} / \mathrm{c})^{2}$
2 several precision measurements at low \mathbf{Q}^{2} are still being analyzed
2
Δ is deformed and oblate

\rightarrow Theory

2 significantly improved nucleon model is urgently needed
${ }^{2}$ better reaction description of $e+p \rightarrow e^{\prime}+\pi+N$ is needed
2 lattice QCD calculations

The End

Thanks you for your attention!

Dynamical Model

Dubna-Mainz-Taipei (DMT)

The $\gamma \mathrm{N} \Delta(1232)$ Transition

$\Rightarrow>$ Model descriptions of the $\gamma \mathrm{N} \Delta$ transition multipoles require quarks and pions as the effective degrees of freedom
$-M_{1+}, R_{E M}, R_{S M}\left(Q^{2}\right)$
\Rightarrow Description of $\gamma \mathrm{N} \triangle$ from Lattice QCD?

- early LQCD results gave $R_{E M}=0.03(11)$ compared to experiment $R_{E M}=-0.0275(50)$
- expect a factor 10 improvement from LQCD?
- absolute multipoles?
\Rightarrow Measure multipoles with higher precision and to higher Q^{2}
- zero crossing of $R_{E M}\left(Q^{2}\right)$?
- will $R_{S M}\left(Q^{2}\right)$ continue to get more negative?
- Measurements at 6 GeV planned at JLab in 2001
- develop analysis tools beyond truncated MP analysis
- polarization observables to reduce model-dependence
\rightarrow Crystal Ball@MAMI $-\mu_{\Delta}, \ldots . .$.

MIT bag model:
0.0

Non. rel. quark model:
0 to -2.0\%
Konuik, Isgur Phys. Rev. D21 (1980) 1868
Gershteyn Sov. J. Phys. 34 (1981) 870
Drechsel, Giannini Phys. Lett. 143 B (1992) 2864
Relativized quark model:
-0.1\%
Capstick, Karl Phys. Rev. D41 (1990) 2767
Capstick Phys. Rev. D46 (1992) 2864
Cloudy bag model:
-2.0 to -3.0\%
Kalbermann
Bermuth

```
Phys. Rev. D28 (1983) 71
Phys. Rev. D37 (1988) }8
```

Chiral constituent quark model:

Skyrme model:
Adkins, Witten Nucl. Phys. B228 (1983) 552
Weise

Lattice QCD:
Leinweber

PQCD:
-2.5 to -6.0\%

Phys. Lett. B188 (1987) 6

Baryon 1992

Tree diagrams

