Kramers-Kronig Relations 的應用與哲理

國立中山大學 光電工程研究所

張道源

南台灣光電卓越研究中心

■Crystalline Fibers (黃升龍所長) $> 1.2 - 1.66 \mu m Cr^{4+}$:YAG amplifier \geq Periodically-poled LiNbO₃ fiber ■Photonic IC (賴聰賢教授,張道源) >QW design and MBE growth Device design and process development

■TW EA Modulator (邱逸仁教授)

Refractive Indices in IIIV Semiconductors

- *n_r* below and above the band gap in alloy semiconductors
 - --- 林猷穎同學, 賴聰賢教授, 張道源
- Electroabsorption and electrorefraction in modulationdoped MQW's

--- 馮瑞陽同學, 莊貴雅同學, 林猷穎同學, 賴聰賢教授, 張道源

Outline

- n_r below band gap: Sellmeier model
- Kramers-Kronig relations
- Absorption above band gap: broadened Sommerfeld factor and broadened discrete exciton
- Double Lorentzian line-shape function
- Electroabsorption and electrorefraction
- Dispersion and chirp in communications
- Mathematics of causality
- Conclusions

Wave Propagation

$$\exp(-i\omega t + ikz) = \exp\left(-i\omega t + in\frac{\omega}{c}z\right)$$
$$= \exp\left(-i\omega t + in_r\frac{\omega}{c}z - n_i\frac{\omega}{c}z\right) = \exp\left(-i\omega t + in_r\frac{\omega}{c}z - \frac{\alpha_p}{2}z\right)$$
$$n_i = \frac{c}{2\omega}\alpha_p$$
$$(\varepsilon_r + i\varepsilon_i)/\varepsilon_0 = (n_r + in_i)^2$$
$$\frac{(\varepsilon_r/\varepsilon_0) = n_r^2 - n_i^2}{(\varepsilon_i/\varepsilon_0) = 2n_rn_i}$$

AlGaAs Refractive Indices

Casey, Sell, Panish, Appl. Phys. Lett., <u>24</u>, 63 (1974)

InGaAlAsP Refractive Indices

Chandra, Coldren, Strege, Electron. Lett., <u>17</u>,6 (1981)

 $(Al_{0.48}In_{0.52}As)_x(Ga_{0.47}In_{0.53}As)_{1-x}$

Mondry, Babic, Bowers, Coldren, IEEE Photonics Technol. Lett., <u>4</u>, 6 (1992)

Below bandgap only !

Goal

- Establish semiempirical close form formulas for n_r of arbitrary, unstrained, ternary and quaternary compounds that is valid from well below band gap to well above band gap
- Extendable to strained and QW layers

Maxwell's Equations

$$\nabla \times \overline{E} = i\omega \overline{B} - \overline{M}$$

$$\nabla \times \overline{H} = -i\omega \overline{D} + \overline{J}$$

$$\nabla \cdot \overline{D} = \rho$$

$$\nabla \cdot \overline{B} = 0$$

$$\overline{D} = \varepsilon \overline{E}$$

$$\overline{B} = \mu \overline{H}$$

$$\varepsilon = \varepsilon_r + i\varepsilon_i = \varepsilon_0 \left(1 + \chi_e\right) = \varepsilon_0 \left(1 + \chi_r + i\chi_i\right)$$

$$\chi_i = \frac{\varepsilon_i}{\varepsilon_0} = \frac{cn_r \alpha_p}{\omega}$$

Dilute Damped Harmonic Oscillators

$$\chi_{r} + i\chi_{i} = \sum_{j} \left[\frac{e^{2}f_{j}N_{j} / \varepsilon_{0}m_{j}}{\omega_{j}^{2} - \omega^{2} - i2\Gamma_{j}\omega} \right]$$

$$\chi_{r} = \sum_{j} \left[\frac{\left(e^{2}f_{j}N_{j} / \varepsilon_{0}m_{j}\right)\left(\omega_{j}^{2} - \omega^{2}\right)}{\left(\omega_{j}^{2} - \omega^{2}\right)^{2} + 4\Gamma_{j}^{2}\omega^{2}} \right] \Longleftrightarrow \chi_{i} = \sum_{j} \left[\frac{\left(e^{2}f_{j}N_{j} / \varepsilon_{0}m_{j}\right)2\Gamma_{j}\omega}{\left(\omega_{j}^{2} - \omega^{2}\right)^{2} + 4\Gamma_{j}^{2}\omega^{2}} \right]$$

$$\chi(\omega) = \chi^{*}(-\omega)$$

As $\omega \Rightarrow \infty$ $\chi_r + i\chi_i \Rightarrow 0$ $\omega << \omega_j$ $\chi_r + i\chi_i \Rightarrow \sum_j \left[\frac{\left(e^2 f_j N_j / \varepsilon_0 m_j \right)}{\left(\omega_j^2 - \omega^2 \right)} \right]$

Multi-oscillator Sellmeier equation

Kramers-Kronig Relations

$$\chi_r(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\chi_i(\omega')}{\omega' - \omega} d\omega' = \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \chi_i(\omega')}{\omega'^2 - \omega^2} d\omega'$$

$$\chi_{i}(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\chi_{r}(\omega')}{\omega - \omega'} d\omega' = \frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\chi_{r}(\omega')}{\omega^{2} - {\omega'}^{2}} d\omega'$$

 $\chi_i = \frac{cn_r\alpha_p}{cn_r\alpha_p}$ ()

 $\chi(\omega) = \chi^*(-\omega)$

Interband Absorption

Theoretical models before broadening

Inclusion of Broadening

The Coulomb enhanced interband absorption must be convoluted with a line-shape function to include broadening To obtain close-form results, piecewise linear approximation to the theoretical curve is used

Result for Lorentz broadening

Double-Lorentzian Line Shape

Lorentzian :
$$L1 = \frac{\Gamma_0 / (2\pi)}{(\omega_0 - \omega)^2 + (\Gamma_0 / 2)^2}$$

Double Lorentzian :

$$L2(\omega) = \frac{\sqrt{6}(\Gamma_{0}/2)^{3}/\pi}{\sqrt{3}-\sqrt{2}} \left\{ \frac{1}{\left[(\omega_{0}-\omega)^{2}+2(\Gamma_{0}/2)^{2}\right]\left[(\omega_{0}-\omega)^{2}+3(\Gamma_{0}/2)^{2}\right]} \right\}$$
$$= \left[\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}\right] \frac{\sqrt{2}(\Gamma_{0}/2\pi)}{\left[(\omega_{0}-\omega)^{2}+2(\Gamma_{0}/2)^{2}\right]} - \left[\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right] \frac{\sqrt{3}(\Gamma_{0}/2\pi)}{\left[(\omega_{0}-\omega)^{2}+3(\Gamma_{0}/2)^{2}\right]}$$

Line Shape Comparison

GaAs Double-Lorentz Fitting

InP Double-Lorentz Fitting

InP High-Energy Spectrum

Further simplification of Sellmeier's equation

 $\omega \ll \omega_i$ Since $\chi_{HE}(\omega) \Longrightarrow \sum_{i} \left| \frac{\left(e^{2} f_{j} N_{j} / \varepsilon_{0} m_{j} \right)}{\left(\omega_{i}^{2} - \omega^{2} \right)} \right|$ $=\sum_{i}\left|\frac{\left(e^{2}f_{j}N_{j}/\varepsilon_{0}m_{j}\right)}{\omega_{i}^{2}}\right|\left\{1+\frac{\omega^{2}}{\omega_{i}^{2}}+\frac{\omega^{4}}{\omega_{i}^{4}}+\cdots\right\}$ $= A + \frac{B}{1 - C\omega^2} = A + B \left[1 + C\omega^2 + C^2\omega^4 + \cdots \right]$

> M. Cardona, in "Optical Properties of Solids", Nudelman and Mitra, ed., Plenum (1969)

Single oscillator model

Composite Model for $\boldsymbol{\alpha}$

Single oscillator model

GaAs K-K Transform Result

InP K-K Transform Result

InP High-Energy Spectrum

 $r = \rho \cdot \exp(i\theta) = (n-n_0)/(n+n_0)$, Equivalent K-K relations for ρ and θ .

M. Cardona, in "Optical Properties of Solids", Nudelman and Mitra, ed., Plenum (1969)

Quantum Confined Stark Effect

3 Quantum Wells, modulation doped

Electroabsorption ($\Delta \alpha$) **Electrorefraction** (Δn)

K-K Transform: $\Delta \alpha \Rightarrow \Delta n$

$$\begin{split} \Delta \varepsilon_r + i\Delta \varepsilon_i &= 2n_0 \Delta n \\ &= 2n_0 \left(\Delta n_r + i \frac{c\Delta \alpha_p}{2\omega} \right) = 2n_0 \left(\Delta n_r + i \frac{\lambda \Delta \alpha_p}{4\pi} \right) \\ \Delta n_r(\omega) &= \frac{c}{\pi} P \int_0^\infty \frac{\Delta \alpha(\omega')}{\omega'^2 - \omega^2} d\omega' \\ \Delta \alpha(\omega) &= -\frac{4\omega^2}{\pi c} P \int_0^\infty \frac{\Delta n_r(\omega')}{\omega'^2 - \omega^2} d\omega' \end{split}$$

Chirp

Linewidth broadening parameter in lasers:

$$\alpha_{H} = \frac{dn_{r}}{dn_{i}} = \frac{4\pi}{\lambda} \left(\frac{dn_{r}}{d\alpha}\right) = -\frac{4\pi}{\lambda} \left(\frac{dn_{r}}{dg}\right)$$

Chirp parameter in lasers and modulators:

$$C \equiv -\frac{2(\delta\omega_o)_{\max}}{\left[\frac{1}{P}\frac{\partial P}{\partial t}\right]} = -\alpha_H$$

Optical Fiber Group Index

From Fiber-Optic Communication Systems, G. P. Agrawal (1997)

Waveguide Dispersion

Combined Group Index Dispersion

Consequence of Chirp

D. A. Fishman, J. Lightwave Technol., 11, 624 (1993)

Bit-rate-distance Product

From Fiber-Optic Communication Systems, G. P. Agrawal (1997)

Dispersion shifting

4-wave Mixing Signal

For
$$\omega_{ijk} = \omega_i + \omega_j - \omega_k$$
, $\Delta \beta = \beta_i + \beta_j - \beta_k - \beta_{ijk}$

For L <<
$$\pi/\Delta\beta$$
, $P_{ijk} \approx \left(\frac{D_{ijk}}{3}\gamma\right)^2 P_i P_j P_k \frac{e^{-\alpha L} (1 - e^{-\alpha L})^2}{\alpha^2 + (\Delta\beta)^2}$

 $D_{ijk} = 3$ for two tone mixing, = 6 for three tone mixing γ : nonlinear coefficient ($\propto \chi^{(3)}$)

4-Wave Mixing & Dispersion

$$D = \frac{1}{c} \left(\frac{dn_g}{d\lambda} \right)$$

- $D \approx 0$ L = 25 km
- D = 2.5 ps/nm-km
- L = 50 km

$$P_{in} = 3 \text{ mW}$$

Chirp in DFB Lasers

Chirp Performance

- For laser diodes
 - $C \approx -6 \rightarrow -3$
- For electroabsorption
 - $C \approx -2 \rightarrow -0.6$
- For Mach-Zehnder's driven in push-pull mode :
 - $C \approx -2 \rightarrow 0 \rightarrow 2$, controllable

Theoretical Basis of K-K Relations-I

The polarization generated in an optical medium that is made up of equivalent damped harmonic oscillators in response to an electric field is given by

$$\frac{\overline{P}_{e}}{\varepsilon_{0}\overline{E}} = \chi = \sum_{j} \left[\frac{e^{2} f_{j} N_{j} / \varepsilon_{0} m_{j}}{\omega_{j}^{2} - \omega^{2} - i2\Gamma_{j} \omega} \right]$$

•Here $\Gamma_j > 0$, and $\chi(\omega)$, analytically continued to the entire complex ω plane, has no pole in the upper half plane. The impulse response of the system is given by the inverse Fourier transform of χ ,

$$T(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \chi(\omega) \exp(-i\omega t) d\omega$$

◆A contour integral over the upper half ω plane yields T(t<0)=0, *i.e.* the induce polarization does not exist before the appearance of the electrical impulse.⇒ Causality 因果不倒置,時間不倒流

Theoretical Basis of K-K Relations-II

Analyticity of $\chi(\omega)$ in the upper half plane means

Equating the real and imaginary parts results in K-K relations.

Passive medium

 $\Rightarrow \chi(\omega)$ analytic in the upper half plane

 \Rightarrow Causality \Rightarrow K-K relations

Conclusions

- α, n, dispersion, and chirp are key parameters in opto-electronic technologies
- Experimental spectrum of α (or Δα) allows one to obtain n (or Δn) through K-K transform
- Experimental verification of K-K relations between n and α (in frequency domain) amounts to a confirmation of the concept of causality (in time domain)

哲理的數學模擬

- ·陰在內,陽之守也,陽 在外,陰之使也。
- 吸收在內,折射之守 也,折射在外,吸收之 使也。
- 先有前因,再有後果
- •時間不倒流
- •絕對的還是統計的法則?
- •修行,還是遊戲?

