Second Order Optical Nonlinearity in Glassy Material and Some Applications

清華大學電機系 趙 煦 教授 12/08/2004

- Basic Concept of Nonlinear Optics
- Phase-Matching
- Quasi-Phase-Matching (QPM)
- QPM-SHG of Blue Light in Nonlinear Crystal
- Creating Second Order Nonlinearity in Glass
- How to Implement QPM in Glass
- QPM-SHG in Glass

Some Basics of Nonlinear Optics

Hook's Law F=Ky

x= + F

In case of monlinearity : K(F)

Dielectric response : $\vec{p} = \chi(\vec{e}) \vec{E}$

 $\vec{P} = \chi^{(0)} \vec{e} + \chi^{(2)} \vec{e} \vec{e} + \chi^{(2)} \vec{e} \vec{e} \vec{e} \vec{e} + \dots$

 $P_{i} = \sum_{j} \chi_{ij}^{(i)} E_{j} + \sum_{j} \sum_{k} \chi_{ijk}^{(i)} E_{j} E_{k}$

+ ZZX Xijke Ej Ek Er +

i.j.k.l=1.2.3. or x.J.Z.

Linear Case: $\vec{P} = \vec{X}\vec{E}$ $\vec{P}_{i} = \vec{\Sigma}\vec{X}_{ij}^{(o)}\vec{E}_{j}$

$$\overline{P}(\overline{r}, t) = \chi(\overline{r}, t) \overline{E}(\overline{r}, t) ???$$

$$P_{i}(\overline{r}, t) = \sum_{i} \chi_{ij}^{(0)}(\overline{r}, t) \overline{E}_{i}(\overline{r}, t) ??$$

For lossy material and non-local interaction: $P_i(\vec{r}, t) = \sum_{j} \int \chi^{(0)}(\vec{r} - \vec{r}', t - t') E_j(\vec{r}', t') d\vec{r}' dt', \quad t' > t$ For lossy material and non-local interaction: $P_{i}(\vec{r},t) = \sum_{d} \int \int \mathcal{A}_{ij}^{(0)}(\vec{r}-\vec{r}',t-t') E_{j}(\vec{r}',t') d\vec{r}' dt', \quad \mathcal{X}=0$ when t'>t

From convolution theorem : (f(t)=Sh(t-t')g(t)dt'=>F(w)=H(w)G(w))

$$P_{i}(\bar{k}, \omega) = \sum_{j} \chi_{ij}^{(0)}(\bar{k}, \omega) E_{j}(\bar{k}, \omega) \left(\bar{P}_{i}(\bar{k}, \omega) = \chi^{(0)}(\bar{k}, \omega) \bar{E}(\bar{k}, \omega) \right)$$

Same for nonlinear case :

$$P_{i}(\tau,t) = \sum_{j} \gamma_{j}^{(e)}(\tau-\tau',t-t') = \sum_{j} (\tau',t') + \sum_{j} \sum_{k} \gamma_{jk}^{(e)}(\tau-\tau',\tau-\tau'',t-t',t-t'') = (\tau',t') = (\tau',$$

S.

$$P_{i}(\bar{\mathbf{r}},\omega) = \sum_{j} \chi_{ij}^{(o)}(\bar{\mathbf{r}},\omega) E_{j}(\bar{\mathbf{r}},\omega) + \sum_{j} \sum_{k} \chi_{ijk}^{(2)}(\bar{\mathbf{r}} = \bar{\mathbf{r}},t\bar{\mathbf{r}}_{2},\omega=\omega,t\omega_{2}) E_{j}(\bar{\mathbf{r}}_{1},\omega_{1}) E_{k}(\bar{\mathbf{r}}_{2},\omega_{2}) + \sum_{j} \sum_{k} \chi_{ijk}^{(3)}(\bar{\mathbf{r}} = \bar{\mathbf{r}},t\bar{\mathbf{r}}_{2},t\bar{\mathbf{r}}_{2},\omega_{2}) E_{k}(\bar{\mathbf{r}}_{2},\omega_{2}) E_{$$

There is no second order nonlinear effect for material with central symmetry.

phase Matching

Example : second harmonic generation (SHG)

 $\overrightarrow{P}^{(2)}(\overrightarrow{k}=\overrightarrow{F},\overrightarrow{F},\overrightarrow{F},\psi=\omega,\pm\omega)=\overrightarrow{T}^{(2)}(\overrightarrow{F},\omega)\overrightarrow{E}(\overrightarrow{F},\omega,\overrightarrow{F},\overline{E},\overline{E},\omega)$

For SHG $W_1 = W_2$ $W = 2W_1$ $\overline{k}_1 = \overline{k}_2$ $\overline{k} = 2\overline{k}_1$

SHG Power Conversion

$$\eta = \frac{P_{2\omega}}{P_{\omega}} = 2 \left(\frac{\mu}{\varepsilon_0}\right)^{\frac{3}{2}} \cdot \frac{\omega^2 d_{eff}^2}{n_{\omega}^2 n_{2\omega}} \cdot \sin c^2 \left(\frac{\Delta kL}{2}\right) \cdot \frac{L^2 P_{\omega}}{A}$$

$$\Delta k = k_{2\omega} - 2k_{\omega}$$

$$l_{c} = \frac{2\pi}{\Delta k} = \frac{\lambda}{4(n_{2\omega} - n_{\omega})}$$
coherence length

SHG in Waveguide $k_{\omega} \rightarrow \beta_{\omega}^{p}$ $\frac{1}{A} \rightarrow (overlap integral)^{2}$ $k_{2\omega} \rightarrow \beta_{2\omega}^{q}$ $= \left[\iint E_{2\omega}^{q} \cdot E_{\omega}^{p} E_{\omega}^{p*} dx dy\right]^{2}$

Quasi-Phase-Matching

Historical

 1962 Armstrong, Bloembergen, Ducning, Pershan Phys. Rev. 127, 1918

$$\vec{P}(\omega_3) = \varepsilon_0 \quad \vec{\chi}^{(2)}: \vec{E}(\omega_1)\vec{E}(\omega_2)$$

$$\Delta \vec{K} = \vec{K}_3 - \vec{K}_2 - \vec{K}_1 + \frac{2\pi}{\Lambda}\hat{k} = 0$$

$$\Lambda: \text{ periode of periodical reversal of } \chi^{(2)}$$

Quasi-Phase-Matching (Periodic reversal of $\chi^{(2)}$)

Periodic insertion of crystal with an inverted crystal orientation
 Periodic reversal of ferroelectric domain of nonlinear crystal
 (periodic poling)

清華大學電機系

Bulk coupling

End-fire coupling to waveguide

Second Harmonic Generation

光資訊儲存實驗室

Periodic Poling

Poling apparatus

Results

PPLT

Uniform, straight and precise duty structure achieved for 3rd QPM-SHG

Different period structure viewed from samples' edge 100 um 30 u

Bulk coupling

Opt. Info. Lab.

QPM-SHG of blue light in PPLT

- Fabrication of PPLT realized
- Poling mechanism understood and QPM-SHG quality improved
- Generation of 1st (3.8um), 3rd (11.4um) order QPM-SHG blue light in bulk and in proton exchanged waveguide were achieved

清華大學電機系

Fundamental wavelength scan

PPLT

Opt. Info. Lab.

Fundamental wavelength scan

Opt. Info. Lab.

Second Order Nonlinearity in Glass Material

• $P = \chi^{(0)} E + \chi^{(2)} E E + \chi^{(3)} E E E + \dots$

• $\chi^{(2)} = 0$ for glass (centro-symmetric) but if $\chi^{(3)} EEE = \chi^{(3)} E_{dc} EE = \chi^{(2)} EE$ with $\chi^{(3)} E_{dc} = \chi^{(2)}$

 E_{dc} : built-in dc field

E-field induced Mechanisms (I)

Selectric-field-induced second-harmonic generation (EFISHG)

where

for centro-symmetric medium

Creation of Built-in Field in Silica Glass : Thermal Poling

Under high Temperature and high dc voltage ,a intense electric field (E_{dc}) is established for orientation of bonds near the anode surface the. =>depletion region of E_{dc} break centosymmetric => $\chi^{(2)} = 3 \chi^{(3)}E_{dc}$

Fig. 3. Planar schematic diagram of silica network before poling.

Fig. 7. Planar schematic diagram of silica network after poling.

(D)Depletion region generation process:

Fig. 5. Formation process of the depletion region near the anode surface in the multiple-carrier model. (a) The primary process from scores of milliseconds to several seconds in the TEFP; (b) from several seconds to scores of seconds in the TEFP; (c) after several seconds in the TEFP; (d) the state after scores of milliseconds reach the quasi-steady state.

$$\equiv Si - O - \equiv Si + H_2O \implies 2 \equiv Si - OH$$
$$\equiv Si - OH + H_2O \implies \equiv Si - O^- + H_3O^+$$
$$\equiv Si - O^- \implies \equiv Si - O + e^-$$

Maker fringe setup

Maker fringe measurement

How to implement QPM in glass?

UV erasure of second-order nonlinearity

Periodic poling & etched profile

Device fabrication

QPM-SHG in Ge ion-implanted nonlinear optical channel waveguides

Fabrication flow chart

Periodical UV-erasure of second order nonlinearity

8 difference period

Poling & UV-erasure characteristic

Future applications Silica-based active device on Si wafer

Silica-based EO device [8]

Silica-based MZ interferometer [9]

Frequency conversion device EO modulator switch

