How particles move in nonlinear acoustic waves?

Lin I (伊林)

Chen Ting Liao (廖振廷), Chen Yu Tsai (蔡承祐), Lee Wen Teng (鄧力文)

> Department of Physics National Central University lini@phy.ncu.edu.tw

> > 10/15/2008

Acoustic wave in gas A linear perturbation fluid picture

Lagrangian picture at the kinetic level ?

Longitudinal density waves:

- Acoustic waves in solid, liquid, and gas
- Electrostatic waves in plasmas
- Dust density wave in dusty gas
- Dust density wave in dusty plasma

Micro-motion of particles in longitudinal density waves?

Wave-particle micro-dynamics ?

Coherent wave field & particle-particle interaction

Particle motion

Particles interact with and constitute the wave

Nonlinear motion in electrostatic plasma waves

Trapping and surfing in a traveling wash-board field

A continuous mean field approach

Effect of spatio-temporal heterogeneity at the discrete level ?

How particles constitute and sustain the propagating wave ?

Wave-particle micro-dynamics in self excited dust acoustic waves

Our studies

Lagrangian picture through direct particle tracking using high speed CCD

- Nonlinear particle oscillation in waves
- Wave-particle interaction
- How particles sustaining the propagation of waves
- Anisotropic Non-Gaussian wave-particle heating

From regular to turbulent wave

Dusty plasma

Charged fine particles suspended in low pressure gaseous plasma

- Interstellar plasma
- Space plasma
- Laboratory discharge

Dust cloud in a plasma etcher

Spokes in Saturn rings

C.K. Goertz, Rev. Geophys. 27, 271 (1989)

G.S. Selwyn, et al., APL 57, 1876 (1990)

Charging and suspension of dust particles in a laboratory discharge

From the gas state to the crystal state A bridge from plasma to condensed matter

0.5 mm

J.H.Chu and Lin I, PRL(1994) Lin I et al, Science (1996)

- Micro-transport
- Defect dynamics
- Confinement induced layering and slow dynamics
- Visco-elastic response
- Shear induced heating
- Few body cluster
- Chain bundle liquids

Dust acoustic waves (DAW) in dusty plasmas

DAW

- Longitudinal wave with dust density and dust particle oscillations
- Interplay of inertia, Coulomb interaction, ion streaming, dust charging and unfrozen ionization

Previous studies

Dispersion relation and various mechanisms using continuous macroscopic approaches

Our system

P ~ 200 mTorr Ar particle diameter : $5 \ \mu \, {\rm m}$ Q/particle $\sim 10^4 \, {\rm e}$

Side view

Turning on self-excited DAW by increasing rf power or decreasing pressure

Contour plot of $n_{D}(z,t)$ - dust density evolution

Dust density evolution at different heights

• Upper region:

Small amplitude limit cycle oscillation Keeping dusts in the liquid state

• Middle region:

Large amplitude chaotic oscillation Turning dusts into the gas state

Escalating oscillation followed by long distance downward crest accelation

• Lower region:

Middle amplitude chaotic oscillation

Why chaotic oscillation?

Why long distance downward acceleration?

Wave resonance acceleration?

Trough trapping?

How particles constituting and sustaining the propagating wave?

Why waveform steepening?

How does the wave propagate ?

Trough trapping has not been observed !

Waveform steepening

From regular to turbulent DAW

Regular (170 mTorr, 2.4 W)

More chaotic trajectories in turbulent DAW

Crest annihilation and recombination in turbulent DAW

DAW induced non-Gaussian heating

Pulsed laser induced dusty plasma bubble and solitary wake field

Supersonic bubble in dusty plasmas Strong localized density perturbation

60 Hz sampling rate

Hong Yu Chu and Lin I PRL 90, 075004 (2003)

Collapsing bubble at high pressure

Quiescent DPL							1	Self organized
	Damped Bubble I		Traveling Bubble Ⅱ Ⅲ Ⅳ					dust density wave v
	193		170 P (n		163 orr)		150	

Summary

- Micro-motion in self-excited DAW and laser induced bubbles
- Melting from the liquid to the gas state with cyclic to chaotic particle oscillation as wave amplitude increases
- Wave crest trapping inducing chaotic motion
- Further trough trapping for the turbulent wave
- Anisotropic non-Gaussian heating by waves
- Supersonic bubble with dust depletion

Thank You