

High Resolution Laser Spectroscopy

\$\$: National Science Council, Taiwan 國科會

蔡錦俊 Chin-Chun Tsai

成大物理系 Department of Physics, National Cheng-Kung University

Taiwan from google map

Taiwan from google map

激成の方學

清華物理

Physics Department at National Tima the

HITEL | English | BIANELS

Taiwan from google map

FIG. 3.—The HCl band at $3.46\,\mu$, mapped with 7500-line grating. HCl at atmospheric pressure.

Energy

What are the important issues? Line position, Intensity and Shape

When/Where does it start?

The dawn of Quantum Mechanics!

HIGH English BALLEY

winlet

486.1 nm bluegreen.

High resolution laser spectroscopy

$$\overline{n_2}^{\mathbf{E}_2}$$

A downward transition involves emission of a photon of energy:

$$E_{photon} = hv = E_2 - E_1$$

Given the expression for the energies of the hydrogen electron states:

$$h\upsilon = \frac{2\pi^2 m e^4}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = -13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] eV$$

2008/12/28

High resolution laser spectroscopy

Schrodinger Equation :
$$H\Psi = E\Psi \rightarrow$$
 Wavefunctions and Eigenvalues

$$E = -\frac{Z_{me}^{2}}{8nh\epsilon_{0}^{2}} = -\frac{13.6Z^{2}}{n^{2}} eV$$

$$r = \frac{n h^2 \epsilon_0}{Z \pi m e^2} = \frac{n a_0}{Z}$$

Lamb Shift → QED

structure for the n=3 → 2 transition. (After Ohanian, Modern Physics, Ch 7., spectrum from T. W. Hansch, Stanford Univ.)

It provided a high precision verification of theoretical calculations made with the quantum theory of electrodynamics.

High resolution laser spectroscopy

The ratio of aluminum and mercury single-ion optical clock frequencies

 v_{Al^+}/v_{Hg^+} is 1.052871833148990438(55),

5.2x10⁻¹⁷

Quantum Phenomena of atoms

Atomic Spectroscopy

High-Precision and High-Resolution Laser Spectroscopy on Magneto-Optical Trap of Cesium Atoms

Atom number $4x10^9$, Cloud size 5 mm, Density $5x10^{10}$ /cm³ Atom temperature (Time of flight) : 100 μ K

2008/12/28

Physics Deportment at National Time (Inc

Experimental Setup

HTTEL | English | BIATELS

Visible Cs MOT : Probe laser transition $|6p\ ^{2}P_{3/2}\rangle \rightarrow |10d\ ^{2}D_{5/2}\rangle$ 563.6nm

Atom number $\sim 10^8$ Temperature $\sim 200 \mu K$

Data Acquisition by External Scan

2008/12/28

Atomic Transitions

$$\left|6s^{2}S_{1/2}, F=5\right\rangle \rightarrow \left|6p^{2}P_{3/2}, F=4\right\rangle \rightarrow \left|9d^{2}D_{5/2}, F\right\rangle$$

2008/12/28

Electromagnetically induced transparency (EIT) has been observed in a cascade system of laser-cooled Cs atoms.

清華物理

$$|6s^{2}S_{1/2}, F = 5\rangle \rightarrow |6p^{2}P_{3/2}, F = 4\rangle \rightarrow |11s^{2}S_{1/2}, F\rangle$$

w c: 10 m W /cm², w p: 1.5 m W /cm²

Results

成わた嶋

Probe power vs. Probe detuning

$$|6s^{2}S_{1/2}, F = 5\rangle \rightarrow |6p^{2}P_{3/2}, F = 4\rangle \rightarrow |11s^{2}S_{1/2}, F\rangle, \text{ wc: }10\text{mW/cm}^{2}$$

潮成の方響

清華物理

Numerical Simulation

 $|6s^{2}S_{1/2}, F = 5\rangle \rightarrow |6p^{2}P_{3/2}, F = 4\rangle \rightarrow |11s^{2}S_{1/2}, F\rangle, \text{ wc: } 10\text{mW/cm}^{2}$

 γ_2 =5.2MHz, γ_3 =2.5MHz, wc=3MHz, wp=1MHz, Δc =-10MHz Ωc =20MHz

一般的方字

Long Scan with Molecular lodine Hyperfine Spectrum

1 A Delat

TO CLE English | BARLEY

Calibration procedure

JSPS I₂ Hyperfine

		05100203. scn	5W/17.6mW	11s ² S _{1/2}
	cm^{-1}	$\Delta = -10 \text{MHz}$	(v/c)	cm ⁻¹
	I2_Reference	I ₂ _Experent(GHz)	C=299792458	deviation
peak1	17399.45226	521622.82650	17399.46462	0.01236
2	17399.45607	521622.94250	17399.46848	0.01241
3	17399. 45968	521623.05150	17399.47212	0.01244
4	17399. 46159	521623.11650	17399.47429	0.01270
5	17399. 46625	521623.24150	17399.47846	0.01221
7	17399. 46826	521623. 30850	17399.48069	0.01243
8	17399.47123	521623. 39950	17399.48373	0.01250
		Average(Δ)	0.01244	
		Stdev. (δ)	0.00015	< 5 <i>MHz</i> ,
		EIT	521621.65660	17399.42559
		EIT- Δ		17399.41316
		MOT(Trap Loss)	521621.66980	17399.42603
		MOT- Δ		17399.41360

激成功力學

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

Decay fluorescence

Suppression

Suppression & Recovery

Suppression & Recovery

Power dependence

Power dependence

Linewidth vs. coupling Rabi frequency

Laser linewidth serves as a de-coherence source.

Quantum Phenomena of atom-atom interactions

Molecular Spectroscopy

Diatomic molecule

$$H_e \psi_q = (T_e + V) \psi_q = E_q(R) \psi_q$$

HOLD English | BANKER

Diatomic molecule

Eigenvalues of Harmonic Oscillator

Vibrational Mode

$$E_v = (v + \frac{1}{2})\hbar\omega$$

Eigenvalues as a Rigid Rotator

$$E_{J} = \frac{J^{2}}{2I} = \frac{J(J+1)\hbar^{2}}{2I}$$

Rotational Mode

Diatomic molecule

Dunham Coefficients

$$-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\left(v_{i}+\frac{1}{2}\right)^{i}\left[I(I+1)-A^{2}\right]$$

$$T_{v,J} = \sum_{i=0}^{N} \sum_{j=0}^{N} \left[Y_{ij} \left(v + \frac{1}{2} \right) \left[J \left(J + 1 \right) - \Lambda^2 \right]^J \right]$$

Lower terms of Dunham Coefficients (Y_{ii})

Experimental setup

System accuracy ~0.03cm⁻¹

Experimental setup

Laser Induced Fluorescence by Ar⁺ Laser line at 496.5nm

2008/12/28

Experimental setup

A typical part of fluorescence sticks spectrum converted from the raw fluorescence spectrum of the rovibrational progressions

Laser Spectroscopy:

The third and fourth ${}^{1}\Delta_{g}$ states of Na₂ : a pair of twins

A typical part of fluorescence sticks spectrum converted from the raw fluorescence spectrum of the rovibrational progressions

The third and fourth ${}^1\!\Delta_{\!\alpha}$ states of Na_2 : a pair of twins

清華物理

Physics Department at National Time this

The third and fourth ${}^{1}\Delta_{g}$ states of Na₂ : a pair of twins

HITEL Engist | BATELT

2008/12/28

成历天卿

清華物理

Physics Deport

ent at National Time that

~

HITEL Engist | BATELT

The third and fourth ${}^{1}\Delta_{g}$ states of Na₂ : a pair of twins

清辛物理 Broading Department at National Terr

Tripi English | BMILLY

The third and fourth ${}^1\!\Delta_{\!g}$ states of Na_2 : a pair of twins

Vibrational quantum number

The third and fourth ${}^{1}\Delta_{\alpha}$ states of Na₂ : a pair of twins

Wave-functions sharing

$$\begin{split} \psi_{3^{1}\Delta_{g}} &= a\psi_{sd} + b\psi_{sf} \quad (3^{1}\Delta_{g} \text{ obseved in } 0 \leq v \leq 9) \\ \psi_{4^{1}\Delta_{g}} &= c\psi_{sd} + d\psi_{sf} \quad (4^{1}\Delta_{g} \text{ observed in } 3 \leq v \leq 22) \end{split}$$

 $\begin{cases} |a|^2 > |b|^2, |d|^2 > |c|^2, & E < E_c; \\ |b|^2 > |a|^2, |c|^2 > |d|^2, & \text{in the range of } E > E_c; \\ |a|^2 \sim |b|^2, |c|^2 \sim |d|^2, & E \sim E_c, \end{cases}$

The third and fourth ${}^1\!\Delta_{\!g}$ states of Na_2 : a pair of twins

fiel English

J(J+1)-Λ²

& mg

物理

清華

55

HITEL | English | BIANELS

Analysis of

 $5^{1}\Delta_{g}$ state $5^{1}\prod_{g}$ state

2008/12/28

Data Fitting

※成功大嶋 ● ◎清辛物理

57

1 A De Sulto

HEALT English | BAREET

Physics Department at National Terra Thia

Least square fitting for Dunham Coefficients The standard deviations excess the systematic accuracy!! $\sim 0.03 cm^{-1}$

201月,喝

清華物理

Is there something wrong !?

Coupling case transition

激成の大學

◎ 清辛物理 Thuring Department at National Tena IT

Coul | Engist | Blassed

Dunham Coefficients for e-levels

$$T_{v,J} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} Y_{ij} \left(v + \frac{1}{2} \right)^{i} \left[J \left(J + 1 \right) - \Lambda^{2} \right]^{j}$$

$5^{1} \Delta_{g}$: e/f level difference

Corrected Description

$$Term(v,J) = \sum Y_{ij} \left(v + \frac{1}{2}\right)^{i} \left[J(J+1) - \Lambda^{2}\right]^{j} + \left[\delta J(J+1) - \Lambda^{2}\right] \left\{q_{0} + q_{v}\left(v + \frac{1}{2}\right) + \mu J(J+1) - \Lambda^{2}\right] \right\}$$
$$\delta = \begin{cases} 0 \quad for \ e \ parity \\ -1 \quad for \ e \ parity \end{cases}$$
$$Q_{0} \quad Q_{v} \quad \mu \implies Corrected \ Constant$$

5¹ Δ_g : Least Square Fitting

Y_{ij}	This work	Carlson	Mangier
Y ₀₀	$0.3625049041{\times}10^5(0.12{\times}10^0)$	$0.3625068{\times}10^5(0.2{\times}10^0)$	35991
Y_{10}	$0.1208880160{\times}10^3(0.30{\times}10^{-1})$	$0.121014{\times}10^3(0.1{\times}10^0)$	125.2
Y_{20}	$\scriptstyle -0.4220256755 \times 10^{0} (0.25 \times 10^{-2})$	$\text{-}0.4185{\times}10^0(0.3{\times}10^{-1})$	
Y_{01}	$0.1151462792{\times}10^0(0.71{\times}10^{-4})$	$0.11386{\times}10^0(0.1{\times}10^{-3})$	
Y_{11}	$\text{-}0.5711260511{\times}10^{-3}(0.13{\times}10^{-4})$	$0.662{\times}10^{-3}(0.6{\times}10^{-4})$	
q_0	$\scriptstyle -0.3764924100 \times 10^{-4} (0.90 \times 10^{-5})$		
q_v	$-0.1140212143 \times 10^{-4} (0.55 \times 10^{-6})$	Splitting con	stants
μ	$-0.7582958171{\times}10^{-8}(0.33{\times}10^{-8})$		

$5^{1} \Delta_{q}$: Regenerate the eigenvalue

R. Y. Chang, T. J. Whang, C. P. Cheng, and C. C. Tsai ,J. Chem. Phys. **123**, 224303 (2005). 2008/12/28

 $5^{1}\Pi_{\mathbf{q}}$: e/f level difference

$5^{1}\Pi_{g}$: Least Square Fitting

Y_{ij}	This work	$\operatorname{Carlson}$	Mangier
Y ₀₀	$0.3555000951{\times}10^5(0.59{\times}10^{-1})$	$0.3555077{\times}10^5(0.3{\times}10^0)$	35312
Y_{10}	$0.1120323209{\times}10^3(0.24{\times}10^{-1})$	$0.112128{\times}10^3(0.1{\times}10^0)$	115.7
Y_{20}	$\text{-}0.4821718614{\times}10^0 (0.38{\times}10^{-2})$	$\text{-}0.5112 (0.1{\times}10^{-1})$	
Y_{01}	$0.1090586962{\times}10^0(0.20{\times}10^{-4})$	$0.10719 (0.2{\times}10^{-3})$	
Y_{11}	$\text{-}0.5971091128{\times}10^{-3}(0.32{\times}10^{-5})$	$\text{-}0.541{\times}10^{-3}(0.5{\times}10^{-4})$	
q_0	$-0.1758320898{\times}10^{-3}(0.17{\times}10^{-4})$		
q_v	$0.7124318162 \times 10^{-5} (0.71 \times 10^{-6})$	Splitting con	stants
μ	$0.9608208561{\times}10^{-8}(0.80{\times}10^{-8})$		

$5^{1}\Pi_{\mathbf{g}}$: Regenerate the eigenvalue

6d, 7d, 8d $1 \qquad M_g$ states

Separation constants as a function of n in $nd^1 \Delta_g$ states

Using high-resolution Laser spectroscopy

Electromagnetically induced transparency and de-coherence effects due to laser linewidth have been observed in Cesium atoms

Electronic orbital angular momentum *L* uncoupled from its internuclear axis and Molecular wavefunction-mixing and amplitude-sharing between the twins states (same symmetry) of Sodium dimer have been observed

Thanks for your attention!

Collaboration: Thou-Jen Whang, Chemistry, NCKU

Postdoctoral : Chanchal Chaudhuri

PhD Students: Ray-Yuan Chang 張瑞園 Yi-Chi Lee 李益志 And many master students......

我們的實驗室出現在 [成大簡介] 中的帥哥們…

研究篇

研究成果变视 居全國麵獎 南成大北台大之美譽 不是派得遗名