Looking for Higgs Particle

Ling-Fong Li

Nov 2008

Ling-Fong Li ()

Nov 2008 1 / 20

<u>Outline</u>

- Introduction
- Symmetry and Conservation Law
- Symmetry Breaking
- Local vs global symmetries
- Local symmetry with spontaneous symmetry breaking
- Standard Model of Electroweak Interaction

Introduction

Fundamental Interactions in nature

- Strong interactions-Quantum Chromodynamics(QCD) : gauge theory based on SU(3) symmetry
- $\begin{array}{c} \bullet \\ \hline \textbf{Electromagnetic interaction} \\ \hline \textbf{Weak interaction} \\ \hline \textbf{theory based on } SU(2) \times U(1) \\ \hline \textbf{symmetry with spontaneous} \\ \hline \textbf{symmetry breaking} \end{array} \right\}$
- **③** Gravitational interacton: gauge theory of coordinate transformation

Symmetry and Conservation Law

Noether's Theorem: Any continuous transformation which leaves the action

$$S=\int d^4x \mathcal{L}$$

invariant, will give a conserved charge.

Symmetry Transformation	Conserved Charge
time translation $t \rightarrow t + a$	Energy
space translation $\vec{x} \rightarrow \vec{x} + \vec{b}$	Momentum
rotation	Angular momentum
•••	•••

Other conserved quantities: Electric charge, Baryon number,...

2)Explicit vs Spontaneous Symmetry Breaking

Most of the symmetries in nature are approximate symmetries.

(a) Explicit breaking-

Add small non-symmetric terms to the Hamiltonian

e.g. Isospin symmetry is broken by electromagnetic interaction

(b) Spontaneous breaking:

Ground state does not have the same symmetry as the Hamiltonian (Nambu 1960, Goldstone 1961)

Goldstone theorem: Spontaneous breaking of continuous symmetry implies the existence of **massless** particle (Goldstone boson).

For example, the effective potential given by

$$V\left(ec{\phi}
ight) = -\mu^2\left(ec{\phi}\cdotec{\phi}
ight) + \lambda\left(ec{\phi}\cdotec{\phi}
ight)^2$$

has O(3) symmetry. The classical minimum is located at

$$ec{\phi}\cdotec{\phi}=\mathbf{v}^2=rac{\mu^2}{2\lambda}$$

Choose $\left\langle \vec{\phi} \right\rangle = (0, 0, v)$ the symmetry is broken from O(3) to O(2). Define the quantum field $\vec{\phi}'$ by

$$ec{\phi}' = ec{\phi} - \left\langle ec{\phi}
ight
angle$$

Then ϕ'_1 and ϕ'_2 are Goldstone bosons.

- Note that massless particles imply long range forces which do not seem to show up in nature very often.
- The pattern of symmetry breaking depends on the chosen scalar fields. Generally, we have

of Goldstone bosons= # of broken generators

and there always be scalar fields which are not Goldstone bosons.

3) Local vs global symmetries

a) **Global symmetry**: symmetry transformation independent of space-time Example: phase transformation $\phi \rightarrow \phi' = e^{i\alpha}\phi$, α : some constant Then Lagrangian given by

$$\mathcal{L} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - \mu^{2} \phi^{\dagger} \phi - \lambda \left(\phi^{\dagger} \phi \right)^{2}$$

is invariant under the phase transformation and the charge

$$Q = \int d^3 x i \left[\phi^{\dagger} \partial_0 \phi - \partial_0 \phi^{\dagger} \phi \right]$$

is conserved. (Noether's theorem) This is an example of theory with U(1) symmetry. In nature, many approximate symmetries, e.g. lepton number, isospin, Baryon number, \cdots are probably realized in the form of global symmtries.

b) Local symmetry: guage smmetry

The phase transformation is now space-time dependent,

$$\phi \to \phi' = e^{ig\alpha(x)}\phi$$

The derivative transforms as

$$\partial^\mu \phi o \partial^\mu \phi^{'} = e^{i lpha(x)} \left[\partial^\mu \phi + i g \left(\partial^\mu lpha
ight) \phi
ight]$$
 ,

which is not just a phase transformation on the derivative. Introduce a vector field A^{μ} , gauge field, with the transformation

$$A^{\mu} \rightarrow A'^{\mu} = A^{\mu} - \partial^{\mu} \alpha$$

The combination

$$D^{\mu}\phi\equiv\left(\partial^{\mu}-\mathit{igA}^{\mu}
ight)\phi$$
, covariant derivative

will be transformed by a phase,

$$D^{\mu}\phi^{\prime}=e^{iglpha(x)}\left(D^{\mu}\phi
ight)$$

and the combination

$$D_{\mu}\phi^{\dagger}D^{\mu}\phi$$

is invarianat under the phase transformation.

Ling-Fong Li ()

If we define anti-symmetric tensor for the gauge field by

$$ig(D_\mu D_
u - D_
u D_\mu ig) \phi = g F_{\mu
u} \phi, \qquad ext{with} \qquad F_{\mu
u} = \partial_\mu A_
u - \partial_
u A_\mu$$

We can use the property of the covariant derivative under the gauge transformation to show that

$$F_{\mu
u}'=F_{\mu
u}$$

The complete Lagragian for this theory is

$$\mathcal{L} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\phi)$$

where $V(\phi)$ does not depend on derivative of ϕ .

- the usual mass term of the form $A^{\mu}A_{\mu}$ is not gauge invariant \Rightarrow gauge field gives massless particle \Rightarrow long range force
- the coupling of gauge field to other field is universal
- The extension to non-abelian local symmetry, Yang-Mills fields, (Yang & Mills 1954) has led to many new interesting properties.

4) Local symmetry & spontaneous symmetry breaking

If we combine the local symmetry with spontaneous symmetry breaking, an interesting new phenonmena happens, namely **Higgs phenomenon**.(Higgs (1964), Englert & Brout (1964), Guralnik, Hagen, & Kibble (1964)) Take the Lagrangain to be of the form,

$$\mathcal{L} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\phi)$$

with

$$\mathcal{D}^{\mu}\phi\equiv\left(\partial^{\mu}-\mathit{ig}\mathcal{A}^{\mu}
ight)\phi, \qquad \mathcal{F}_{\mu
u}=\partial_{\mu}\mathcal{A}_{
u}-\partial_{
u}\mathcal{A}_{\mu
u},
onumber\ V\left(\phi
ight)=-\mu^{2}\left(\phi^{\dagger}\phi
ight)+\lambda\left(\phi^{\dagger}\phi
ight)^{2}$$

This Lagrangian is invariant under the local symmetry transfomation,

$$\phi o \phi' = e^{iglpha(x)}\phi, \qquad A'^{\mu} = A^{\mu} - \partial^{\mu}lpha$$

The classical minimum is at

$$\left(\phi^{\dagger}\phi
ight)=\mathsf{v}^{2}=rac{\mu^{2}}{2\lambda}$$

If we define the quantum field by

$$\phi'=\phi-
u$$
, so that $ig\langle \phi'ig
angle=0$

then covariant derivative term will give

$$D_{\mu}\phi^{\dagger}D^{\mu}\phi \longrightarrow \left[\left(\partial_{\mu}+igA_{\mu}\right)\phi\right]\left[\left(\partial^{\mu}-igA^{\mu}\right)\phi\right] \longrightarrow g^{2}v^{2}\left(A^{\mu}A_{\mu}\right)+\cdots$$

which is a mass term for the gauge boson. So there is no more long range force associated with gauge boson. In fact, one

can make a gauge transformation to get rid of the Goldstone boson. First write the ϕ as

$$\phi = e^{i\xi/v} \left(v + \eta\right)$$

Make a gauge transformation,

$$\phi'(x) = e^{-i\xi/v}\phi, \qquad B_{\mu} = A_{\mu} - rac{1}{gv}\partial_{\mu}\xi$$

Then $\xi(x)$ field, the Goldstone bosons, disappears from the Lagrangian because of the gauge invariant. What happens is that the massless A_{μ} field combines with ξ field to become massive.

Ling-Fong Li ()

5) Standard Model of Electroweak Interactions Weak Interactions before gauge theory :

1) Four-fermion interaction

$$\mathcal{L}_{wk} = \frac{G_F}{\sqrt{2}} \left(J^{\mu} J^{\dagger}_{\mu} + h.c.
ight) \qquad ext{where } J_{\mu} = \left[ar{
u} \gamma_{\mu} \left(1 - \gamma_5
ight) e
ight] + \cdots$$

where $G_F \simeq \frac{10^{-5}}{M_p^2}$ is the Fermi constant. Note that only the left-handed currents come in here.

This theory has many successes phenomenolgically but behaves badly at high energies. In particular, it non-renormalizable and violates unitarity around 300 *Gev*.

2) Intermediate Vector Boson theory

Here the weak interaction is mediated by a massive vector bosons W

$$\mathcal{L}_{wk} = g \left(J_{\mu} W^{\mu} + h.c. \right), \qquad rac{g^2}{M_w^2} = rac{G_F}{\sqrt{2}}$$

0

But the bad high energy behavior persists.

Construction of Standard Model (Weinberg 1967, 't Hooft 1971) This is a gauge theory with spontaneous symmetry breaking. The bad high energy behavior is avoided as the intermediate vector meson W gets its mass through spontaneous symmetry breaking.

Gauge group: $SU\left(2
ight) imes U\left(1
ight)$ gauge bosons: A_{μ} , B_{μ}

Scalar field: $\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$,

Spontaneous symmetry breaking: $SU\left(2\right) \times U\left(1\right) \longrightarrow U\left(1\right)_{em}$

$$\phi = \exp\left(iec{ au}\cdotec{ec{arphi}}\left(x
ight)/v
ight)\left(egin{array}{c}0\\v+\eta\left(x
ight)\end{array}
ight)$$

Here $\xi(x)$ are Goldstone bosons and will be eaten up by gauge bosons to become massive. The left over field $\eta(x)$ is usually called **Higgs Particle.** Massive gauge bosons:

$$\begin{split} W^{\pm}_{\mu} &= \frac{1}{\sqrt{2}} \left(A^{1}_{\mu} \mp i A^{2}_{\mu} \right) & W - \text{boson} \\ Z_{\mu} &= \cos \theta_{W} A^{3}_{\mu} - \sin \theta_{W} B_{\mu} & Z - \text{boson} \\ A_{\mu} &= \sin \theta_{W} A^{3}_{\mu} + \cos \theta_{W} B_{\mu} & Photon \end{split}$$

Fermions:

a) Leptons

$$L_{i} = \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L}, \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}, \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L}, \qquad R_{i} = e_{R}, \mu_{R}, \tau_{R},$$

b) Quarks (Glashow, Iliopoupos, and Maiani, Kobayashi and Maskawa)

$$q_{iL} = \left(egin{array}{c} u' \ d \end{array}
ight)_L$$
, $\left(egin{array}{c} c' \ s \end{array}
ight)_L$, $\left(egin{array}{c} t' \ b \end{array}
ight)_L$, $U_{iR} = u_R$, c_R , t_R , $D_{iR} = d_R$, s_R , b_R

All left-handed fermions are in SU(2) doublets and right-handed fermions are all singlets.

Yukawa coupling:

$$\mathcal{L}_{Y} = f_{ij}\overline{L}_{i}R_{j}\phi + h.c. + \cdots$$

Fermions get their masses from spontaneous symmetry breaking through Yukawa couplings,

$$m_{ij} = f_{ij}v$$

This implies that the Yukawa couplings \propto masses

Ling-Fong Li ()

Highlights of the Sucess of Standard Model

- W and Z were discovered in1983 at SPS in CERN, their masses agree well with theoretical prediction
- Z boson mediates weak neutral current interactions, e.g.

$$\nu_{\mu} + e \longrightarrow \nu_{\mu} + e, \qquad \nu + N \longrightarrow \nu + X, \cdots$$

These processes were discovered and being studies extensively in 1970's.

- t and b quarks were predicted and subsequently found
- Z bosons are studied extensively in e^+e^- machine and the results agree with theory
- . . .

Higgs Particle H

- Mass is not predicted by theorectical consideration
- Coupling to other particle is proportional to the other particle's mass ⇒ Higgs will decay into heavies particles allowed by kinematics.
- Production at hadron machine:

(<i>i</i>)	Gluon fusion :	pp ightarrow gg ightarrow H,
(ii)	V V fusion :	pp ightarrow VV ightarrow H,
(iii)	Association with V	$pp ightarrow qq\prime ightarrow VH.$

LHC(Large Hadron Collider) : 7 Tev on 7 Tev proton machine

< ∃ >

< A

• Decay of Higgs

Anything beyond Standard Model?

- Neutrino masses(confirmed)
- Ø More complicate Higgs structure
- Supersymmetry
- Grand unification
- String